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Distributionally Robust Learning
Ruidi Chen1 and Ioannis Ch. Paschalidis2

1Boston University, USA; rchen15@bu.edu
2Boston University, USA; yannisp@bu.edu

ABSTRACT
This monograph develops a comprehensive statistical learning
framework that is robust to (distributional) perturbations in
the data using Distributionally Robust Optimization (DRO) un-
der the Wasserstein metric. Beginning with fundamental prop-
erties of the Wasserstein metric and the DRO formulation, we
explore duality to arrive at tractable formulations and develop
finite-sample, as well as asymptotic, performance guarantees. We
consider a series of learning problems, including (i) distribution-
ally robust linear regression; (ii) distributionally robust regression
with group structure in the predictors; (iii) distributionally ro-
bust multi-output regression and multiclass classification, (iv)
optimal decision making that combines distributionally robust
regression with nearest-neighbor estimation; (v) distributionally
robust semi-supervised learning, and (vi) distributionally robust
reinforcement learning. A tractable DRO relaxation for each prob-
lem is being derived, establishing a connection between robustness
and regularization, and obtaining bounds on the prediction and
estimation errors of the solution. Beyond theory, we include nu-
merical experiments and case studies using synthetic and real
data. The real data experiments are all associated with various
health informatics problems, an application area which provided
the initial impetus for this work.

Ruidi Chen and Ioannis Ch. Paschalidis (2020), “Distributionally Robust Learn-
ing”, Foundations and TrendsR© in Optimization: Vol. 4, No. 1–2, pp 1–243. DOI:
10.1561/2400000026.
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1
Introduction

A central problem in machine learning is to learn from data (“big” or
“small”) how to predict outcomes of interest. Outcomes can be binary or
discrete, such as an event or a category, or continuous, e.g., a real value.
In either case, we have access to a number N of examples from which we
can learn; each example is associated with a potentially large number
p of predictor variables and the “ground truth” discrete or continuous
outcome. This form of learning is called supervised, because it relies on
the existence of known examples associating predictor variables with
the outcome. In the case of a binary/discrete outcome the problem is
referred to as classification, while for continuous outcomes we use the
term regression.

There are many methods to solve such supervised learning problems,
from ordinary (linear) least squares regression, to logistic regression,
Classification And Regression Trees (CART) [1], ensembles of decision
trees [2], [3], to modern deep learning models [4]. Whereas the nonlinear
models (random forests, gradient boosted trees, and deep learning)
perform very well in many specific applications, they have two key
drawbacks: (i) they produce predictive models that lack interpretability
and (ii) they are hard to analyze and do not give rise to rigorous

2
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3

mathematical results characterizing their performance and important
properties. In this monograph, we will mainly focus on the more classical
linear models, allowing for some nonlinear extensions.

Clearly, there is a plethora of application areas where such models
have been developed and used. A common thread throughout this
monograph is formed by applications in medicine and health care,
broadly characterized by the term predictive health analytics. While in
principle these applications are not substantially different from other
domains, they have important salient features that need to be considered.
These include:

1. Presence of outliers. Medical data often contain outliers, which
may be caused by medical errors, erroneous or missing data,
equipment and lab configuration errors, or even different inter-
pretation/use of a variable by different physicians who enter the
data.

2. Risk of “overfitting” from too many variables. For any individual
and any outcome we wish to predict, using all predictor variables
may lead to overfitting and large generalization errors (out-of-
sample). The common practice is to seek sparse models, using
the fewest variables possible without significantly compromising
accuracy. In some settings, especially when genetic information is
included in the predictors, the number of predictors can exceed
the training sample size, further stressing the need for sparsity.
Sparse regression models originated in the seminar work on the
Least Absolute Shrinkage and Selection Operator, better known
under the acronym LASSO [5].

3. Lack of linearity. In some applications, the linearity of regression or
logistic regression may not fully capture the relationship between
predictors and outcome. While kernel methods [6] can be used
to employ linear models in developing nonlinear predictors, other
choices include combining linear models with nearest neighbor
ideas to essentially develop piecewise linear models.

To formulate the learning problems of interest more concretely, let
x = (x1, . . . , xp) ∈ Rp denote a column vector with the predictors and

Full text available at: http://dx.doi.org/10.1561/2400000026



4 Introduction

let y ∈ R be the outcome or response. In the classification problem, we
have y ∈ {−1,+1}. We are given training data (xi, yi), i ∈ JNK, where
JNK 4= 1, . . . , N , from which we want to “learn” a function f(·) so that
f(xi) = yi for most i. Further, we want f(·) to generalize well to new
samples (i.e., to have good out-of-sample performance).

In the regression problem, we view the xi’s as independent variables
(predictor vectors) and yi as the real-valued dependent variable. We still
want to determine a function f(x) that predicts y. In linear regression,
f(x) = β′x, where β is a coefficient vector, prime denotes transpose, and
we assume one of the elements of x is equal to one with the corresponding
coefficient being the intercept (of the regression function at zero). Both
classification and regression problems can be formulated as:

min
β

EP∗ [hβ(x, y)], (1.1)

where P∗ is the probability distribution of (x, y), EP∗ stands for the
expectation under P∗, and hβ(x, y) is a loss function penalizing dif-
ferences between f(x) and y. This formulation is known as expected
risk minimization. Ordinary Least Squares (OLS) uses a squared loss
hβ(x, y) = (f(x)− y)2 while logistic regression uses the logloss function
hβ(x, y) = log(1 + exp{−yf(x)}). Since P∗ is typically unknown, a
common practice is to approximate it using the empirical distribution
P̂N which assigns equal probability to each training sample, leading to
the following empirical risk minimization formulation:

min
β

1
N

N∑
i=1

hβ(xi, yi).

One of the well known issues of OLS regression is that the regression
function can be particularly sensitive to outliers. To illustrate this with
a simple example, consider a case of regression with a single predictor;
see Figure 1.1. Points in the training set are shown as blue dots. Suppose
we include in the training set some outliers depicted as magenta stars.
OLS regression results in the black line. Notice how much the slope
of this line has shifted away from the blue dots to accommodate the
outliers. This skews future predictions but also our ability to identify
new outlying observations. Several approaches have been introduced to
address this issue [7], [8] and we discuss them in more detail in Section 4.
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Figure 1.1: Regression example.

The main focus of this monograph is to develop robust learning
methods for a variety of learning problems. To introduce robustness into
the generic problem, we will use ideas from robust optimization and for-
mulate a robust version of the expected risk minimization Problem (1.1).
We will further focus on distributional robustness. The problems we will
formulate are min-max versions of Problem (1.1) where one minimizes a
worst case estimate of the loss over some appropriately defined ambiguity
set. Such min-max formulations have a long history, going back to the
origins of game theory [9], where one can view the problem as a game
between an adversary who may affect the training set and the optimizer
who responds to the worst-case selection by the adversary. They also
have strong connections with H∞ and robust control theory [10], [11].

To avoid being overly broad, we will restrict our attention to the
intersection of statistical learning and Distributionally Robust Optimiza-
tion (DRO) under the Wasserstein metric [12]–[14]. Even this more
narrow area has generated a lot of interest and recent work. While
we will cover several aspects, we will not cover a number of topics,
including:

• the integration of DRO with different optimization schemes, e.g.,
inverse optimization [15], polynomial optimization [16], multi-
stage optimization [17], [18], and chance-constrained optimiza-
tion [19], [20];
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6 Introduction

• the application of DRO to stochastic control problems, see, e.g.,
[21]–[23], and statistical hypothesis testing [24];

• the combination of DRO with general estimation techniques, see,
e.g., [25] for distributionally robust Minimum Mean Square Er-
ror Estimation, and [26] for distributionally robust Maximum
Likelihood Estimation.

Most of the learning problems we consider, except for Section 8.2,
are static single-period problems where the data are assumed to be
independently and identically distributed. For extensions of DRO to
a dynamic setting where the data come in a sequential manner, we
refer to [27] for a distributionally robust Kalman filter model [23], [28],
and [29] for robust dynamic programming, and [30] for a distributionally
robust online adaptive algorithm.

In this monograph, we focus mainly on linear predictive models, with
the exception of Section 7, where the non-linearity is captured by a non-
parametric K-Nearest Neighbors (K-NN) model. For extensions of robust
optimization to non-linear settings, we refer to [31] for robust kernel
methods, [32] for distributionally robust graphical models, and [33] for
distributionally robust deep neural networks.

In the remainder of this Introduction, we will present a brief out-
line of robust optimization in Section 1.1 and distributionally robust
optimization in Section 1.2. In Section 1.3 we provide an outline of the
topics covered in the rest of the monograph. Section 1.4 summarizes
our notational conventions and Section 1.5 collects all abbreviations we
will use.

1.1 Robust Optimization

Robust optimization [34], [35] provides a way of modeling uncertainty in
the data without the use of probability distributions. It restricts data
perturbations to be within a deterministic uncertainty set, and seeks a
solution that is optimal for the worst-case realization of this uncertainty.
Consider a general optimization problem:

min
β

hβ(z), (1.2)

Full text available at: http://dx.doi.org/10.1561/2400000026



1.1. Robust Optimization 7

where β is a vector of decision variables, z is a vector of given parameters,
and h is a real-valued function. Assuming that the values of z lie within
some uncertainty set Z, a robust counterpart of Problem (1.2) can be
written in the following form:

min
β

max
z∈Z

hβ(z). (1.3)

Problem (1.3) is computationally tractable for many classes of uncer-
tainty sets Z. For a detailed overview of robust optimization we refer
to [34]–[36].

There has been an increasing interest in using robust optimization
to develop machine learning algorithms that are immunized against
data perturbations; see, for example, [37]–[44] for classification methods.
[41] considered both feature uncertainties:

Zx , {∆X ∈ RN×p: ‖∆xi‖q ≤ ρ, i ∈ JNK},

where ∆X can be viewed as a feature perturbation matrix on N samples
with p features, ‖ · ‖q is the `q norm, and ∆xi ∈ Rp, i ∈ JNK, are the
rows of ∆X, as well as label uncertainties:

Zy ,

{
∆y ∈ {0, 1}N :

N∑
i=1

∆yi ≤ Γ
}
,

where ∆yi ∈ {0, 1}, with 1 indicating that the label was incorrect and
has in fact been flipped, and 0 otherwise, and Γ is an integer-valued
parameter controlling the number of data points that are allowed to be
mislabeled. They solved various robust classification models under these
uncertainty sets. As an example, the robust Support Vector Machine
(SVM) [45] problem was formulated as:

min
w,b

max
∆y∈Zy

max
∆X∈Zx

N∑
i=1

max{1− yi(1− 2∆yi)(w′(xi + ∆xi)− b), 0}.

[39] studied a robust linear regression problem with feature-wise distur-
bance:

min
β

max
∆X∈Zx

‖y− (X + ∆X)β‖2,

where β is the vector of regression coefficients, and the uncertainty set

Zx , {∆X ∈ RN×p: ‖∆x̃i‖2 ≤ ci, i ∈ JpK},

Full text available at: http://dx.doi.org/10.1561/2400000026



8 Introduction

where ∆x̃i ∈ RN , i ∈ JpK, are the columns of ∆X. They showed that
such a robust regression problem is equivalent to the following `1-norm
regularized regression problem:

min
β
‖y−Xβ‖2 +

p∑
i=1

ci|βi|.

1.2 Distributionally Robust Optimization

Different from robust optimization, Distributionally Robust Optimization
(DRO) treats the data uncertainty in a probabilistic way. It minimizes a
worst-case expected loss function over a probabilistic ambiguity set that
is constructed from the observed samples and characterized by certain
known properties of the true data-generating distribution. DRO has
been an active area of research in recent years, due to its probabilistic
interpretation of the uncertain data, tractability when assembled with
certain metrics, and extraordinary performance observed on numerical
examples, see, for example, [12]–[14], [46], [47]. DRO can be interpreted
in two related ways: it refers to (i) a robust optimization problem where
a worst-case loss function is being hedged against; or, alternatively, (ii)
a stochastic optimization problem where the expectation of the loss
function with respect to the probabilistic uncertainty of the data is
being minimized. Figure 1.2 provides a schematic comparison of various
optimization frameworks.

To formulate a DRO version of the expected risk minimization
problem (1.1), consider the stochastic optimization problem:

inf
β

EP∗ [hβ(z)], (1.4)

where we set z = (x, y) ∈ Z ⊆ Rd in (1.1), β ∈ Rp is a vector of
coefficients to be learned, hβ(z): Z × Rp → R is the loss function of
applying β on a sample z ∈ Z, and P∗ is the underlying true probability
distribution of z. The DRO formulation for (1.4) minimizes the worst-
case expected loss over a probabilistic ambiguity set Ω:

inf
β

sup
Q∈Ω

EQ[hβ(z)]. (1.5)
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1.2. Distributionally Robust Optimization 9

Figure 1.2: Comparison of robust optimization with distributionally robust opti-
mization.

The existing literature on DRO can be split into two main branches,
depending on the way in which Ω is defined. One is through a moment
ambiguity set, which contains all distributions that satisfy certain
moment constraints [48]–[53]. In many cases it leads to a tractable
DRO problem but has been criticized for yielding overly conservative
solutions [54]. The other is to define Ω as a ball of distributions:

Ω , {Q ∈ P(Z): D(Q, P0) ≤ ε},

where Z is the set of possible values for z; P(Z) is the space of all
probability distributions supported on Z; ε is a pre-specified radius
of the set Ω; and D(Q,P0) is a probabilistic distance function that
measures the distance between Q and a nominal distribution P0.

The nominal distribution P0 is typically chosen as the empirical
distribution on the observed samples {z1, . . . , zN}:

P0 = P̂N ,
1
N

N∑
i=1

δzi(z),

where δzi(·) is the Dirac density assigning probability mass equal to
1 at zi; see [12], [13], and [55]. There are also works employing a
nonparametric kernel density estimation method to obtain a continuous
density function for the nominal distribution, when the underlying true
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10 Introduction

distribution is continuous, see [56], [57]. The kernel density estimator is
defined as:

f0(z) = 1
N |H|1/2

N∑
i=1

K(H−1/2(z− zi)),

where f0 represents the density function of the nominal distribution
P0, i.e., f0 = dP0/dz, H ∈ Rd×d represents a symmetric and positive
definite bandwidth matrix, and K(·): Rd → R+ is a symmetric kernel
function satisfying K(·) ≥ 0,

∫
Rd K(z)dz = 1, and

∫
Rd K(z)zdz = 0.

An example of the probabilistic distance function D(·, ·) is the
φ-divergence [58]:

D(Q,P0) = EP0

[
φ

(
dQ
dP0

)]
,

where φ(·) is a convex function satisfying φ(1) = 0. For example, if
φ(t) = t log t, we obtain the Kullback–Leibler (KL) divergence [59],
[60]. The definition of the φ-divergence requires that Q is absolutely
continuous with respect to P0. If we take the empirical measure to be
the nominal distribution P0, this implies that the support of Q must be
a subset of the empirical examples. This constraint could potentially
hurt the generalization capability of DRO.

Other choices for D(·, ·) include the Prokhorov metric [61], and the
Wasserstein distance [13], [14], [18], [62], [63]. DRO with the Wasserstein
metric has been extensively studied in the machine learning community;
see, for example, [12] and [64] for robustified regression models, [33]
for adversarial training in neural networks, and [55] for distributionally
robust logistic regression. [46] and [47] provided a comprehensive analysis
of the Wasserstein-based distributionally robust statistical learning
problems with a scalar (as opposed to a vector) response. In recent
work, [65] proposed a DRO formulation for convex regression under an
absolute error loss.

In this monograph we adopt the Wasserstein metric to define a data-
driven DRO problem. Specifically, the ambiguity set Ω is defined as:

Ω , {Q ∈ P(Z): Ws,t(Q, P̂N ) ≤ ε}, (1.6)
where P̂N is the uniform empirical distribution over N training samples
zi, i ∈ JNK, and Ws,t(Q, P̂N ) is the order-t Wasserstein distance (t ≥ 1)
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1.3. Outline 11

between Q and P̂N defined as:

Ws,t(Q, P̂N ) ,
(

min
π∈P(Z×Z)

∫
Z×Z

(s(z1, z2))tdπ
(
z1, z2

))1/t
, (1.7)

where s is a metric on the data space Z, and π is the joint distribution
of z1 and z2 with marginals Q and P̂N , respectively. The Wasserstein
distance between two distributions represents the cost of an optimal
mass transportation plan, where the cost is measured through the
metric s.

We choose the Wasserstein metric for two main reasons. On one
hand, the Wasserstein ambiguity set is rich enough to contain both
continuous and discrete relevant distributions, while other metrics such
as the KL divergence, exclude all continuous distributions if the nominal
distribution is discrete [13], [14]. Furthermore, considering distributions
within a KL distance from the empirical, does not allow for probability
mass outside the support of the empirical distribution.

On the other hand, measure concentration results guarantee that
the Wasserstein set contains the true data-generating distribution with
high confidence for a sufficiently large sample size [66]. Moreover, the
Wasserstein metric takes into account the closeness between support
points while other metrics such as the φ-divergence only consider the
probabilities on these points. An image retrieval example in [14] sug-
gests that the probabilistic ambiguity set constructed based on the KL
divergence prefers the pathological distribution to the true distribution,
whereas the Wasserstein distance does not exhibit such a problem. The
reason lies in that the φ-divergence does not incorporate a notion of
closeness between two points, which in the context of image retrieval
represents the perceptual similarity in color.

1.3 Outline

The goal of this monograph is to develop a comprehensive robust
statistical learning framework using a Wasserstein-based DRO as the
modeling tool. Specifically,

• we provide background knowledge on the basics of DRO and the
Wasserstein metric, and show its robustness inducing property
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through discussions on the Wasserstein ambiguity set and the
property of the DRO solution;

• we cover a variety of predictive and prescriptive models that can
be posed and solved using the Wasserstein DRO approach, and
show novel problem-tailored theoretical results and real world
applications, strengthening the notion of robustness through these
discussions;

• we consider a variety of synthetic and real world case studies of
the respective models, which validate the theory and the proposed
DRO approach and highlight its advantages compared to several
alternatives. This could potentially (i) ease the understanding
of the model and approach; and (ii) attract practitioners from
various fields to put these models into use.

Robust models can be useful when (i) the training data is contam-
inated with noise, and we want to learn a model that is immunized
against the noise; or (ii) the training data is pure, but the test set is
contaminated with outliers. In both scenarios we require the model to be
insensitive to the data uncertainty/unreliability, which is characterized
through a probability distribution that resides in a set consisting of all
distributions that are within a pre-specified distance from a nominal
distribution. The learning problems that are studied in this monograph
include:

• Distributionally Robust Linear Regression (DRLR), which esti-
mates a robustified linear regression plane by minimizing the
worst-case expected absolute loss over a probabilistic ambiguity
set characterized by the Wasserstein metric.

• Groupwise Wasserstein Grouped LASSO (GWGL), which aims at
inducing sparsity at a group level when there exists a predefined
grouping structure for the predictors, through defining a specially
structured Wasserstein metric for DRO.

• Distributionally Robust Multi-Output Learning, which solves a
DRO problem with a multi-dimensional response/label vector,
generalizing the single-output model addressed in DRLR.
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• Optimal decision making using DRLR informed K-Nearest Neigh-
bors (K-NN) estimation, which selects among a set of actions
the optimal one through predicting the outcome under each ac-
tion using K-NN with a distance metric weighted by the DRLR
solution.

• Distributionally Robust Semi-Supervised Learning, which estimates
a robust classifier with partially labeled data, through (i) either
restricting the marginal distribution to be consistent with the
unlabeled data, (ii) or modifying the structure of DRO by allowing
the center of the ambiguity set to vary, reflecting the uncertainty
in the labels of the unsupervised data.

• Distributionally Robust Reinforcement Learning, which considers
Markov Decision Processes (MDPs) and seeks to inject robustness
into the probabilistic transition model, deriving a lower bound for
the distributionally robust value function in a regularized form.

The remainder of this monograph is organized as follows. Section 2
presents basics and key properties for the Wasserstein metric. Section 3
discusses how to solve a general Wasserstein DRO problem, the structure
of the worst-case distribution, and the performance guarantees of the
DRO estimator. The rest of the sections are dedicated to specific learning
problems that can be posed as a DRO problem.

In Section 4, we develop the Wasserstein DRO formulation for linear
regression under an absolute error loss. Section 5 discusses distribu-
tionally robust grouped variable selection, and develops the Groupwise
Wasserstein Grouped LASSO (GWGL) formulation under the absolute
error loss and log-loss. In Section 6, we generalize the single-output
model and develop distributionally robust multi-output learning models
under Lipschitz continuous loss functions and the multiclass log-loss.
Section 7 presents an optimal decision making framework which selects
among a set of actions the best one, using predictions from K-Nearest
Neighbors (K-NN) with a metric weighted by the Wasserstein DRO solu-
tion. Section 8 covers a number of active research topics in the domain
of DRO under the Wasserstein metric, including (i) DRO in Semi-
Supervised Learning (SSL) with partially labeled datasets; (ii) DRO in

Full text available at: http://dx.doi.org/10.1561/2400000026



14 Introduction

Reinforcement Learning (RL) with temporal correlated data. We close
the monograph by discussing further potential research directions in
Section 9.

1.4 Notational Conventions

Vectors

• Boldfaced lowercase letters denote vectors, ordinary lowercase
letters denote scalars, boldfaced uppercase letters denote matrices,
and calligraphic capital letters denote sets.

• ei denotes the i-th unit vector, e or 1 the vector of ones, and 0 a
vector of zeros.

• All vectors are column vectors. For space saving reasons, we write
x = (x1, . . . , xdim(x)) to denote the column vector x, where dim(x)
is the dimension of x.

Sets and functions

• We use R to denote the set of real numbers, and R+ the set of
non-negative real numbers.

• For a set X , we use |X | to denote its cardinality.

• We write cone{v ∈ V} for a cone that is generated from the set
of vectors v ∈ V.

• 1A(x) denotes the indicator function, i.e., 1A(x) = 1 if x ∈ A,
and 0 otherwise.

• For z , (x, y) ∈ X × Y and a function h, the notations h(z) and
h(x, y) are used interchangeably, and Z , X × Y.

• B(Z) denotes the set of Borel measures supported on Z, and P(Z)
denotes the set of Borel probability measures supported on Z.

• For any integer n we write JnK for the set {1, . . . , n}. Hence, P(JnK)
denotes the n-th dimensional probability simplex.
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Matrices

• I denotes the identity matrix.

• Prime denotes transpose. Specifically, A′ denotes the transpose
of a matrix A.

• For a matrix A ∈ Rm×n, we will denote by A = (aij)j∈JnK
i∈JmK the

elements of A, by a1, . . . ,am the rows of A, and, with some abuse
of our notation which denotes vectors by lowercase letters, we will
denote by A1, . . . ,An the columns of A.

• For a symmetric matrix A, we write A � 0 to denote a positive
definite matrix, and A < 0 a positive semi-definite matrix.

• diag(x) denotes a diagonal matrix whose main diagonal consists
of the elements of x and all off-diagonal elements are zero.

• tr(A) denotes the trace (i.e., sum of the diagonal elements) of a
square matrix A ∈ Rn×n.

• |A| denotes the determinant of a square matrix A ∈ Rn×n.

Norms

• ‖x‖p , (∑i |xi|p)1/p denotes the `p norm with p ≥ 1, and ‖ · ‖ the
general vector norm that satisfies the following properties:

1. ‖x‖ = 0 implies x = 0;
2. ‖ax‖ = |a|‖x‖, for any scalar a;
3. ‖x + y‖ ≤ ‖x‖+ ‖y‖;
4. ‖x‖ = ‖|x|‖, where |x| = (|x1|, . . . , |xdim(x)|);
5. ‖(x,0)‖ = ‖x‖, for an arbitrarily long vector 0.

• Any W-weighted `p norm defined as

‖x‖Wp , ((|x|p/2)′W|x|p/2)1/p

with a positive definite matrix W satisfies the above conditions,
where |x|p/2 = (|x1|p/2, . . . , |xdim(x)|p/2).
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• For a matrix A ∈ Rm×n, we use ‖A‖p to denote its induced `p
norm that is defined as ‖A‖p , supx6=0 ‖Ax‖p/‖x‖p.

Random variables

• For two random variables w1 and w2, we say that w1 is stochas-
tically dominated by w2, denoted by w1

D

≤ w2, if P(w1 ≥ x) ≤
P(w2 ≥ x) for all x ∈ R.

• For a dataset D , {z1, . . . , zN}, we use P̂N to denote the empirical
measure supported on D, i.e., P̂N , 1

N

∑N
i=1 δzi(z), where δzi(z)

denotes the Dirac delta function at point zi ∈ Z.

• The N -fold product of a distribution P on Z is denoted by PN ,
which represents a distribution on the Cartesian product space
ZN . We write P∞ to denote the limit of PN as N →∞.

• EP denotes the expectation under a probability distribution P.

• For a random vector x, cov(x) will denote its covariance.

• Np(0,Σ) denotes the p-dimensional Gaussian distribution with
mean 0 and covariance matrix Σ.

• For a distribution P ∈ P(X×Y), PX (·) ,
∑
y∈Y P(·, y) denotes the

marginal distribution over X , and P|x ∈ PX (Y) is the conditional
distribution over Y given x ∈ X , where PX (Y) denotes the set of
all conditional distributions supported on Y, given features in X .

• Ws,t(P,Q) denotes the order-t Wasserstein distance between mea-
sures P,Q under a cost metric s. For ease of notation and when the
cost metric is clear from the context we will be writing Wt(P,Q).

• Ωs,t
ε (P) denotes the set of probability distributions whose order-t

Wasserstein distance under a cost metric s from the distribution
P is less than or equal to ε, i.e.,

Ωs,t
ε (P) , {Q ∈ P(Z): Ws,t(Q, P) ≤ ε}.

For ease of notation, when the cost metric is clear from the context
and t = 1, we will be writing Ωε(P), or simply Ω when the center
distribution P is clear from the context.
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1.5 Abbreviations

ACE . . . . . . Angiotensin-Converting Enzyme
ACS . . . . . . American College of Surgeons
AD . . . . . . Absolute Deviation
ARB . . . . . . Angiotensin Receptor Blockers
a.s. . . . . . . almost surely
AUC . . . . . . Area Under the ROC Curve
BMI . . . . . . Body Mass Index
CART . . . . . . Classification And Regression Trees
CCA . . . . . . Canonical Correlation Analysis
CCR . . . . . . Correct Classification Rate
CI . . . . . . Confidence Interval
CT . . . . . . Computed Tomography
CTDI . . . . . . CT Dose Index
CVaR . . . . . . Conditional Value at Risk
C&W . . . . . . The Curds and Whey procedure
DRLR . . . . . . Distributionally Robust Linear

Regression
DRO . . . . . . Distributionally Robust Optimization
EHRs . . . . . . Electronic Health Records
EN . . . . . . Elastic Net
FA . . . . . . False Association
FD . . . . . . False Disassociation
FES . . . . . . Factor Estimation and Selection
GLASSO . . . . . . Grouped LASSO
GSRL . . . . . . Grouped Square Root LASSO
GWGL . . . . . . Groupwise Wasserstein Grouped

LASSO
HbA1c . . . . . . hemoglobin A1c
HIPAA . . . . . . Health Insurance Portability and

Accountability Act
ICD-9 . . . . . . International Classification of

Diseases, Ninth Revision
i.i.d. . . . . . . independently and identically

distributed
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IRB . . . . . . Institutional Review Board
IRLS . . . . . . Iteratively Reweighted Least Squares
KL . . . . . . Kullback–Leibler
K-NN . . . . . . K-Nearest Neighbors
LAD . . . . . . Least Absolute Deviation
LASSO . . . . . . Least Absolute Shrinkage and

Selection Operator
LG . . . . . . Logistic Regression
LHS . . . . . . Left Hand Side
LMS . . . . . . Least Median of Squares
LOESS . . . . . . LOcally Estimated Scatterplot

Smoothing
LTS . . . . . . Least Trimmed Squares
MAD . . . . . . Median Absolute Deviation
MCC . . . . . . MultiClass Classification
MDP . . . . . . Markov Decision Process
MeanAE . . . . . . Mean Absolute Error
min-max . . . . . . minimization-maximization
MLE . . . . . . Maximum Likelihood Estimator
MLG . . . . . . Multiclass Logistic Regression
MLR . . . . . . Multi-output Linear Regression
MPD . . . . . . Minimal Perturbation Distance
MPI . . . . . . Maximum Percentage Improvement
MPMs . . . . . . Minimax Probability Machines
MSE . . . . . . Mean Squared Error
NPV . . . . . . Negative Predictive Value
NSQIP . . . . . . National Surgical Quality

Improvement Program
OLS . . . . . . Ordinary Least Squares
PCR . . . . . . Principal Components Regression
PPV . . . . . . Positive Predictive Value
PVE . . . . . . Proportion of Variance Explained
RBA . . . . . . Robust Bias-Aware
RHS . . . . . . Right Hand Side
RL . . . . . . Reinforcement Learning
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ROC . . . . . . Receiver Operating Characteristic
RR . . . . . . Relative Risk
RRR . . . . . . Reduced Rank Regression
RTE . . . . . . Relative Test Error
SNR . . . . . . Signal to Noise Ratio
SR . . . . . . Squared Residuals
SSL . . . . . . Semi-Supervised Learning
std . . . . . . standard deviation
SVM . . . . . . Support Vector Machine
TA . . . . . . True Association
TD . . . . . . True Disassociation
TAR . . . . . . True Association Rate
TDR . . . . . . True Disassociation Rate
WGD . . . . . . Within Group Difference
w.h.p. . . . . . . with high probability
WMSE . . . . . . Weighed Mean Squared Error
w.p.1 . . . . . . with probability 1
w.r.t. . . . . . . with respect to
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