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ABSTRACT
In this monograph, we provide an overview of the informa-
tion relaxation approach for calculating performance bounds
in stochastic dynamic programs (DPs). The technique in-
volves (1) relaxing the temporal feasibility (or nonanticipa-
tivity) constraints so the decision-maker (DM) has additional
information before making decisions, and (2) incorporating
a penalty that punishes the DM for violating the temporal
feasibility constraints. The goal of this monograph is to pro-
vide a self-contained overview of the key theoretical results
of the information relaxation approach as well as a review
of research that has successfully used these techniques in a
broad range of applications. We illustrate the information re-
laxation approach on applications in inventory management,
assortment planning, and portfolio optimization.

Keywords: stochastic dynamic programs; information relaxations;
approximate dynamic programming
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1
Introduction

In principle, dynamic programming (DP) provides a powerful framework
for modeling complex decision problems where uncertainty is resolved
and decisions are made over time. However, in practice, the “curse of
dimensionality” – the fact that the size of the state space typically grows
exponentially in the number of state variables considered – severely
limits the complexity of problems that can be solved using DP methods.
In contrast, Monte Carlo simulation methods typically scale well with
the number of state variables considered and, given a control policy,
it is not difficult to simulate a complex dynamic system with many
uncertainties. Simulating with a feasible policy provides a lower bound
on the expected reward (or upper bound on the expected cost) with an
optimal policy, but Monte Carlo simulation typically does not provide
a good way to identify an optimal policy or provide a performance
bound, i.e., an upper bound on the expected reward (or lower bound on
expected cost) with an optimal policy. Consequently, researchers and
practitioners using heuristic control policies often wonder how good a
policy is and whether it is “good enough” to use in practice.

In this monograph, we review the information relaxation approach
for calculating performance bounds in stochastic DPs, following Brown,

2
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3

Smith, and Sun (2010) (hereafter BSS (2010)) and related works. The
information relaxation approach consists of two elements: (1) we relax
the temporal feasibility (or nonanticipativity) constraints that require
decisions to depend only on the information available at the time a
decision is made and (2) we impose a penalty that punishes violations
of these relaxed constraints. Relaxing the temporal feasibility constraint
allows the decision-maker (DM) to make decisions using more infor-
mation than is truly available and thus leads to an upper bound on
value. Without any penalty for using this additional information, the
resulting performance bound is often quite weak. Informally, we say
a penalty is dual feasible if it does not penalize temporally feasible
policies. Though there exists a dual feasible penalty that provides a
bound that is equal to the optimal value for the primal DP (i.e., strong
duality holds), these ideal penalties are based on the optimal value
function, which is typically not available in the applications of interest
– if the value function were available, we would not need performance
bounds. In practice, we typically use penalties based on approximate
value functions to generate performance bounds.

By relaxing the temporal feasibility constraints, we can often greatly
simplify the problem by reducing a complex stochastic DP to a series
of scenario-specific deterministic optimization problems solved within
a Monte Carlo simulation. To illustrate this idea, we will consider a
dynamic assortment problem, where a retailer decides which products
to offer for sale (“display”) when facing uncertain demand, drawn from
a distribution with unknown parameters. Here a perfect information
relaxation assumes the DM knows all demands and distribution param-
eters before deciding which products to display. With this information,
the problem of choosing products to display is a deterministic optimiza-
tion problem. The information relaxation performance bound can be
estimated using Monte Carlo simulation by repeatedly drawing random
demands and distributions and averaging the results. We can also con-
sider imperfect information relaxations where, for example, the DM
knows the demand distribution but not the realized demands.

Full text available at: http://dx.doi.org/10.1561/2400000027



4 Introduction

1.1 Outline of the Monograph

The goal of this monograph is to provide a summary of the key ideas
of information relaxation methods for stochastic DPs and demonstrate
their use in several examples. The idea is to provide a “one-stop-shop”
(or at least a “first stop”) for researchers seeking to learn the key ideas
and tools for using information relaxation methods.

Following a brief history and literature review in Section 1.2, in
Sections 2–4, we describe the theory associated with the information
relaxation approach. Section 2 establishes the basic framework and
Section 3 presents the key theoretical results, both following BSS (2010).
In Section 4, we study DPs with a convex structure and show how the
use of “gradient” penalties leads to inner problems that are easy to solve;
this section draws on Brown and Smith (2014b). Before considering
specific examples in detail, in Section 5 we provide a summary of
the information relaxation approach and advice on how to proceed in
applications.

In Sections 6–8, we consider illustrative applications. Section 6 illus-
trates the basic results and methods in a simple inventory management
example with and without uncertainty about the state of the world; this
problem is simple enough that it can be solved to optimality, allowing
us to compare the information relaxation performance bounds to the
optimal value. In Section 7, we consider a more complex example based
on the dynamic assortment problem studied in Caro and Gallien (2007);
our discussion draws on Brown and Smith (2020). In Section 8, we illus-
trate the use of gradient penalties (introduced in Section 4) on dynamic
portfolio optimization problems with transaction costs, building on the
model and results of Brown and Smith (2011).

A reader eager to see examples could read Section 6 describing the
inventory example and perhaps Section 7 on the dynamic assortment
example in parallel with Sections 2–3 describing the general framework
and main results. Similarly, one could read Section 8 describing the
portfolio optimization example in parallel with Section 4 describing the
theory for convex DPs.

Full text available at: http://dx.doi.org/10.1561/2400000027



1.2. History and Literature Review 5

In Sections 9 and 10, we briefly review other work that has advanced
information relaxation methodology and successfully applied the infor-
mation relaxation approach. Section 11 offers a few concluding remarks
and suggestions for future research.

1.2 History and Literature Review

Our interest in information relaxation methods for DPs began with
BSS (2010). As discussed in BSS (2010), we were motivated by the
need to evaluate the quality of heuristic policies in applications. As an
example of one such application, Lai et al. (2010) consider the problem
of managing natural gas storage over time in the presence of stochastic
price dynamics. In the model, the merchant may inject or withdraw
natural gas in each period. This problem is naturally formulated as a
stochastic DP but is challenging because the natural gas forward curve
involves a high-dimensional model that leads to a very large state space
for the stochastic DP. Lai et al. (2010) develop some policies based on
approximations of the value function. Naturally, one might wonder how
good these policies are: could one do better with other – perhaps more
complex – policies or is the current one “good enough?” Such questions
are common when studying complex dynamic models.

The information relaxation approach to calculating performance
bounds for DPs in BSS (2010) was inspired by Haugh and Kogan (2004)’s
“duality approach” for placing bounds on the value of an American op-
tion; Rogers (2002) independently proposed a similar approach, also
applied to option pricing. Both Haugh and Kogan (2004) and Rogers
(2002) consider the use of what we call perfect information relaxations
and establish their main results using martingale arguments. Haugh and
Kogan (2004) propose a particular method for generating penalties or, in
their terminology, “dual martingales” based on approximate value func-
tions and demonstrate the use of this method in high-dimensional option
pricing problems. Andersen and Broadie (2004) propose an alternative
method for generating dual martingales based on approximate policies.
Glasserman (2003) provides a nice overview of this work. Subsequent
work (e.g., Meinshausen and Hambly, 2004; Schoenmakers, 2012) in
financial engineering extended these dual methods to multiple stopping
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6 Introduction

problems, for example, derivatives with several exercise rights such as
“swing options” in electricity markets or “chooser caps” in interest rate
markets.

BSS (2010) generalizes Haugh and Kogan (2004), Rogers (2002), and
Andersen and Broadie (2004) in several ways. First, rather than focusing
exclusively on option pricing problems, it considers general stochastic
DPs. Second, rather than focusing exclusively on perfect information
relaxations, it considers general information relaxations. BSS (2010)
also presents a general method for constructing good penalties that
includes and extends the methods proposed by Haugh and Kogan (2004)
and Andersen and Broadie (2004).

The idea of relaxing temporal feasibility (or nonanticipativity) con-
straints has also been studied in the stochastic programming literature
(see, for example, Rockafellar and Wets, 1976; Shapiro et al., 2009).
The stochastic programming formulation typically requires the reward
functions and set of feasible actions to be convex and the penalties to be
linear functions of the actions; they consider only perfect information
relaxations. In contrast, the information relaxation approach described
here allows general reward functions and action spaces, allows general
penalty functions, and considers imperfect as well as perfect informa-
tion relaxations. The connection between the stochastic programming
formulation and the information relaxation approach is discussed in
more detail in Appendix B of BSS (2010). That appendix also discusses
connections between the information relaxation results and standard
Lagrangian duality results for linear programs (LPs). In the LP formu-
lation of the information relaxation problem, the decision variables are
mixing weights on policies and the objectives and constraints (including
the temporal feasibility constraints) are linear functions of these decision
variables. In this LP formulation, the penalties of the information relax-
ation approach correspond to the Lagrange multipliers associated with
the temporal feasibility constraints. However, as shown in Section 3, we
can also use simple, direct arguments to establish the key information
relaxation duality results without considering mixed policies or LP
duality results.

We view this information relaxation approach as a complement to
the use of simulation methods and approximate dynamic programming
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1.2. History and Literature Review 7

methods for studying DPs (see, for example, Bertsekas and Tsitsik-
lis, 1996; de Farias and Van Roy, 2003; Powell, 2007; Adelman and
Mersereau, 2008). As mentioned earlier, given a candidate policy (per-
haps identified using a heuristic reasoning or using approximate DP
techniques), we can use standard simulation techniques to estimate the
expected value with this policy and thereby generate a lower bound on
the expected reward with an optimal policy. The information relaxation
performance bound can often be estimated with little additional effort
in the same simulation and, as discussed, can help determine whether
the proposed policy is “good enough” or if we should continue searching
for a better policy, perhaps using more complex ADP techniques.

“Hindsight bounds” – perfect information bounds with no penalties
– are popular in the theoretical computer science literature (see, for
example, Feldman et al., 2010). These bounds are used to establish theo-
retical guarantees, for example showing that an algorithm is guaranteed
to produce a solution that is within, say, 50% of the optimal solution. As
we will see in our numerical examples, perfect information bounds with
no penalty are often quite weak. Balseiro and Brown (2019) show how
one can incorporate penalties in such theoretical studies and improve
the theoretical guarantees to show, for example, that an algorithm or
policy is asymptotically optimal in a given setting (see Section 9 for
more).
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