
Algorithms for Verifying
Deep Neural Networks

Full text available at: http://dx.doi.org/10.1561/2400000035

Other titles in Foundations and Trends® in Optimization

Atomic Decomposition via Polar Alignment: The Geometry of Structured
Optimization
Zhenan Fan, Halyun Jeong, Yifan Sun and Michael P. Friedlander
ISBN: 978-1-68083-742-1

Optimization Methods for Financial Index Tracking: From Theory to
Practice
Konstantinos Benidis, Yiyong Feng and Daniel P. Palomar
ISBN: 978-1-68083-464-2

The Many Faces of Degeneracy in Conic Optimization
Dmitriy Drusvyatskiy and Henry Wolkowicz
ISBN: 978-1-68083-390-4

Full text available at: http://dx.doi.org/10.1561/2400000035

Algorithms for Verifying Deep
Neural Networks

Changliu Liu
Carnegie Mellon University

cliu6@andrew.cmu.edu

Tomer Arnon
Stanford University

tarnon@stanford.edu

Christopher Lazarus
Stanford University

clazarus@stanford.edu

Christopher Strong
Stanford University

castrong@stanford.edu

Clark Barrett
Stanford University

barrett@cs.stanford.edu

Mykel J. Kochenderfer
Stanford University
mykel@stanford.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2400000035

Foundations and Trends® in Optimization

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett and M. J. Kochenderfer. Algo-
rithms for Verifying Deep Neural Networks. Foundations and Trends® in Optimization,
vol. 4, no. 3-4, pp. 244–404, 2021.

ISBN: 978-1-68083-787-2
© 2021 C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett and M. J. Kochenderfer

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works,
or for resale. In the rest of the world: Permission to photocopy must be obtained from the
copyright owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA;
Tel. +1 781 871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission to use
this content must be obtained from the copyright license holder. Please apply to now Publishers,
PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail: sales@nowpub-
lishers.com

Full text available at: http://dx.doi.org/10.1561/2400000035

Foundations and Trends® in Optimization
Volume 4, Issue 3-4, 2020

Editorial Board

Editors-in-Chief
Garud Iyengar
Columbia University, USA

Editors

Dimitris Bertsimas
Massachusetts Institute of Technology

John R. Birge
The University of Chicago

Robert E. Bixby
Rice University

Emmanuel Candes
Stanford University

David Donoho
Stanford University

Laurent El Ghaoui
University of California, Berkeley

Donald Goldfarb
Columbia University

Michael I. Jordan
University of California, Berkeley

Zhi-Quan (Tom) Luo
University of Minnesota, Twin Cites

George L. Nemhauser
Georgia Institute of Technology

Arkadi Nemirovski
Georgia Institute of Technology

Yurii Nesterov
HSE University

Jorge Nocedal
Northwestern University

Pablo A. Parrilo
Massachusetts Institute of Technology

Boris T. Polyak
Institute for Control Science, Moscow

Tamás Terlaky
Lehigh University

Michael J. Todd
Cornell University

Kim-Chuan Toh
National University of Singapore

John N. Tsitsiklis
Massachusetts Institute of Technology

Lieven Vandenberghe
University of California, Los Angeles

Robert J. Vanderbei
Princeton University

Stephen J. Wright
University of Wisconsin

Full text available at: http://dx.doi.org/10.1561/2400000035

Editorial Scope
Topics

Foundations and Trends® in Optimization publishes survey and tutorial
articles in the following topics:

• algorithm design, analysis, and implementation (especially, on modern
computing platforms

• models and modeling systems, new optimization formulations for
practical problems

• applications of optimization in machine learning, statistics, and data
analysis, signal and image processing, computational economics and
finance, engineering design, scheduling and resource allocation, and
other areas

Information for Librarians

Foundations and Trends® in Optimization, 2020, Volume 4, 4 issues.
ISSN paper version 2167-3888. ISSN online version 2167-3918. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2400000035

Contents

1 Introduction 2

2 Problem Formulation 6
2.1 Feedforward Neural Network 6
2.2 Verification Problem . 8
2.3 Results . 11
2.4 Soundness and Completeness 12

3 Overview of Methods 16
3.1 Reachability . 16
3.2 Primal Optimization . 17
3.3 Dual Optimization . 18
3.4 Search and Reachability 19
3.5 Search and Optimization 20

4 Preliminaries 22
4.1 Bounds . 22
4.2 Set Split . 25
4.3 Gradient . 27
4.4 ReLU Activation . 28

Full text available at: http://dx.doi.org/10.1561/2400000035

5 Reachability 31
5.1 Overview . 31
5.2 ExactReach . 37
5.3 Ai2 . 41
5.4 MaxSens . 45

6 Primal Optimization 49
6.1 Encoding a Network as Constraints 50
6.2 Objective Functions . 57
6.3 NSVerify . 59
6.4 MIPVerify . 59
6.5 ILP . 61

7 Dual Optimization 65
7.1 Dual Network . 65
7.2 Duality . 70
7.3 ConvDual . 72
7.4 Certify . 77

8 Search and Reachability 81
8.1 ReluVal . 82
8.2 Neurify . 88
8.3 FastLin . 95
8.4 FastLip . 102
8.5 DLV . 105

9 Search and Optimization 112
9.1 Sherlock . 112
9.2 BaB . 117
9.3 Planet . 123
9.4 Reluplex . 129

10 Comparison and Results 133
10.1 Bound Experiments . 135
10.2 Performance Experiments 140

Full text available at: http://dx.doi.org/10.1561/2400000035

11 Conclusion 149
11.1 Computational Efficiency 149
11.2 Future Directions . 151
11.3 Summary . 152

Acknowledgments 153

References 154

Full text available at: http://dx.doi.org/10.1561/2400000035

Algorithms for Verifying Deep
Neural Networks
Changliu Liu1, Tomer Arnon2, Chris Lazarus3, Christopher Strong4,
Clark Barrett5 and Mykel J. Kochenderfer6

1Carnegie Mellon University; cliu6@andrew.cmu.edu
2Stanford University; tarnon@stanford.edu
3Stanford University; clazarus@stanford.edu
4Stanford University; castrong@stanford.edu
5Stanford University; barrett@cs.stanford.edu
6Stanford University; mykel@stanford.edu

ABSTRACT

Deep neural networks are widely used for nonlinear function
approximation, with applications ranging from computer
vision to control. Although these networks involve the com-
position of simple arithmetic operations, it can be very
challenging to verify whether a particular network satisfies
certain input-output properties. This article surveys meth-
ods that have emerged recently for soundly verifying such
properties. These methods borrow insights from reachability
analysis, optimization, and search. We discuss fundamental
differences and connections between existing algorithms. In
addition, we provide pedagogical implementations of ex-
isting methods and compare them on a set of benchmark
problems.

Changliu Liu, Tomer Arnon, Chris Lazarus, Christopher Strong, Clark Barrett
and Mykel J. Kochenderfer (2021), “Algorithms for Verifying Deep Neural Net-
works”, Foundations and Trends® in Optimization: Vol. 4, No. 3-4, pp 244–404. DOI:
10.1561/2400000035.

Full text available at: http://dx.doi.org/10.1561/2400000035

1
Introduction

Neural networks [1] have been widely used in many applications, such as
image classification and understanding [2], language processing [3], and
control of autonomous systems [4]. These networks represent functions
that map inputs to outputs through a sequence of layers. At each layer,
the input to that layer undergoes an affine transformation followed by
a simple nonlinear transformation before being passed to the next layer.
These nonlinear transformations are often called activation functions,
and a common example is the rectified linear unit (ReLU), which
transforms the input by setting any negative values to zero. Although the
computation involved in a neural network is quite simple, these networks
can represent complex nonlinear functions by appropriately choosing
the matrices that define the affine transformations. The matrices are
often learned from data using stochastic gradient descent.

Neural networks are being used for increasingly important tasks,
and in some cases, incorrect outputs can lead to costly consequences.
Traditionally, validation of neural networks has largely focused on
evaluating the network on a large collection of points in the input space
and determining whether the outputs are as desired. However, since
the input space is effectively infinite in cardinality, it is not feasible to

2

Full text available at: http://dx.doi.org/10.1561/2400000035

3

check all possible inputs. Even networks that perform well on a large
sample of inputs may not correctly generalize to new situations and
may be vulnerable to adversarial attacks [5].

This article surveys a class of methods that are capable of formally
verifying properties of deep neural networks over the full input space.
A property can be formulated as a statement that if the input belongs
to some set X , then the output will belong to some set Y . To illustrate,
in classification problems, it can be useful to verify that points near
a training example belong to the same class as that example. In the
control of physical problems, it can be useful to verify that the outputs
from a network satisfy hard safety constraints.

The verification algorithms that we survey are sound, meaning that
they will only report that a property holds if the property actually holds.
Some of the algorithms that we discuss are also complete, meaning that
whenever the property holds, the algorithm will correctly state that it
holds. However, some of the algorithms compromise completeness in
their use of approximations to improve computational efficiency.

The algorithms may be classified based on whether they draw insights
from these three categories of analysis:

1. Reachability. These methods use layer-by-layer reachability analy-
sis of the network. Representative methods are ExactReach [6],
MaxSens [7], NNV [8], SymBox [9], Ai2 [10], and ERAN [11]–[14].
Some other approaches also use reachability methods (such as
interval arithmetic) to compute bounds on the values of the nodes.

2. Optimization. These methods use optimization to falsify the as-
sertion. The function represented by the neural network is a
constraint to be considered in the optimization. As a result, the
optimization problem is not convex. In primal optimization, dif-
ferent methods are developed to encode the nonlinear activation
functions as linear constraints. Examples include NSVerify [15],
MIPVerify [16], and ILP [17]. The constraints can also be sim-
plified through dual optimization. Representative methods for
dual optimization include Lagrangian dual methods such as Dual-
ity [18], ConvDual [19], and LagrangianDecomposition [20], and

Full text available at: http://dx.doi.org/10.1561/2400000035

4 Introduction

semidefinite programming methods such as Certify [21] and SDP
[22].

3. Search. These methods search for a case to falsify the assertion.
Search is usually combined with either reachability or optimization,
as the latter two methods provide possible search directions. Repre-
sentative methods for search and reachability include ReluVal [23],
Neurify [24], DLV [25], Fast-Lin [26], Fast-Lip [26], CROWN [27],
nnenum [28], and VeriNet [29]. Representative methods for search
and optimization include Reluplex [30], Marabou [31], Planet [32],
Sherlock [33], Venus [34], PeregriNN [35], and BaB [36] and its
extensions [20], [37], [38]. Some of these methods call Boolean
satisfiability (SAT) or satisfiability modulo theories (SMT) solvers
[39] to verify networks with only ReLU activations.

Scope of this article. This article introduces a unified mathemat-
ical framework for verifying neural networks, classifies existing methods
under this framework, provides pedagogical implementations of exist-
ing methods,1 and compares those methods on a set of benchmark
problems.2

The following topics are not included in the discussion:

• neural network testing methods that generate test cases [44]–[47];

• white box approaches that build mappings from network parame-
ters to some functional description [48];

• verification of binarized neural networks [49]–[51];

1Our implementation is provided in the Julia programming language. We have
found the language to be ideal for specifying algorithms in human readable form [40].
The full implementation may be found at https://github.com/sisl/NeuralVerification.
jl.

2There have been other reviews of methods for verifying neural networks. Leo-
fante, Narodytska, Pulina, et al. review primal optimization methods that encode
ReLU networks as mixed integer programming problems together with search and op-
timization under the framework of Boolean satisfiability and SMT [41]. Xiang, Musau,
Wild, et al. review a broader range of verification techniques in addition to safe
control and learning [42]. Salman, Yang, Zhang, et al. review and compare methods
that use convex relaxations to compute robustness bounds of ReLU networks [43].

Full text available at: http://dx.doi.org/10.1561/2400000035

https://github.com/sisl/NeuralVerification.jl
https://github.com/sisl/NeuralVerification.jl

5

• closed-loop safety, stability and robustness by executing control
policies defined by neural networks [52], [53], or verification of
recurrent neural networks [54];

• training or retraining methods to make a network satisfy a prop-
erty [19], [21], [55];

• robustness of the verification algorithm under floating point arith-
metic [12];

• simplification or compression of the network to improve verification
efficiency [56], [57].

Chapter 2 discusses the mathematical problem for verification. Chap-
ter 3 gives an overview of the categories of methods that we will consider.
Chapter 4 introduces preliminary and background mathematics. Chap-
ter 5 discusses reachability methods. Chapter 6 discusses methods for
primal optimization. Chapter 7 discusses methods for dual optimization.
Chapter 8 discusses methods for search and reachability. Chapter 9
discusses methods for search and optimization. Chapter 10 compares
those methods. Chapter 11 concludes the article.

Full text available at: http://dx.doi.org/10.1561/2400000035

References

[1] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep
learning. MIT Press, 2016.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[3] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and
D. McClosky, “The stanford corenlp natural language processing
toolkit,” in Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, 2014.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G.
Ostrovski, et al., “Human-level control through deep reinforcement
learning,” p. 529, Nature, vol. 518, no. 7540, 2015.

[5] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,
and A. Swami, “The limitations of deep learning in adversarial
settings,” in IEEE European Symposium on Security and Privacy
(EuroS&P), 2016.

[6] W. Xiang, H.-D. Tran, and T. T. Johnson, “Reachable set com-
putation and safety verification for neural networks with relu
activations,” ArXiv, no. 1712.08163, 2017.

154

Full text available at: http://dx.doi.org/10.1561/2400000035

References 155

[7] W. Xiang, H. Tran, and T. T. Johnson, “Output reachable set esti-
mation and verification for multilayer neural networks,” pp. 5777–
5783, IEEE Transactions on Neural Networks and Learning Sys-
tems, vol. 29, no. 11, Nov. 2018.

[8] H.-D. Tran, X. Yang, D. M. Lopez, P. Musau, L. V. Nguyen, W.
Xiang, S. Bak, and T. T. Johnson, “NNV: The neural network ver-
ification tool for deep neural networks and learning-enabled cyber-
physical systems,” in International Conference on Computer-Aided
Verification (CAV), Jul. 2020.

[9] J. Li, J. Liu, P. Yang, L. Chen, X. Huang, and L. Zhang, “Ana-
lyzing deep neural networks with symbolic propagation: Towards
higher precision and faster verification,” in Static Analysis, Cham,
2019.

[10] T. Gehr, M. Mirman, D. Drashsler-Cohen, P. Tsankov, S. Chaud-
huri, and M. Vechev, “Ai2: Safety and robustness certification of
neural networks with abstract interpretation,” in IEEE Sympo-
sium on Security and Privacy (SP), 2018.

[11] G. Singh, R. Ganvir, M. Püschel, and M. Vechev, “Beyond the
single neuron convex barrier for neural network certification,” in
Advances in Neural Information Processing Systems (NeurIPS),
2019.

[12] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev,
“Fast and effective robustness certification,” in Advances in Neural
Information Processing Systems (NeurIPS), 2018.

[13] G. Singh, T. Gehr, M. Puschel, and M. Vechev, “An abstract
domain for certifying neural networks,” in ACM Symposium on
Principles of Programming Languages, 2019.

[14] G. Singh, T. Gehr, M. Puschel, and M. Vechev, “Boosting robust-
ness certification of neural networks,” in International Conference
on Learning Representations, 2019.

[15] A. Lomuscio and L. Maganti, “An approach to reachability analy-
sis for feed-forward relu neural networks,” ArXiv, no. 1706.07351,
2017.

[16] V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating robustness
of neural networks with mixed integer programming,” ArXiv,
no. 1711.07356, 2017.

Full text available at: http://dx.doi.org/10.1561/2400000035

156 References

[17] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori,
and A. Criminisi, “Measuring neural net robustness with con-
straints,” in Advances in Neural Information Processing Systems
(NIPS), 2016.

[18] K. Dvijotham, R. Stanforth, S. Gowal, T. Mann, and P. Kohli,
“A dual approach to scalable verification of deep networks,” in
Conference on Uncertainty in Artificial Intelligence (UAI), 2018.

[19] E. Wong and Z. Kolter, “Provable defenses against adversarial
examples via the convex outer adversarial polytope,” in Interna-
tional Conference on Machine Learning (ICML), Oct. 2018.

[20] R. Bunel, A. De Palma, A. Desmaison, K. Dvijotham, P. Kohli,
P. H. Torr, and M. P. Kumar, “Lagrangian decomposition for neu-
ral network verification,” Conference on Uncertainty in Artificial
Intelligence (UAI), 2020.

[21] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses
against adversarial examples,” in International Conference on
Learning Representations, 2018.

[22] M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and
robustness analysis of neural networks via quadratic constraints
and semidefinite programming,” ArXiv, no. 1903.01287, 2019.

[23] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal
security analysis of neural networks using symbolic intervals,” in
USENIX Security Symposium, 2018.

[24] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Efficient
formal safety analysis of neural networks,” in Advances in Neural
Information Processing Systems, 2018.

[25] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verifi-
cation of deep neural networks,” in International Conference on
Computer Aided Verification, 2017.

[26] L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel,
D. Boning, and I. Dhillon, “Towards fast computation of certified
robustness for ReLU networks,” in International Conference on
Machine Learning (ICML), ser. Proceedings of Machine Learning
Research, vol. 80, Oct. 2018.

Full text available at: http://dx.doi.org/10.1561/2400000035

References 157

[27] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel,
“Efficient neural network robustness certification with general ac-
tivation functions,” in Advances in Neural Information Processing
Systems (NeurIPS), 2018.

[28] S. Bak, “Execution-guided overapproximation (ego) for improv-
ing scalability of neural network verification,” in International
Workshop on Verification of Neural Networks, 2020.

[29] P. Henriksen and A. Lomuscio, “Efficient neural network verifica-
tion via adaptive refinement and adversarial search,” in European
Conference on Artificial Intelligence (ECAI), 2020.

[30] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochender-
fer, “Reluplex: An efficient SMT solver for verifying deep neural
networks,” in International Conference on Computer Aided Veri-
fication, 2017.

[31] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim,
P. Shah, S. Thakoor, H. Wu, A. Zeljić, et al., “The marabou
framework for verification and analysis of deep neural networks,”
in International Conference on Computer Aided Verification, 2019.

[32] R. Ehlers, “Formal verification of piece-wise linear feed-forward
neural networks,” in International Symposium on Automated
Technology for Verification and Analysis, 2017.

[33] S. Dutta, S. Jha, S. Sanakaranarayanan, and A. Tiwari, “Output
range analysis for deep neural networks,” ArXiv, no. 1709.09130,
2017.

[34] E. Botoeva, P. Kouvaros, J. Kronqvist, A. Lomuscio, and R. Mis-
ener, “Efficient verification of neural networks via dependency
analysis,” in AAAI Conference on Artificial Intelligence (AAAI),
2020.

[35] H. Khedr, J. Ferlez, and Y. Shoukry, “Effective formal verification
of neural networks using the geometry of linear regions,” ArXiv,
no. 2006.10864, 2020.

[36] R. R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. K. Mudigonda,
“A unified view of piecewise linear neural network verification,” in
Advances in Neural Information Processing Systems, 2018.

Full text available at: http://dx.doi.org/10.1561/2400000035

158 References

[37] R. Bunel, J. Lu, I. Turkaslan, P. Kohli, P. Torr, and M. P. Kumar,
“Branch and bound for piecewise linear neural network verifica-
tion,” Journal of Machine Learning Research, vol. 21, no. 2020,
2020.

[38] J. Lu and M. P. Kumar, “Neural network branching for neural
network verification,” in International Conference on Learning
Representations, 2020.

[39] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in
Handbook of Model Checking, Springer, 2018, pp. 305–343.

[40] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A
fresh approach to numerical computing,” pp. 65–98, SIAM Review,
vol. 59, no. 1, 2017.

[41] F. Leofante, N. Narodytska, L. Pulina, and A. Tacchella, “Auto-
mated verification of neural networks: Advances, challenges and
perspectives,” ArXiv, no. 1805.09938, 2018.

[42] W. Xiang, P. Musau, A. A. Wild, D. M. Lopez, N. Hamilton,
X. Yang, J. Rosenfeld, and T. T. Johnson, “Verification for ma-
chine learning, autonomy, and neural networks survey,” ArXiv,
no. 1810.01989, 2018.

[43] H. Salman, G. Yang, H. Zhang, C.-J. Hsieh, and P. Zhang, “A
convex relaxation barrier to tight robustness verification of neural
networks,” in Advances in Neural Information Processing Systems,
2019.

[44] Y. Sun, X. Huang, and D. Kroening, “Testing deep neural net-
works,” ArXiv, no. 1803.04792, 2018.

[45] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson,
“A practical tutorial on modified condition/decision coverage,”
2001.

[46] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated
whitebox testing of deep learning systems,” in Symposium on
Operating Systems Principles, 2017.

[47] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated
testing of deep-neural-network-driven autonomous cars,” in Inter-
national Conference on Software Engineering, 2018.

Full text available at: http://dx.doi.org/10.1561/2400000035

References 159

[48] J. D. Olden and D. A. Jackson, “Illuminating the “black box”: A
randomization approach for understanding variable contributions
in artificial neural networks,” pp. 135–150, Ecological Modelling,
vol. 154, no. 1-2, 2002.

[49] C.-H. Cheng, G. Nührenberg, and H. Ruess, “Verification of bina-
rized neural networks,” ArXiv, no. 1710.03107, 2017.

[50] N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T.
Walsh, “Verifying properties of binarized deep neural networks,”
in AAAI Conference on Artificial Intelligence (AAAI), 2018.

[51] C.-H. Cheng, G. Nührenberg, C.-H. Huang, and H. Ruess, “Veri-
fication of binarized neural networks via inter-neuron factoring,”
in Verified Software. Theories, Tools, and Experiments, 2018.

[52] W. Xiang, H. Tran, J. A. Rosenfeld, and T. T. Johnson, “Reach-
able set estimation and safety verification for piecewise linear
systems with neural network controllers,” in American Control
Conference (ACC), Jun. 2018.

[53] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Learning
and verification of feedback control systems using feedforward
neural networks.,” in IFAC Conference on Analysis and Design
of Hybrid Systems (ADHS), 2018.

[54] M. E. Akintunde, A. Kevorchian, A. Lomuscio, and E. Pirovano,
“Verification of rnn-based neural agent-environment systems,” in
AAAI Conference on Artificial Intelligence (AAAI), 2019.

[55] M. Mirman, T. Gehr, and M. Vechev, “Differentiable abstract in-
terpretation for provably robust neural networks,” in International
Conference on Machine Learning (ICML), 2018.

[56] Y. Y. Elboher, J. Gottschlich, and G. Katz, “An abstraction-
based framework for neural network verification,” in International
Conference on Computer Aided Verification, 2020.

[57] P. Prabhakar and Z. R. Afzal, “Abstraction based output range
analysis for neural networks,” in Advances in Neural Information
Processing Systems, 2019.

[58] S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling,
“JuliaReach: A toolbox for set-based reachability,” in ACM Inter-
national Conference on Hybrid Systems: Computation and Control,
2019.

Full text available at: http://dx.doi.org/10.1561/2400000035

160 References

[59] M. E. Akintunde, A. Lomuscio, L. Maganti, and E. Pirovano,
“Reachability analysis for neural agent-environment systems,” in
International Conference on Principles of Knowledge Representa-
tion and Reasoning, 2018.

[60] B. G. Anderson, Z. Ma, J. Li, and S. Sojoudi, “Tightened convex
relaxations for neural network robustness certification,” ArXiv,
no. 2004.00570, 2020.

[61] H. Zhang, P. Zhang, and C.-J. Hsieh, “Recurjac: An efficient
recursive algorithm for bounding jacobian matrix of neural net-
works and its applications,” in AAAI Conference on Artificial
Intelligence (AAAI), Dec. 2019.

[62] H.-D. Tran, D. M. Lopez, P. Musau, X. Yang, L. V. Nguyen, W.
Xiang, and T. T. Johnson, “Star-based reachability analysis of
deep neural networks,” in International Symposium on Formal
Methods, 2019.

[63] H.-D. Tran, P. Musau, D. M. Lopez, X. Yang, L. V. Nguyen,
W. Xiang, and T. T. Johnson, “Parallelizable reachability analy-
sis algorithms for feed-forward neural networks,” in IEEE/ACM
International Conference on Formal Methods in Software Engi-
neering (FormaliSE), 2019.

[64] X. Yang, H.-D. Tran, W. Xiang, and T. Johnson, “Reachability
analysis for feed-forward neural networks using face lattices,”
ArXiv, no. 2003.01226, 2020.

[65] H.-D. Tran, S. Bak, W. Xiang, and T. T. Johnson, “Verification
of deep convolutional neural networks using imagestars,” ArXiv,
no. 2004.05511, 2020.

[66] W. Xiang, H.-D. Tran, and T. T. Johnson, “Specification-guided
safety verification for feedforward neural networks,” ArXiv, no. 1812.06161,
2018.

[67] I. Dunning, J. Huchette, and M. Lubin, “Jump: A modeling
language for mathematical optimization,” pp. 295–320, SIAM
Review, vol. 59, no. 2, 2017.

[68] R. Anderson, J. Huchette, W. Ma, C. Tjandraatmadja, and J. P.
Vielma, “Strong mixed-integer programming formulations for
trained neural networks,” pp. 1–37, Mathematical Programming,
2020.

Full text available at: http://dx.doi.org/10.1561/2400000035

References 161

[69] Y. Zhang and Z. Zhang, “Dual neural network,” in Repetitive
Motion Planning and Control of Redundant Robot Manipulators,
pp. 33–56, Springer, 2013.

[70] V. Rubies-Royo, R. Calandra, D. M. Stipanovic, and C. Tom-
lin, “Fast neural network verification via shadow prices,” ArXiv,
no. 1902.07247, 2019.

[71] Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski, “A theoret-
ical framework for back-propagation,” in Proceedings of the 1988
Connectionist Models Summer School, vol. 1, 1988.

[72] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear
Matrix Inequalities in System and Control Theory. SIAM, 1994.

[73] S. Bak, H.-D. Tran, K. Hobbs, and T. T. Johnson, “Improved geo-
metric path enumeration for verifying ReLU neural networks,” in
International Conference on Computer-Aided Verification (CAV),
Jul. 2020.

[74] T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J.
Hsieh, and L. Daniel, “Evaluating the robustness of neural net-
works: An extreme value theory approach,” in International Con-
ference on Learning Representations, May 2018.

[75] Y. LeCun and C. Cortes, “MNIST handwritten digit database,”
2010.

[76] K. Julian, M. J. Kochenderfer, and M. P. Owen, “Deep neural
network compression for aircraft collision avoidance systems,”
pp. 598–608, AIAA Journal of Guidance, Control, and Dynamics,
vol. 42, no. 3, 2019.

[77] “Neural Network Verifications Workshop, VNN-COMP,” Interna-
tional Conference on Computer-Aided Verification, 2020. [Online].
Available: https://sites.google.com/view/vnn20/vnncomp.

Full text available at: http://dx.doi.org/10.1561/2400000035

https://sites.google.com/view/vnn20/vnncomp

