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ABSTRACT

Deep neural networks are widely used for nonlinear function
approximation, with applications ranging from computer
vision to control. Although these networks involve the com-
position of simple arithmetic operations, it can be very
challenging to verify whether a particular network satisfies
certain input-output properties. This article surveys meth-
ods that have emerged recently for soundly verifying such
properties. These methods borrow insights from reachability
analysis, optimization, and search. We discuss fundamental
differences and connections between existing algorithms. In
addition, we provide pedagogical implementations of ex-
isting methods and compare them on a set of benchmark
problems.

Changliu Liu, Tomer Arnon, Chris Lazarus, Christopher Strong, Clark Barrett
and Mykel J. Kochenderfer (2021), “Algorithms for Verifying Deep Neural Net-
works”, Foundations and Trends® in Optimization: Vol. 4, No. 3-4, pp 244–404. DOI:
10.1561/2400000035.
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1
Introduction

Neural networks [1] have been widely used in many applications, such as
image classification and understanding [2], language processing [3], and
control of autonomous systems [4]. These networks represent functions
that map inputs to outputs through a sequence of layers. At each layer,
the input to that layer undergoes an affine transformation followed by
a simple nonlinear transformation before being passed to the next layer.
These nonlinear transformations are often called activation functions,
and a common example is the rectified linear unit (ReLU), which
transforms the input by setting any negative values to zero. Although the
computation involved in a neural network is quite simple, these networks
can represent complex nonlinear functions by appropriately choosing
the matrices that define the affine transformations. The matrices are
often learned from data using stochastic gradient descent.

Neural networks are being used for increasingly important tasks,
and in some cases, incorrect outputs can lead to costly consequences.
Traditionally, validation of neural networks has largely focused on
evaluating the network on a large collection of points in the input space
and determining whether the outputs are as desired. However, since
the input space is effectively infinite in cardinality, it is not feasible to

2
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check all possible inputs. Even networks that perform well on a large
sample of inputs may not correctly generalize to new situations and
may be vulnerable to adversarial attacks [5].

This article surveys a class of methods that are capable of formally
verifying properties of deep neural networks over the full input space.
A property can be formulated as a statement that if the input belongs
to some set X , then the output will belong to some set Y . To illustrate,
in classification problems, it can be useful to verify that points near
a training example belong to the same class as that example. In the
control of physical problems, it can be useful to verify that the outputs
from a network satisfy hard safety constraints.

The verification algorithms that we survey are sound, meaning that
they will only report that a property holds if the property actually holds.
Some of the algorithms that we discuss are also complete, meaning that
whenever the property holds, the algorithm will correctly state that it
holds. However, some of the algorithms compromise completeness in
their use of approximations to improve computational efficiency.

The algorithms may be classified based on whether they draw insights
from these three categories of analysis:

1. Reachability. These methods use layer-by-layer reachability analy-
sis of the network. Representative methods are ExactReach [6],
MaxSens [7], NNV [8], SymBox [9], Ai2 [10], and ERAN [11]–[14].
Some other approaches also use reachability methods (such as
interval arithmetic) to compute bounds on the values of the nodes.

2. Optimization. These methods use optimization to falsify the as-
sertion. The function represented by the neural network is a
constraint to be considered in the optimization. As a result, the
optimization problem is not convex. In primal optimization, dif-
ferent methods are developed to encode the nonlinear activation
functions as linear constraints. Examples include NSVerify [15],
MIPVerify [16], and ILP [17]. The constraints can also be sim-
plified through dual optimization. Representative methods for
dual optimization include Lagrangian dual methods such as Dual-
ity [18], ConvDual [19], and LagrangianDecomposition [20], and
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4 Introduction

semidefinite programming methods such as Certify [21] and SDP
[22].

3. Search. These methods search for a case to falsify the assertion.
Search is usually combined with either reachability or optimization,
as the latter two methods provide possible search directions. Repre-
sentative methods for search and reachability include ReluVal [23],
Neurify [24], DLV [25], Fast-Lin [26], Fast-Lip [26], CROWN [27],
nnenum [28], and VeriNet [29]. Representative methods for search
and optimization include Reluplex [30], Marabou [31], Planet [32],
Sherlock [33], Venus [34], PeregriNN [35], and BaB [36] and its
extensions [20], [37], [38]. Some of these methods call Boolean
satisfiability (SAT) or satisfiability modulo theories (SMT) solvers
[39] to verify networks with only ReLU activations.

Scope of this article. This article introduces a unified mathemat-
ical framework for verifying neural networks, classifies existing methods
under this framework, provides pedagogical implementations of exist-
ing methods,1 and compares those methods on a set of benchmark
problems.2

The following topics are not included in the discussion:

• neural network testing methods that generate test cases [44]–[47];

• white box approaches that build mappings from network parame-
ters to some functional description [48];

• verification of binarized neural networks [49]–[51];

1Our implementation is provided in the Julia programming language. We have
found the language to be ideal for specifying algorithms in human readable form [40].
The full implementation may be found at https://github.com/sisl/NeuralVerification.
jl.

2There have been other reviews of methods for verifying neural networks. Leo-
fante, Narodytska, Pulina, et al. review primal optimization methods that encode
ReLU networks as mixed integer programming problems together with search and op-
timization under the framework of Boolean satisfiability and SMT [41]. Xiang, Musau,
Wild, et al. review a broader range of verification techniques in addition to safe
control and learning [42]. Salman, Yang, Zhang, et al. review and compare methods
that use convex relaxations to compute robustness bounds of ReLU networks [43].

Full text available at: http://dx.doi.org/10.1561/2400000035

https://github.com/sisl/NeuralVerification.jl
https://github.com/sisl/NeuralVerification.jl


5

• closed-loop safety, stability and robustness by executing control
policies defined by neural networks [52], [53], or verification of
recurrent neural networks [54];

• training or retraining methods to make a network satisfy a prop-
erty [19], [21], [55];

• robustness of the verification algorithm under floating point arith-
metic [12];

• simplification or compression of the network to improve verification
efficiency [56], [57].

Chapter 2 discusses the mathematical problem for verification. Chap-
ter 3 gives an overview of the categories of methods that we will consider.
Chapter 4 introduces preliminary and background mathematics. Chap-
ter 5 discusses reachability methods. Chapter 6 discusses methods for
primal optimization. Chapter 7 discusses methods for dual optimization.
Chapter 8 discusses methods for search and reachability. Chapter 9
discusses methods for search and optimization. Chapter 10 compares
those methods. Chapter 11 concludes the article.
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