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Abstract

We consider a basic model of multi-period trading, which can be used to
evaluate the performance of a trading strategy. We describe a frame-
work for single-period optimization, where the trades in each period
are found by solving a convex optimization problem that trades off ex-
pected return, risk, transaction cost and holding cost such as the bor-
rowing cost for shorting assets. We then describe a multi-period version
of the trading method, where optimization is used to plan a sequence
of trades, with only the first one executed, using estimates of future
quantities that are unknown when the trades are chosen. The single-
period method traces back to Markowitz; the multi-period methods
trace back to model predictive control. Our contribution is to describe
the single-period and multi-period methods in one simple framework,
giving a clear description of the development and the approximations
made. In this paper we do not address a critical component in a trading
algorithm, the predictions or forecasts of future quantities. The meth-
ods we describe in this paper can be thought of as good ways to exploit
predictions, no matter how they are made. We have also developed a
companion open-source software library that implements many of the
ideas and methods described in the paper.

S. Boyd, E. Busseti, S. Diamond, R. N. Kahn, K. Koh, P. Nystrup, J. Speth.
Multi-Period Trading via Convex Optimization. Foundations and TrendsR© in
Optimization, vol. 3, no. 1, pp. 1–76, 2016.
DOI: 10.1561/2400000023.
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1
Introduction

Single and multi-period portfolio selection. Markowitz [54] was the
first to formulate the choice of an investment portfolio as an optimiza-
tion problem trading off risk and return. Traditionally, this was done
independently of the cost associated with trading, which can be signif-
icant when trades are made over multiple periods [49]. Goldsmith [38]
was among the first to consider the effect of transaction cost on port-
folio selection in a single-period setting. It is possible to include many
other costs and constraints in a single-period optimization formulation
for portfolio selection [53, 63].

In multi-period portfolio selection, the portfolio selection problem
is to choose a sequence of trades to carry out over a set of periods.
There has been much research on this topic since the work of Samuel-
son [74] and Merton [58, 59]. Constantinides [22] extended Samuelson’s
discrete-time formulation to problems with proportional transaction
costs. Davis and Norman [24] and Dumas and Lucian [30] derived simi-
lar results for the continuous-time formulation. Transaction costs, con-
straints, and time-varying forecasts are more naturally dealt with in a
multi-period setting. Following Samuelson and Merton, the literature
on multi-period portfolio selection is predominantly based on dynamic

2
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3

programming [5, 9], which properly takes into account the idea of re-
course and updated information available as the sequence of trades
are chosen (see [37] and references therein). Unfortunately, actually
carrying out dynamic programming for trade selection is impractical,
except for some very special or small cases, due to the ‘curse of di-
mensionality’ [72, 11]. As a consequence, most studies include only a
very limited number of assets and simple objectives and constraints. A
large literature studies multi-period portfolio selection in the absence
of transaction cost (see, e.g., [18] and references therein); in this special
case, dynamic programming is tractable.

For practical implementation, various approximations of the dy-
namic programming approach are often used, such as approximate dy-
namic programming, or even simpler formulations that generalize the
single-period formulations to multi-period optimization problems [11].
We will focus on these simple multi-period methods in this paper. While
these simplified approaches can be criticized for only approximating the
full dynamic programming trading policy, the performance loss is likely
very small in practical problems, for several reasons. In [11], the au-
thors developed a numerical bounding method that quantifies the loss
of optimality when using a simplified approach, and found it to be very
small in numerical examples. But in fact, the dynamic programming
formulation is itself an approximation, based on assumptions (like in-
dependent or identically distributed returns) that need not hold well in
practice, so the idea of an ‘optimal strategy’ itself should be regarded
with some suspicion.

Why now? What is different now, compared to 10, 20, or 30 years
ago, is vastly more powerful computers, better algorithms, specification
languages for optimization, and access to much more data. These de-
velopments have changed how we can use optimization in multi-period
investing. In particular, we can now quickly run full-blown optimiza-
tion, run multi-period optimization, and search over hyper-parameters
in back-tests. We can run end-to-end analyses, indeed many at a time in
parallel. Earlier generations of investment researchers, relying on com-
puters much less powerful than today, relied more on separate models

Full text available at: http://dx.doi.org/10.1561/2400000023



4 Introduction

and analyses to estimate parameter values, and tested signals using
simplified (usually unconstrained) optimization.

Goal. In this tutorial paper we consider multi-period investment and
trading. Our goal is to describe a simple model that takes into account
the main practical issues that arise, and several simple and practical
frameworks based on solving convex optimization problems [13] that
determine the trades to make. We describe the approximations made,
and briefly discuss how the methods can be used in practice. Our meth-
ods do not give a complete trading system, since we leave a critical part
unspecified: Forecasting future returns, volumes, volatilities, and other
important quantities (see, e.g., [42]). This paper describes good prac-
tical methods that can be used to trade, given forecasts.

The optimization-based trading methods we describe are practical
and reliable when the problems to be solved are convex. Real-world
single-period convex problems with thousands of assets can be solved
using generic algorithms in well under a second, which is critical for
evaluating a proposed algorithm with historical or simulated data, for
many values of the parameters in the method.

Outline. We start in chapter 2 by describing a simple model of multi-
period trading, taking into account returns, trading costs, holding costs,
and (some) corporate actions. This model allows us to carry out simula-
tion, used for what-if analyses, to see what would have happened under
different conditions, or with a different trading strategy. The data in
simulation can be realized past data (in a back-test) or simulated data
that did not occur, but could have occurred (in a what-if simulation),
or data chosen to be particularly challenging (in a stress-test). In chap-
ter 3 we review several common metrics used to evaluate (realized or
simulated) trading performance, such as active return and risk with
respect to a benchmark.

We then turn to optimization-based trading strategies. In chapter
4 we describe single-period optimization (SPO), a simple but effective
framework for trading based on optimizing the portfolio performance
over a single period. In chapter 5 we consider multi-period optimiza-
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5

tion (MPO), where the trades are chosen by solving an optimization
problem that covers multiple periods in the future.

Contribution. Most of the material that appears in this paper has ap-
peared before, in other papers, books, or EE364A, the Stanford course
on convex optimization. Our contribution is to collect in one place
the basic definitions, a careful description of the model, and discussion
of how convex optimization can be used in multi-period trading, all
in a common notation and framework. Our goal is not to survey all
the work done in this and related areas, but rather to give a unified,
self-contained treatment. Our focus is not on theoretical issues, but
on practical ones that arise in multi-period trading. To further this
goal, we have developed an accompanying open-source software library
implemented in Python, and available at

https://github.com/cvxgrp/cvxportfolio.

Target audience. We assume that the reader has a background in the
basic ideas of quantitative portfolio selection, trading, and finance, as
described for example in the books by Grinold & Kahn [42], Meucci
[60], or Narang [65]. We also assume that the reader has seen some
basic mathematical optimization, specifically convex optimization [13].
The reader certainly does not need to know more than the very basic
ideas of convex optimization, for example the overview material covered
in chapter 1 of [13]. In a nutshell, our target reader is a quantitative
trader, or someone who works with or for, or employs, one.
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