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ABSTRACT
This monograph covers some recent advances in a range of ac-
celeration techniques frequently used in convex optimization.
We first use quadratic optimization problems to introduce
two key families of methods, namely momentum and nested
optimization schemes. They coincide in the quadratic case
to form the Chebyshev method.
We discuss momentum methods in detail, starting with
the seminal work of Nesterov [1] and structure convergence
proofs using a few master templates, such as that for op-
timized gradient methods, which provide the key benefit
of showing how momentum methods optimize convergence
guarantees. We further cover proximal acceleration, at the
heart of the Catalyst and Accelerated Hybrid Proximal Ex-
tragradient frameworks, using similar algorithmic patterns.
Common acceleration techniques rely directly on the knowl-
edge of some of the regularity parameters in the problem at
hand. We conclude by discussing restart schemes, a set of
simple techniques for reaching nearly optimal convergence
rates while adapting to unobserved regularity parameters.

Alexandre d’Aspremont, Damien Scieur and Adrien Taylor (2021), “Acceleration
Methods”, Foundations and Trends® in Optimization: Vol. 5, No. 1-2, pp 1–245. DOI:
10.1561/2400000036.
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1
Introduction

Optimization methods are a core component of the modern numerical
toolkit. In many cases, iterative algorithms for solving convex opti-
mization problems have reached a level of efficiency and reliability
comparable to that of advanced linear algebra routines. This is largely
true for medium scale-problems where interior point methods reign
supreme, but less so for large-scale problems where the complexity of
first-order methods is not as well understood and efficiency remains a
concern.

The situation has improved markedly in recent years, driven in
particular by the emergence of a number of applications in statistics,
machine learning, and signal processing. Building on Nesterov’s path-
breaking algorithm from the 80’s, several accelerated methods and
numerical schemes have been developed that both improve the efficiency
of optimization algorithms and refine their complexity bounds. Our
objective in this monograph is to cover these recent developments using
a few master templates.

The methods described in this manuscript can be arranged in roughly
two categories. The first, stemming from the work of Nesterov [1],
produces variants of the gradient method with accelerated worst-case

2
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3

convergence rates that are provably optimal under classical regularity
assumptions. The second uses outer iteration (a.k.a. nested) schemes to
speed up convergence. In this second setting, accelerated schemes run
both an inner loop and an outer loop, with the inner iterations being
solved by classical optimization methods, and the outer loop containing
the acceleration mechanism.

Direct acceleration techniques. Ever since the original algorithm by
Nesterov [1], the acceleration phenomenon was regarded as somewhat of
a mystery. While accelerated gradient methods can be seen as iteratively
building a model for the function and using it to guide gradient compu-
tations, the argument is essentially algebraic and is simply an effective
exploitation of regularity assumptions. This approach of collecting in-
equalities induced by regularity assumptions and cleverly chaining them
to prove convergence was also used in e.g., [2], to produce an optimal
proximal gradient method. There too, however, the proof yielded little
evidence as to why the method is actually faster.

Fortunately, we are now better equipped to push the proof mech-
anisms much further. Recent advances in the programmatic design of
optimization algorithms allow us to design and analyze algorithms by
following a more principled approach. In particular, the performance
estimation approach, pioneered by Drori and Teboulle [3], can be used to
design optimal methods from scratch, selecting algorithmic parameters
to optimize worst-case performance guarantees [3], [4]. Primal dual
optimality conditions on the design problem then provide a blueprint
for the accelerated algorithm structure and for its convergence proof.

Using this framework, acceleration is no longer a mystery: it is the
main objective in the design of the algorithm. We recover the usual
“soup of regularity inequalities” that forms the template of classical
convergence proofs, but the optimality conditions of the design problem
explicitly produce a method that optimizes the convergence guarantee.
In this monograph, we cover accelerated first-order methods using this
systematic template and describe a number of convergence proofs for
classical variants of the accelerated gradient method, such as those of
Nesterov (1983, 2003), Beck and Teboulle [2] and Tseng [6] as well as
more recent ones [4].
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4 Introduction

Nested acceleration schemes. The second category of acceleration
techniques that we cover in this monograph is composed of outer it-
eration schemes, in which classical optimization algorithms are used
as a black-box in the inner loop and acceleration is produced by an
argument in the outer loop. We describe three acceleration results of
this type.

The first scheme is based on nonlinear acceleration techniques. Based
on arguments dating back to [7]–[9], these techniques use a weighted
average of iterates to extrapolate a better candidate solution than the
last iterate. We begin by describing the Chebyshev method for solving
quadratic problems, which interestingly qualifies both as a gradient
method and as an outer iteration scheme. It takes its name from the use
of Chebyshev polynomial coefficients to approximately minimize the
gradient at the extrapolated solution. The argument can be extended
to non-quadratic optimization problems provided the extrapolation
procedure is regularized.

The second scheme, due to [10]–[12] relies on a conceptual acceler-
ated proximal point algorithm, and uses classical iterative methods to
approximate the proximal point in an inner loop. In particular, this
framework produces accelerated gradient methods (in the same sense
as Nesterov’s acceleration) when the approximate proximal points are
computed using linearly converging gradient-based optimization meth-
ods, taking advantage of the fact that the inner problems are always
strongly convex.

Finally, we describe restart schemes. These techniques exploit reg-
ularity properties called Hölderian error bounds, which extend strong
convexity properties near the optimum and hold almost generically,
to improve the convergence rates of most first-order methods. The
parameters of the Hölderian error bounds are usually unknown, but the
restart schemes are robust: that is, they are adaptive to the Hölderian
parameters and their empirical performance is excellent on problems
with reasonable precision targets.

Content and organization. We present a few convergence acceleration
techniques that are particularly relevant in the context of (first-order)
convex optimization. Our summary includes our own points of view on
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the topic and is focused on techniques that have received substantial
attention since the early 2000’s, although some of the underlying ideas
are much older. We do not pretend to be exhaustive, and we are aware
that valuable references might not appear below.

The sections can be read nearly independently. However, we be-
lieve the insights of some sections can benefit the understanding of
others. In particular, Chebyshev acceleration (Section 2) and nonlinear
acceleration (Section 3) are clearly complementary readings. Similarly,
Chebyshev acceleration (Section 2) and Nesterov acceleration (Sec-
tion 4), Nesterov acceleration (Section 4) and proximal acceleration
(Section 5), as well as Nesterov acceleration (Section 4) and restart
schemes (Section 6) certainly belong together.

Prerequisites and complementary readings. This monograph is not
meant to be a general-purpose manuscript on convex optimization, for
which we refer the reader to the now classical references [13]–[15]. Other
directly related references are provided in the text.

We assume the reader to have a working knowledge of base linear
algebra and convex analysis (such as of subdifferentials), as we do
not detail the corresponding technical details while building on them.
Classical references on the latter include [16]–[18].
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174 Restart Schemes

threshold. We have, the following proposition directly linking the null
space property and the Hölderian error bound (HEB).

Proposition 6.1. Given a coding matrix A ∈ Rn×p satisfying (NSP) at
order s with constant α ≥ 1, if the original signal x⋆ is s-sparse, then
for any x ∈ Rp satisfying Ax = b, x ̸= x⋆, we have

∥x∥1 − ∥x⋆∥1 >
α− 1
α + 1∥x− x⋆∥1. (6.29)

This implies signal recovery, i.e. optimality of x⋆ for (ℓ1 recovery) and
the Hölderian error bound (HEB) with µ = α−1

α+1 .

6.9 Notes and References

The optimal complexity bounds and exponential restart schemes de-
tailed here can be traced back to [242]. Restart schemes were extensively
benchmarked in the numerical toolbox TFOCS by [114], with a partic-
ular focus on compressed sensing applications. The robustness result
showing that a log scale grid search produces near optimal complexity
bounds is due to [116].

Restart schemes based on the gradient norm as a termination crite-
rion also reach nearly optimal complexity bounds and adapt to strong
convexity [80] or HEB parameters [252].

Hölderian error bounds for analytic functions can be traced back
to the work of Lojasiewicz [253]. They were extended to much broader
classes of functions by [241], [254]. Several examples of problems in signal
processing where this condition holds can be found in, e.g., [248], [255].
Calculus rules for the exponent are discussed in details in, e.g., [244].

Restarting is also helpful in the stochastic setting, with [256] showing
recently that stochastic algorithms with geometric step decay converge
linearly on functions satisfying Hölderian error bounds. This validates
a classical empirical acceleration trick, which is to restarts every few
epochs after adjusting the step size (aka the learning rate in machine
learning terminology).

Full text available at: http://dx.doi.org/10.1561/2400000036



Appendices

Full text available at: http://dx.doi.org/10.1561/2400000036



A
Useful Inequalities

In this appendix, we prove basic inequalities involving smooth strongly
convex functions. Most of these inequalities are not used in our devel-
opments. Nevertheless, we believe they are useful for gaining intuition
about smooth strongly convex of functions, as well as for comparisons
with the literature.

Also note that these inequalities can be considered standard (see,
e.g., [5, Theorem 2.1.5].

A.1 Smoothness and Strong Convexity in Euclidean spaces

In this section, we consider a Euclidean setting, where ∥x∥22 = ⟨x; x⟩
and ⟨.; .⟩ : Rd × Rd → R is a dot product.

The following theorem summarizes known inequalities that charac-
terize the class of smooth convex functions. Note that these character-
izations of f ∈ F0,L are all equivalent assuming that f ∈ F0,∞ since
convexity is not implied by some of the points below. In particular, (i),
(ii), (v), (vi), and (vii) do not encode the convexity of f when taken on
their own, whereas (iii) and (iv) encode both smoothness and convexity.

176
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A.1. Smoothness and Strong Convexity in Euclidean spaces 177

Theorem A.1. Let f : Rd → R be a differentiable convex function. The
following statements are equivalent for inclusion in F0,L.

(i) ∇f satisfies a Lipschitz condition: for all x, y ∈ Rd,

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2.

(ii) f is upper bounded by quadratic functions: for all x, y ∈ Rd,

f(x) ≤ f(y) + ⟨∇f(y); x− y⟩+ L

2 ∥x− y∥22.

(iii) f satisfies, for all x, y ∈ Rd,

f(x) ≥ f(y) + ⟨∇f(y); x− y⟩+ 1
2L
∥∇f(x)−∇f(y)∥22.

(iv) ∇f is cocoercive: for all x, y ∈ Rd,

⟨∇f(x)−∇f(y); x− y⟩ ≥ 1
L
∥∇f(x)−∇f(y)∥22.

(v) ∇f satisfies, for all x, y ∈ Rd,

⟨∇f(x)−∇f(y); x− y⟩ ≤ L∥x− y∥22.

(vi) L
2 ∥x∥

2
2 − f(x) is convex.

(vii) f satisfies, for all λ ∈ [0, 1],

f(λx + (1− λ)y) ≥ λf(x) + (1− λ)f(y)− λ(1− λ)L

2 ∥x− y∥22.

Proof. We start with (i)⇒(ii). We use the first-order expansion

f(y) = f(x) +
∫ 1

0
⟨∇f(x + τ(y − x)); y − x⟩dτ.

The quadratic upper bound then follows from algebraic manipulations
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178 Useful Inequalities

and from upper bounding the integral term:

f(y) = f(x) + ⟨∇f(x); y − x⟩

+
∫ 1

0
⟨∇f(x + τ(y − x))−∇f(x); y − x⟩dτ

≤ f(x) + ⟨∇f(x); y − x⟩

+
∫ 1

0
∥∇f(x + τ(y − x))−∇f(x)∥2∥y − x∥2dτ

≤ f(x) + ⟨∇f(x); y − x⟩+ L∥x− y∥22
∫ 1

0
τdτ

= f(x) + ⟨∇f(x); y − x⟩+ L

2 ∥x− y∥22.

We proceed with (ii)⇒(iii). The idea is to require the quadratic
upper bound to be everywhere above the linear lower bound arising
from the convexity of f . That is, for all x, y, z ∈ Rd,

f(y) + ⟨∇f(y); z − y⟩ ≤ f(z) ≤ f(x) + ⟨∇f(x); z − x⟩+ L

2 ∥x− z∥22.

In other words, for all z ∈ Rd, we must have

f(y) + ⟨∇f(y); z − y⟩ ≤ f(x) + ⟨∇f(x); z − x⟩+ L

2 ∥x− z∥22

⇔ f(y)− f(x) + ⟨∇f(y); z − y⟩ − ⟨∇f(x); z − x⟩ − L

2 ∥x− z∥22 ≤ 0

⇔ f(y)− f(x) + max
z∈Rd
⟨∇f(y); z − y⟩ − ⟨∇f(x); z − x⟩ − L

2 ∥x− z∥22 ≤ 0

⇔ f(y)− f(x) + ⟨∇f(y); x− y⟩+ 1
2L
∥∇f(x)−∇f(y)∥22 ≤ 0,

where the last line follows from the explicit maximization on z. That is,
we pick z = x− 1

L(∇f(x)−∇f(y)) and reach the desired result after
base algebraic manipulations.

We continue with (iii)⇒(iv), which simply follows from adding

f(x) ≥ f(y) + ⟨∇f(y); x− y⟩+ 1
2L
∥∇f(x)−∇f(y)∥22

f(y) ≥ f(x) + ⟨∇f(x); y − x⟩+ 1
2L
∥∇f(x)−∇f(y)∥22.
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A.1. Smoothness and Strong Convexity in Euclidean spaces 179

To obtain (iv)⇒(i), one can use Cauchy-Schwartz:

1
L
∥∇f(x)−∇f(y)∥22 ≤⟨∇f(x)−∇f(y); x− y⟩

≤∥∇f(x)−∇f(y)∥2∥x− y∥2,

which allows us to conclude that ∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2, thus
reaching the final statement.

To obtain (ii)⇒(v), we simply add

f(x) ≤ f(y) + ⟨∇f(y); x− y⟩+ L

2 ∥x− y∥22

f(y) ≤ f(x) + ⟨∇f(x); y − x⟩+ L

2 ∥x− y∥22

and reorganize the resulting inequality.
To obtain (v)⇒(ii), we again use a first-order expansion:

f(y) = f(x) +
∫ 1

0
⟨∇f(x + τ(y − x)); y − x⟩dτ.

The quadratic upper bound then follows from algebraic manipulations
and from upper bounding the integral term. (We use the intermediate
variable zτ = x + τ(y − x) for convenience)

f(y) = f(x) + ⟨∇f(x); y − x⟩

+
∫ 1

0
⟨∇f(x + τ(y − x))−∇f(x); y − x⟩dτ

= f(x) + ⟨∇f(x); y − x⟩+
∫ 1

0

1
τ
⟨∇f(zτ )−∇f(x); zτ − x⟩dτ

≤ f(x) + ⟨∇f(x); y − x⟩+
∫ 1

0

L

τ
∥zτ − x∥22dτ

= f(x) + ⟨∇f(x); y − x⟩+ L∥x− y∥22
∫ 1

0
τdτ

= f(x) + ⟨∇f(x); y − x⟩+ L

2 ∥x− y∥22.

For the equivalence (vi)⇔(ii), simply define h(x) = L
2 ∥x∥

2
2 − f(x)

(and hence ∇h(x) = Lx−∇f(x)) and observe that for all x, y ∈ Rd,

h(x) ≥ h(y)+⟨∇h(y); x−y⟩ ⇔ f(x) ≤ f(y)+⟨∇f(y); x−y⟩+L

2 ∥x−y∥22,
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180 Useful Inequalities

which follows from base algebraic manipulations.
Finally, the equivalence (vi)⇔(vii) follows the same h(x) = L

2 ∥x∥
2
2−

f(x) (and hence ∇h(x) = Lx−∇f(x)) and the observation that for all
x, y ∈ Rd and λ ∈ [0, 1], we have

h(λx + (1− λ)y) ≤ λh(x) + (1− λ)h(y)
⇔

f(λx + (1− λ)y) ≥ λf(x) + (1− λ)f(y)− λ(1− λ)L

2 ∥x− y∥22,

which follows from base algebraic manipulations. ■

To obtain the corresponding inequalities in the strongly convex
case, one can rely on Fenchel conjugation between smoothness and
strong convexity; see, for example, [17, Proposition 12.6]. The following
inequalities are stated without proofs; they can be obtained either as
direct consequences of the definitions or from Fenchel conjugation along
with the statements of Theorem A.1.

Theorem A.2. Let f : Rd → R be a closed convex proper function. The
following statements are equivalent for inclusion in Fµ,L.

(i) ∇f satisfies a Lipschitz and an inverse Lipschitz condition: for all
x, y ∈ Rd,

µ∥x− y∥2 ≤ ∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2.

(ii) f is lower and upper bounded by quadratic functions: for all
x, y ∈ Rd,

f(y)+⟨∇f(y); x− y⟩+ µ

2 ∥x− y∥22

≤ f(x) ≤ f(y) + ⟨∇f(y); x− y⟩+ L

2 ∥x− y∥22.

(iii) f satisfies, for all x, y ∈ Rd,

f(y)+⟨∇f(y); x− y⟩+ 1
2L
∥∇f(x)−∇f(y)∥22

≤ f(x) ≤

f(y) + ⟨∇f(y); x− y⟩+ 1
2µ
∥∇f(x)−∇f(y)∥22.
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(iv) ∇f satisfies, for all x, y ∈ Rd,

1
L
∥∇f(x)−∇f(y)∥22

≤ ⟨∇f(x)−∇f(y); x− y⟩ ≤ 1
µ
∥∇f(x)−∇f(y)∥22.

(v) ∇f satisfies, for all x, y ∈ Rd,

µ∥x− y∥22 ≤ ⟨∇f(x)−∇f(y); x− y⟩ ≤ L∥x− y∥22.

(vi) For all λ ∈ [0, 1],

λf(x)+(1− λ)f(y)− λ(1− λ)L

2 ∥x− y∥22

≤ f(λx + (1− λ)y) ≤

λf(x)+(1− λ)f(y)− λ(1− λ)µ

2 ∥x− y∥22.

(vii) f(x)− µ
2∥x∥

2
2 and L

2 ∥x∥
2
2 − f(x) are convex and (L− µ)-smooth.

Finally, we mention that the existence of an inequality that allows
us to encode both smoothness and strong convexity together. This
inequality is also known as an interpolation inequality [210], and it
turns out to be particularly useful for proving worst-case guarantees.

Theorem A.3. Let f : Rd → R be a differentiable function. f is L-
smooth µ-strongly convex if and only if

f(x) ≥ f(y)+⟨∇f(y); x− y⟩+ 1
2L
∥∇f(x)−∇f(y)∥22

+ µ

2(1− µ/L)∥x− y − 1
L

(∇f(x)−∇f(y))∥22.
(A.1)

Proof. (f ∈ Fµ,L ⇒ (A.1)) The idea is to require the quadratic upper
bound from smoothness to be everywhere above the quadratic lower
bound arising from strong convexity. That is, for all x, y, z ∈ Rd

f(y) + ⟨∇f(y); z − y⟩+ µ

2 ∥z − y∥22 ≤ f(z) ≤f(x) + ⟨∇f(x); z − x⟩

+ L

2 ∥x− z∥22.
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In other words, for all z ∈ Rd, we must have

f(y)+⟨∇f(y); z − y⟩+ µ

2 ∥z − y∥22 ≤ f(x)

+ ⟨∇f(x); z − x⟩+ L

2 ∥x− z∥22

⇔f(y)− f(x) + ⟨∇f(y); z − y⟩+ µ

2 ∥z − y∥22 − ⟨∇f(x); z − x⟩

− L

2 ∥x− z∥22 ≤ 0

⇔f(y)− f(x) + max
z∈Rd

(
⟨∇f(y); z − y⟩+ µ

2 ∥z − y∥22

− ⟨∇f(x); z − x⟩ − L

2 ∥x− z∥22
)
≤ 0

explicit maximization over z. That is, picking z = Lx−µy
L−µ −

1
L−µ(∇f(x)−

∇f(y)) allows the desired inequality to be reached by base algebraic
manipulations.

((A.1)⇒ f ∈ Fµ,L) f ∈ F0,L is direct by observing that (A.1) is
stronger than Theorem A.1(iii); f ∈ Fµ,L is then direct by reformulat-
ing (A.1) as

f(x) ≥ f(y)+⟨∇f(y); x− y⟩+ µ

2 ∥x− y∥22

+ 1
2L(1− µ/L)∥∇f(x)−∇f(y)− µ(x− y)∥22,

which is stronger than f(x) ≥ f(y) + ⟨∇f(y); x− y⟩+ µ
2∥x− y∥22. ■

Remark A.1. It is crucial to recall that some of the inequalities above
are only valid when dom f = Rd—in particular, this holds for Theo-
rem A.1(iii & iv), Theorem A.2(iii&iv), and Theorem A.3. We refer
to [90] for an illustration that some inequalities are not valid when
restricted on some dom f ̸= Rd. Most standard inequalities, however,
do hold even in the case of restricted domains, as established in, e.g., [5].
Some other inequalities, such as Theorem A.1(iv) and Theorem A.2(iv),
do hold under the additional assumption of twice continuous differen-
tiability(see, for example, [257]).
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A.2 Smoothness for General Norms and Restricted Sets

In this section, we show that requiring a Lipschitz condition on ∇f , on
a convex set C ⊆ Rd, implies a quadratic upper bound on f . That is,
requiring that for all x, y ∈ C,

∥∇f(x)−∇f(y)∥∗ ≤ L∥x− y∥,

where ∥.∥ is some norm and ∥.∥∗ is the corresponding dual norm, implies
a quadratic upper bound ∀x, y ∈ C:

f(x) ≤ f(y) + ⟨∇f(y); x− y⟩+ L

2 ∥x− y∥2.

Theorem A.4. Let f : Rd → R ∪ {+∞} be continuously differentiable
on some open convex set C ⊆ Rd, and let it satisfy a Lipschitz condition

∥∇f(x)−∇f(y)∥∗ ≤ L∥x− y∥,

for all x, y ∈ C. Then, it holds that

f(x) ≤ f(y) + ⟨∇f(y); x− y⟩+ L

2 ∥x− y∥2,

for all x, y ∈ C.

Proof. The desired result is obtained from a first-order expansion:

f(y) = f(x) +
∫ 1

0
⟨∇f(x + τ(y − x)); y − x⟩dτ.

The quadratic upper bound then follows from algebraic manipulations
and from upper bounding the integral term

f(y) = f(x) + ⟨∇f(x); y − x⟩

+
∫ 1

0
⟨∇f(x + τ(y − x))−∇f(x); y − x⟩dτ

≤ f(x) + ⟨∇f(x); y − x⟩

+
∫ 1

0
∥∇f(x + τ(y − x))−∇f(x)∥∗∥y − x∥dτ

≤ f(x) + ⟨∇f(x); y − x⟩+ L∥x− y∥2
∫ 1

0
τdτ

= f(x) + ⟨∇f(x); y − x⟩+ L

2 ∥x− y∥2.

■
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B
Variations on Nesterov Acceleration

B.1 Relations between Acceleration Methods

B.1.1 Optimized Gradient Method: Forms I & II

In this short section, we show that Algorithm 9 and Algorithm 10 gener-
ate the same sequence {yk}k. A direct consequence of this statement is
that the sequences {xk}k also match, as in both cases they are generated
from simple gradient steps on {yk}k.

For this purpose we show that Algorithm 10 is a reformulation of
Algorithm 9.

Proposition B.1. The sequence {yk}k generated by Algorithm 9 is equal
to that generated by Algorithm 10.

Proof. We first observe that the sequences are initiated the same way
in both formulations of the OGM. Furthermore, consider one iteration
of the OGM in form I:

yk =
(

1− 1
θk,N

)
xk + 1

θk,N
zk.

Therefore, we clearly have zk = θk,N yk + (1 − θk,N )xk. At the next

184
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iteration, we have

yk+1 =
(

1− 1
θk+1,N

)
xk+1 + 1

θk+1,N

(
zk −

2θk,N

L
∇f(yk)

)

=
(

1− 1
θk+1,N

)
xk+1

+ 1
θk+1,N

(
θk,N yk + (1− θk,N )xk −

2θk,N

L
∇f(yk)

)
,

where we substituted zk by its equivalent expression from the previous
iteration. Now, by noting that − 1

L∇f(yk) = xk+1 − yk, we reach

yk+1 = θk+1,N − 1
θk+1,N

xk+1 + 1
θk+1,N

((1− θk,N )xk + 2θk,N xk+1 − θk,N yk)

= xk+1 + θk,N − 1
θk+1,N

(xk+1 − xk) + θk,N

θk+1,N
(xk+1 − yk),

where we reorganized the terms to achieve the same format as in
Algorithm 10. ■

B.1.2 Nesterov’s Method: Forms I, II, and III

Proposition B.2. The two sequences {xk}k and {yk}k generated by
Algorithm 11 are equal to those generated by Algorithm 12.

Proof. In order to prove the result, we use the identities Ak+1 = a2
k as

well as Ak =
∑k−1

i=0 ai, and a2
k+1 = a2

k + ak+1.
Given that the sequences {xk}k are obtained from gradient steps on

yk in both formulations, it is sufficient to prove that the sequences {yk}k
match. The equivalence is clear for k = 0, as both methods generate
y1 = x0 − 1

L∇f(x0). For k ≥ 0, from Algorithm 11, one can write
iteration k as

yk = Ak

Ak+1
xk +

(
1− Ak

Ak+1

)
zk,

and hence,

zk = Ak+1
Ak+1 −Ak

yk +
(

1− Ak+1
Ak+1 −Ak

)
xk

= akyk + (1− ak) xk.
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Substituting this expression in that for iteration k + 1, we reach

yk+1 =Ak+1
Ak+2

xk+1 + Ak+2 −Ak+1
Ak+2

(
zk −

Ak+1 −Ak

L
∇f(yk)

)
= a2

k

a2
k+1

xk+1 + 1
ak+1

(
akyk + (1− ak) xk −

ak

L
∇f(yk)

)

= a2
k

a2
k+1

xk+1 + 1
ak+1

(akxk+1 + (1− ak) xk)

=xk+1 + ak − 1
ak+1

(xk+1 − xk),

where we substituted the expression for zk and used previous identities
to reach the desired statement. ■

The same relationship holds with Algorithm 13, as provided by the
next proposition.

Proposition B.3. The three sequences {zk}k, {xk}k and {yk}k generated
by Algorithm 11 are equal to those generated by Algorithm 13.

Proof. Clearly, we have x0 = z0 = y0 in both methods. Let us assume
that the sequences match up to iteration k, that is, up to yk−1, xk,
and zk. Clearly, both yk and zk+1 are computed in the same way in
both methods. It remains to compare the update rules for xk+1: in
Algorithm 13, we have

xk+1 = Ak

Ak+1
xk +

(
1− Ak

Ak+1

)
zk+1

= yk −
(

1− Ak

Ak+1

)
Ak+1 −Ak

L
∇f(yk),

where we used the update rule for zk+1. Further simplifications, along
with the identity (Ak+1 −Ak)2 = Ak+1 allows us to arrive at

xk+1 = yk −
(Ak+1 −Ak)2

LAk+1
∇f(yk)

= yk −
1
L
∇f(yk),

which is clearly the same update rule as that of Algorithm 11. Hence,
all sequences match and the desired statement is proved. ■
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B.1.3 Nesterov’s Accelerated Gradient Method (Strongly Convex
Case): Forms I, II, and III

In this short section, we provide alternate, equivalent, formulations for
Algorithm 14.

Algorithm 28 Nesterov’s method, form II
Input: L-smooth µ-strongly convex function f and initial point x0.

1: Initialize z0 = x0; q = µ/L, A0 = 0, and A1 = (1− q)−1.
2: for k = 0, . . . do

3: Ak+2 = 2Ak+1+1+
√

4Ak+1+4qA2
k+1+1

2(1−q)
4: xk+1 = yk − 1

L∇f(yk)
5: yk+1 = xk+1 + βk(xk+1 − xk)
6: with βk = (Ak+2−Ak+1)(Ak+1(1−q)−Ak−1)

Ak+2(2qAk+1+1)−qA2
k+1

7: end for
Output: Approximate solution xN .

Proposition B.4. The two sequences {xk}k and {yk}k generated by
Algorithm 14 are equal to those generated by Algorithm 28.
Proof. Without loss of generality, we can consider that a third sequence
zk is present in Algorithm 28 (although it is not computed).

Obviously, we have x0 = z0 = y0 in both methods. Let us assume
that the sequences match up to iteration k, that is, up to yk, xk, and
zk. Clearly, xk+1 is computed in the same way in both methods as a
gradient step from yk, and it remains to compare the update rules for
yk+1. In Algorithm 14, we have

yk+1 =xk + (τk − τk+1(τk − 1)(1− qδk)) (zk − xk)

− (δk − 1)τk+1 + 1
L

∇f(yk),

whereas in Algorithm 14, we have

yk+1 = xk + (βk + 1)τk(zk − xk)− 1 + βk

L
∇f(yk).

By noting that βk = τk+1(δk − 1), we see that the coefficients in front
of ∇f(yk) match in both expressions. It remains to check that

(βk + 1)τk − (τk − τk+1(τk − 1)(1− qδk))
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is identically 0 to reach the desired statement. By substituting βk =
τk+1(δk − 1), this expression reduces to

τk+1(δk(τk(1− q) + q)− 1),

and we have to verify that (δk(τk(1− q) + q)− 1) is zero. Substituting
and reworking this expression using the expressions for τk, and δk, we
arrive at

τk

(
(Ak+1 −Ak)2 −Ak+1 − qA2

k+1

)
(Ak+1 −Ak)(1 + qAk+1) = 0,

as we recognize that (Ak+1 − Ak)2 − Ak+1 − qA2
k+1 = 0 (which is the

expression we used to select Ak+1). ■

Algorithm 29 Nesterov’s method, form III
Input: L-smooth µ-strongly convex function f and initial point x0.

1: Initialize z0 = x0 and A0 = 0; q = µ/L.
2: for k = 0, . . . do
3: Ak+1 = 2Ak+1+

√
4Ak+4qA2

k
+1

2(1−q)

4: set τk = (Ak+1−Ak)(1+qAk)
Ak+1+2qAkAk+1−qA2

k
and δk = Ak+1−Ak

1+qAk+1

5: yk = xk + τk(zk − xk)
6: zk+1 = (1− qδk)zk + qδkyk − δk

L∇f(yk)
7: xk+1 = Ak

Ak+1
xk + (1− Ak

Ak+1
)zk+1

8: end for
Output: Approximate solution xN .

Proposition B.5. The three sequences {zk}k, {xk}k, and {yk}k gener-
ated by Algorithm 14 are equal to those generated by Algorithm 29.

Proof. Clearly, we have x0 = z0 = y0 in both methods. Let us assume
that the sequences match up to iteration k, that is, up to yk−1, xk, and
zk. Since yk and zk+1 are clearly computed in the same way in both
methods, we only have to verify that the update rules for xk+1 match.
In other words, we have to verify that

Ak

Ak+1
xk + (1− Ak

Ak+1
)zk+1 = yk −

1
L
∇f(yk),
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which, using the update rules for zk+1 and yk, amounts to verifying that

−
(Ak+1 −Ak)2 −Ak+1 − qA2

k+1
LAk+1(1 + qAk+1) ∇f(yk) = 0.

This statement is true since we recognize (Ak+1−Ak)2−Ak+1−qA2
k+1 =

0 as the expression used to select Ak+1. ■

B.2 Conjugate Gradient Method

Historically, Nesterov’s accelerated gradient method [1] was preceded by
a few other methods with optimal worst-case convergence rates O(N−2)
for smooth convex minimization. However, the alternate schemes re-
quired the capability to optimize exactly over a few dimensions—plane-
searches were used in [164], [258] and line-searches were used in [259];
unfortunately these references are not available in English, and we refer
to [260] for related discussions.

In this vein, accelerated methods can be obtained through their links
with conjugate gradients (Algorithm 30), as a by-product of the worst-
case analysis. In this section, we illustrate the absolute perfection of
the connection between the OGM and conjugate gradients is absolutely
perfect: an identical proof (achieving the lower bound) is valid for both
methods. The conjugate gradient (CG) method for solving quadratic

Algorithm 30 Conjugate gradient method
Input: L-smooth convex function f , initial point y0, and budget N .

1: for k = 0, . . . , N − 1 do
2: yk+1 = argminx{f(x) : x ∈ y0 + span{∇f(y0), . . . , ∇f(yk)}}
3: end for

Output: Approximate solution yN .

optimization problems is known to have an efficient form that does
not require span-searches (which are in general too expensive to be of
any practical interest); see, for example, [15]. Beyond quadratics, it is
generally not possible to reformulate the CG method in an efficient
way. However, it is possible to find other methods for which the same
worst-case analysis applies, and it turns out that the OGM is one of
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them—see [203] for details. Similarly, by slightly weakening the analysis
of the CG method, one can find other methods, such as Nesterov’s
accelerated gradient (see Remark B.1 below for more details).

More precisely, recall the previous definition for the sequence {θk,N}k,
defined in (4.8):

θk+1,N =


1+
√

4θ2
k,N

+1
2 if k ≤ N − 2

1+
√

8θ2
k,N

+1
2 if k = N − 1.

As a result of the worst-case analysis presented below, all methods
satisfying

⟨∇f(yi); yi−
[(

1− 1
θi,N

)(
yi−1 − 1

L∇f(yi−1)
)

+ 1
θi,N

y0 − 2
L

i−1∑
j=0

θj,N∇f(yj)

]⟩ ≤ 0
(B.1)

achieve the optimal worst-case complexity of smooth convex minimiza-
tion that is provided by Theorem 4.7. On the one hand, the CG ensures
that this inequality holds thanks to its span-searches (which ensure the
orthogonality of successive search directions); that is,

⟨∇f(yi); yi − yi−1 + 1
θi,N

(yi−1 − y0)⟩ = 0

⟨∇f(yi);∇f(y0)⟩ = 0
...

⟨∇f(yi);∇f(yi−1)⟩ = 0.

On the other hand, the OGM enforces this inequality by using

yi =
(

1− 1
θi,N

)(
yi−1 − 1

L∇f(yi−1)
)

+ 1
θi,N

y0 − 2
L

i−1∑
j=0

θj,N∇f(yj)

 .

Optimized and Conjugate Gradient Methods: Worst-case Analyses

The worst-case analysis below relies on the same potentials used for the
optimized gradient method; see Theorem 4.4 and Lemma 4.5.
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Theorem B.1. Let f be an L-smooth convex function, N ∈ N and
some x⋆ ∈ argminx f(x). The iterates of the conjugate gradient method
(CG, Algorithm 30) and of all methods whose iterates are compliant
with (B.1) satisfy

f(yN )− f(x⋆) ≤ L∥y0 − x⋆∥22
2θ2

N,N

,

for all y0 ∈ Rd.

Proof. The result is obtained from the same potential as that used for
the OGM, obtained from further inequalities. That is, we first perform
a weighted sum of the following inequalities.

• Smoothness and convexity of f between yk−1 and yk with weight
λ1 = 2θ2

k−1,N :

0 ≥f(yk)− f(yk−1) + ⟨∇f(yk); yk−1 − yk⟩

+ 1
2L
∥∇f(yk)−∇f(yk−1)∥22.

• Smoothness and convexity of f between x⋆ and yk with weight
λ2 = 2θk,N :

0 ≥ f(yk)− f(x⋆) + ⟨∇f(yk); x⋆ − yk⟩+ 1
2L
∥∇f(yk)∥22.

• Search procedure to obtain yk, with weight λ3 = 2θ2
k,N :

0 ≥ ⟨∇f(yk); yk−
[(

1− 1
θk,N

)(
yk−1 − 1

L∇f(yk−1)
)

+ 1
θk,N

zk

]
⟩,

where we used zk := y0 − 2
L

∑k−1
j=0 θj,N∇f(yj).
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The weighted sum is a valid inequality:
0 ≥λ1[f(yk)− f(yk−1) + ⟨∇f(yk); yk−1 − yk⟩

+ 1
2L
∥∇f(yk)−∇f(yk−1)∥22]

+ λ2[f(yk)− f(x⋆) + ⟨∇f(yk); x⋆ − yk⟩+ 1
2L
∥∇f(yk)∥22]

+ λ3[⟨∇f(yk); yk −
[(

1− 1
θk,N

)(
yk−1 − 1

L∇f(yk−1)
)

+ 1
θk,N

zk

]
⟩].

Substituting zk+1, the previous inequality can be reformulated exactly
as

0 ≥2θ2
k,N

(
f(yk)− f⋆ −

1
2L
∥∇f(yk)∥22

)
+ L

2 ∥zk+1 − x⋆∥22

− 2θ2
k−1,N

(
f(yk−1)− f⋆ −

1
2L
∥∇f(yk−1)∥22

)
− L

2 ∥zk − x⋆∥22

+ 2
(
θ2

k−1,N − θ2
k,N + θk,N

)(
f(yk)− f⋆ + 1

2L
∥∇f(yk)∥22

)
+ 2

(
θ2

k−1,N − θ2
k,N + θk,N

)
⟨∇f(yk); yk−1 − 1

L∇f(yk−1)− yk⟩.

We reach the desired inequality by selecting θk,N that satisfies θk,N ≥
θk−1,N and

θ2
k−1,N − θ2

k,N + θk,N = 0,

thereby reaching the same potential as in Theorem 4.4.
To obtain the technical lemma that allows us to bound the final

f(yN )− f⋆, we follow the same steps with the following inequalities.

• Smoothness and convexity of f between yk−1 and yk with weight
λ1 = 2θ2

N−1,N :

0 ≥f(yN )− f(yN−1) + ⟨∇f(yN ); yN−1 − yN ⟩

+ 1
2L
∥∇f(yN )−∇f(yN−1)∥22.

• Smoothness and convexity of f between x⋆ and yk with weight
λ2 = θN,N :

0 ≥ f(yN )− f(x⋆) + ⟨∇f(yN ); x⋆ − yN ⟩+ 1
2L
∥∇f(yN )∥22.
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• Search procedure to obtain yN , with weight λ3 = θ2
N,N :

0 ≥ ⟨∇f(yN ); yN −
[(

1− 1
θN,N

)(
yN−1 − 1

L∇f(yN−1)
)

+ 1
θN,N

zN

]
⟩.

The weighted sum can then be reformulated as:

0 ≥θ2
N,N (f(yN )− f⋆) + L

2 ∥zN −
θN,N

L ∇f(yN )− x⋆∥22

− 2θ2
N−1,N

(
f(yN−1)− f⋆ −

1
2L
∥∇f(yN−1)∥22

)
− L

2 ∥zN − x⋆∥22

+
(
2θ2

N−1,N − θ2
N,N + θN,N

)(
f(yN )− f⋆ + 1

2L
∥∇f(yN )∥22

)
+
(
2θ2

N−1,N − θ2
N,N + θN,N

)
⟨∇f(yN ); yN−1 − 1

L∇f(yN−1)− yN ⟩,

thus reaching the desired inequality, as in Lemma 4.5, by selecting θN,N

that satisfies θN,N ≥ θN−1,N and

2θ2
N−1,N − θ2

N,N + θN,N .

Hence, the potential argument from Corollary 4.6 applies as such, and
we reach the desired conclusion. In other words, for all k ∈ {0, . . . , N},
one can define

ϕk ≜ 2θ2
k−1,N

(
f(yk−1)− f⋆ −

1
2L
∥∇f(yk−1)∥22

)
+ L

2 ∥zk − x⋆∥22

and

ϕN+1 ≜ θ2
N,N (f(yN )− f⋆) + L

2 ∥zN −
θN,N

L ∇f(yN )− x⋆∥22

and reach the desired statement by chaining the inequalities:

θ2
N,N (f(yN )− f⋆) ≤ ϕN+1 ≤ ϕN ≤ . . . ≤ ϕ0 = L

2 ∥y0 − x⋆∥22.

■

Remark B.1. It is possible to further exploit the conjugate gradient
method to design practical accelerated methods in different settings,
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such as that of Nesterov [1]. This point of view has been exploited
in [104], [260]–[262], among others. The link between the CG method
and the OGM presented in this section is due to Drori and Taylor [203],
though with a different presentation that does not involve the potential
function.

B.3 Acceleration Without Monotone Backtracking

B.3.1 FISTA without Monotone Backtracking

In this section, we show how to incorporate backtracking strategies
that may not satisfy Lk+1 ≥ Lk, which is important in practice. The
developments are essentially the same; one possible trick is to incorporate
all the knowledge about Lk in Ak. That is, we use a rescaled shape for
the potential function:

ϕk ≜ Bk(f(xk)− f⋆) + 1 + µBk

2 ∥zk − x⋆∥22,

where without the backtracking strategy, Bk = Ak
L . This seemingly

cosmetic change allows ϕk to depend on Lk solely via Bk, and it applies
to both backtracking methods presented in Section 4 (Section 4.7).

The idea used to obtain both methods below is that one can perform
the same computations as in Algorithm 14, replacing Ak by Lk+1Bk and
Ak+1 by Lk+1Ak+1 at iteration k. Thus, as in previous versions, only
the current approximate Lipschitz constant Lk+1 is used at iteration k:
previous approximations were only used to compute Bk.

The proof follows the same lines as used for FISTA (Algorithm 4.20).
In this case, f is assumed to be smooth and convex over Rd (i.e., it has
full domain, dom f = Rd), and we are therefore allowed to evaluate
gradients of f outside of the domain of h.

Theorem B.2. Let f ∈ Fµ,L (with full domain, dom f = Rd), h be a
closed convex proper function, x⋆ ∈ argminx {F (x) ≜ f(x) + h(x)}, and
k ∈ N. For any xk, zk ∈ Rd and Bk ≥ 0, the iterates of Algorithm 31
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Algorithm 31 Strongly convex FISTA (general initialization of Lk+1)
Input: An L-smooth (possibly µ-strongly) convex function f , a convex

function h with proximal operator available, an initial point x0, and
an initial estimate L0 > µ.

1: Initialize z0 = x0, B0 = 0, and some α > 1.
2: for k = 0, . . . do
3: Pick Lk+1 ∈ [L0, Lk].
4: loop
5: set qk+1 = µ/Lk+1,
6: Bk+1 = 2Lk+1Bk+1+

√
4Lk+1Bk+4µLk+1B2

k
+1

2(Lk+1−µ)

7: set τk = (Bk+1−Bk)(1+µBk)
(Bk+1+2µBkBk+1−µB2

k
) and δk = Lk+1

Bk+1−Bk

1+µBk+1

8: yk = xk + τk(zk − xk)
9: xk+1 = proxh/Lk+1

(
yk − 1

Lk+1
∇f(yk)

)
10: zk+1 = (1− qk+1δk)zk + qk+1δkyk + δk (xk+1 − yk)
11: if (4.21) holds then
12: break {Iterates accepted; k will be incremented.}
13: else
14: Lk+1 = αLk+1 {Iterates not accepted; compute new Lk+1.}
15: end if
16: end loop
17: end for
Output: Approximate solution xk+1.

that satisfy (4.21) also satisfy

Bk+1(F (xk+1)− F⋆) + 1 + µBk+1
2 ∥zk+1 − x⋆∥22

≤ Bk(F (xk)− F⋆) + 1 + µBk

2 ∥zk − x⋆∥22,

with Bk+1 = 2Lk+1Bk+1+
√

4Lk+1Bk+4µLk+1B2
k

+1
2(Lk+1−µ) .

Proof. The proof consists of a weighted sum of the following inequalities.

• Strong convexity of f between x⋆ and yk with weight λ1 = Bk+1−
Bk:

f⋆ ≥ f(yk) + ⟨∇f(yk); x⋆ − yk⟩+ µ

2 ∥x⋆ − yk∥22.
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• Strong convexity of f between xk and yk with weight λ2 = Bk:

f(xk) ≥ f(yk) + ⟨∇f(yk); xk − yk⟩.

• Smoothness of f between yk and xk+1 (descent lemma) with
weight λ3 = Bk+1:

f(yk) + ⟨∇f(yk); xk+1 − yk⟩+ Lk+1
2 ∥xk+1 − yk∥22 ≥ f(xk+1).

• Convexity of h between x⋆ and xk+1 with weight λ4 = Bk+1− Bk:

h(x⋆) ≥ h(xk+1) + ⟨gh(xk+1); x⋆ − xk+1⟩,

with gh(xk+1) ∈ ∂h(xk+1) and xk+1 = yk − 1
Lk+1

(∇f(yk) + gh

(xk+1)).

• Convexity of h between xk and xk+1 with weight λ5 = Bk:

h(xk) ≥ h(xk+1) + ⟨gh(xk+1); xk − xk+1⟩.

We obtain the following inequality:

0 ≥λ1[f(yk)− f⋆ + ⟨∇f(yk); x⋆ − yk⟩+ µ

2 ∥x⋆ − yk∥22]

+ λ2[f(yk)− f(xk) + ⟨∇f(yk); xk − yk⟩]
+ λ3[f(xk+1)− (f(yk) + ⟨∇f(yk); xk+1 − yk⟩

+ Lk+1
2 ∥xk+1 − yk∥22)]

+ λ4[h(xk+1)− h(x⋆) + ⟨gh(xk+1); x⋆ − xk+1⟩]
+ λ5[h(xk+1)− h(xk) + ⟨gh(xk+1); xk − xk+1⟩].

Substituting the yk, xk+1, and zk+1 with

yk = xk + τk(zk − xk)

xk+1 = yk −
1

Lk+1
(∇f(yk) + gh(xk+1))

zk+1 = (1− qk+1δk)zk + qk+1δkyk + δk (xk+1 − yk) ,

Full text available at: http://dx.doi.org/10.1561/2400000036



B.3. Acceleration Without Monotone Backtracking 197

after some basic but tedious algebra, yields

Bk+1(f(xk+1) + h(xk+1)− f(x⋆)− h(x⋆)) + 1 + Bk+1µ

2 ∥zk+1 − x⋆∥22

≤Bk(f(xk) + h(xk)− f(x⋆)− h(x⋆)) + 1 + Bkµ

2 ∥zk − x⋆∥22

+
Lk+1(Bk −Bk+1)2 −Bk+1 − µB2

k+1
1 + µBk+1

× 1
2Lk+1

∥∇f(yk) + gh(xk+1)∥22

− B2
k(Bk+1 −Bk)(1 + µBk)(1 + µBk+1)(

Bk+1 + 2µBkBk+1 − µB2
k

)2 µ

2 ∥xk − zk∥22.

Then, choosing Bk+1 such that Bk+1 ≥ Bk and

Lk+1(Bk −Bk+1)2 −Bk+1 − µB2
k+1 = 0,

yields the desired result:

Bk+1(f(xk+1) + h(xk+1)− f(x⋆)− h(x⋆)) + 1 + Bk+1µ

2 ∥zk+1 − x⋆∥22

≤Bk(f(xk) + h(xk)− f(x⋆)− h(x⋆)) + 1 + Bkµ

2 ∥zk − x⋆∥22. ■

Finally, we obtain a complexity guarantee by adapting the potential
argument (4.5) and by noting that Bk+1 is a decreasing function of
Lk+1 (whose maximal value is αL, assuming L0 < L; otherwise, its
maximal value is L0). The growth rate of Bk in the smooth convex
setting remains unchanged (see (4.14)) since we have

Bk+1 ≥

(
1
2 +

√
BkLk+1

)2

Lk+1
,

and hence,
√

Bk+1 ≥ 1
2
√

Lk+1
+
√

Bk. Therefore, Bk ≥
(

k
2
√

ℓ

)2
with

ℓ = max{L0, αL} and Lk+1 ≤ ℓ. As for the geometric rate, we similarly
obtain

Bk+1 ≥ Bk

(
1 +

√
µ

Lk+1

)
1− µ

Lk+1

= Bk

1−
√

µ
Lk+1

,

and therefore, Bk+1 ≥ (1−
√

µ
ℓ )−1Bk.
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Corollary B.3. Let f ∈ Fµ,L(Rd) (with full domain, dom f = Rd), h be
a closed convex proper function and x⋆ ∈ argminx {F (x) ≜ f(x)+h(x)}.
For any N ∈ N, N ≥ 1, and x0 ∈ Rd, the output of Algorithm 31 satisfies

F (xN )− F⋆ ≤ min
{

2
N2 ,

(
1−

√
µ

ℓ

)N
}

ℓ∥x0 − x⋆∥22,

with ℓ = max{αL, L0}.

Proof. We assume that L > L0 since otherwise, f ∈ Fµ,L0 and the
proof directly follows from the case without backtracking. The chained
potential argument (4.5) can be used as before. Using B0 = 0, we reach

F (xN )− F⋆ ≤
∥x0 − x⋆∥22

2BN
.

Our previous bounds on BN yields the desired result, using

B1 = 1
Lk+1 − µ

≥ 2ℓ−1

1− µ
ℓ

= 2ℓ−1(
1−

√
µ
ℓ

) (
1 +

√
µ
ℓ

) ≥ ℓ−1

1−
√

µ
ℓ

,

and hence, BN ≥ ℓ−1
(
1−

√
µ
ℓ

)−N
as well as Bk ≥

(
k

2
√

ℓ

)2
. ■

B.3.2 Another Accelerated Method without Monotone
Backtracking

Just as for FISTA, we can perform the same cosmetic change to Algo-
rithm 20 for incorporating a non-monotonic estimations of the Lipschitz
constant. The proof is therefore essentially that of Algorithm 20.
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Algorithm 32 A proximal accelerated gradient (general initialization
of Lk+1)
Input: h ∈ F0,∞ with proximal operator available, f ∈ Fµ,L(dom h),

an initial point x0 ∈ dom h, and an initial estimate L0 > µ.
1: Initialize z0 = x0, A0 = 0, and some α > 1.
2: for k = 0, . . . do
3: Pick Lk+1 ∈ [L0, Lk].
4: loop
5: Set qk+1 = µ/Lk+1,
6: Bk+1 = 2Lk+1Bk+1+

√
4Lk+1Bk+4µLk+1B2

k
+1

2(Lk+1−µ)

7: Set τk = Lk+1(Bk+1−Bk)(1+µBk)
Lk+1(Bk+1+2µBkBk+1−µB2

k
) and δk = Lk+1

Bk+1−Bk

1+µBk+1

8: yk = xk + τk(zk − xk)

9: zk+1 = proxδkh/Lk+1

(
(1−qk+1δk)zk +qk+1δkyk− δk

Lk+1
∇ f(yk)

)
10: xk+1 = Ak

Ak+1
xk + (1− Ak

Ak+1
)zk+1

11: if (4.21) holds then
12: break {Iterates accepted; k will be incremented.}
13: else
14: Lk+1 = αLk+1 {Iterates not accepted; compute new Lk+1.}
15: end if
16: end loop
17: end for
Output: An approximate solution xk+1.
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Theorem B.4. Let h ∈ F0,∞, f ∈ Fµ,L(dom h), x⋆ ∈ argminx {F (x) ≜
f(x) + h(x)}, and k ∈ N. For any xk, zk ∈ Rd and Bk ≥ 0, the iterates
of Algorithm 32 that satisfy (4.21) also satisfy

Bk+1(F (xk+1)− F⋆) + 1 + µBk+1
2 ∥zk+1 − x⋆∥22

≤ Bk(F (xk)− F⋆) + 1 + µBk

2 ∥zk − x⋆∥22,

with Bk+1 = 2Lk+1Bk+1+
√

4Lk+1Bk+4µLk+1B2
k

+1
2(Lk+1−µ) .

Proof. First, {zk}k is in dom h by construction—it is the output of a
proximal/projection step. Furthermore, we have 0 ≤ Bk

Bk+1
≤ 1 given that

Bk+1 ≥ Bk ≥ 0. A direct consequence is that since z0 = x0 ∈ dom h,
all subsequent {yk}k and {xk}k are also in dom h (as they are obtained
from convex combinations of feasible points).

The rest of the proof consists of a weighted sum of the following
inequalities (which are valid due to the feasibility of the iterates).

• Strong convexity of f between x⋆ and yk with weight λ1 = Bk+1−
Bk:

f(x⋆) ≥ f(yk) + ⟨∇f(yk); x⋆ − yk⟩+ µ

2 ∥x⋆ − yk∥22.

• Convexity of f between xk and yk with weight λ2 = Bk:

f(xk) ≥ f(yk) + ⟨∇f(yk); xk − yk⟩.

• Smoothness of f between yk and xk+1 (descent lemma) with
weight λ3 = Bk+1:

f(yk) + ⟨∇f(yk); xk+1 − yk⟩+ Lk+1
2 ∥xk+1 − yk∥22 ≥ f(xk+1).

• Convexity of h between x⋆ and zk+1 with weight λ4 = Bk+1−Bk:

h(x⋆) ≥ h(zk+1) + ⟨gh(zk+1); x⋆ − zk+1⟩,

with gh(zk+1) ∈ ∂h(zk+1) and zk+1 = (1 − qδk)zk + qδkyk −
δk

Lk+1
(∇f(yk) + gh(zk+1)).
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• Convexity of h between xk and xk+1 with weight λ5 = Bk:
h(xk) ≥ h(xk+1) + ⟨gh(xk+1); xk − xk+1⟩,

with gh(xk+1) ∈ ∂h(xk+1).

• Convexity of h between zk+1 and xk+1 with weight λ6 = Bk+1 −
Bk:

h(zk+1) ≥ h(xk+1) + ⟨gh(xk+1); zk+1 − xk+1⟩.

We obtain the following inequality:

0 ≥λ1[f(yk)− f⋆ + ⟨∇f(yk); x⋆ − yk⟩+ µ

2 ∥x⋆ − yk∥22]

+ λ2[f(yk)− f(xk) + ⟨∇f(yk); xk − yk⟩]
+ λ3[f(xk+1)− (f(yk) + ⟨∇f(yk); xk+1 − yk⟩

+ Lk+1
2 ∥xk+1 − yk∥22)]

+ λ4[h(zk+1)− h(x⋆) + ⟨gh(zk+1); x⋆ − zk+1⟩]
+ λ5[h(xk+1)− h(xk) + ⟨gh(xk+1); xk − xk+1⟩]
+ λ6[h(xk+1)− h(zk+1) + ⟨gh(xk+1); zk+1 − xk+1⟩].

Substituting the yk, zk+1, and xk+1 by
yk = xk + τk(zk − xk)

zk+1 = (1− qk+1δk)zk + qk+1δkyk −
δk

Lk+1
(∇f(yk) + gh(zk+1))

xk+1 = Bk

Bk+1
xk +

(
1− Bk

Bk+1

)
zk+1,

and algebra allows us to obtain the following reformulation:

Bk+1(f(xk+1) + h(xk+1)− f(x⋆)− h(x⋆)) + 1 + µBk+1
2 ∥zk+1 − x⋆∥22

≤Bk(f(xk) + h(xk)− f(x⋆)− h(x⋆)) + 1 + µBk

2 ∥zk − x⋆∥22

+
(Bk −Bk+1)2

(
Lk+1(Bk −Bk+1)2 −Bk+1 − µB2

k+1

)
Bk+1(1 + µBk+1)2

× 1
2∥∇f(yk) + gh(zk+1)∥22

− B2
k(Bk+1 −Bk)(1 + µBk)(1 + µBk+1)(

Bk+1 + 2µBkBk+1 − µB2
k

)2 µ

2 ∥xk − zk∥22.
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The desired inequality follows from selecting Bk+1 such that Bk+1 ≥ Bk

and
Lk+1(Bk −Bk+1)2 −Bk+1 − µB2

k+1 = 0,

thereby yielding

Bk+1(f(xk+1) + h(xk+1)− f(x⋆)− h(x⋆)) + 1 + µBk+1
2 ∥zk+1 − x⋆∥22

≤Bk(f(xk) + h(xk)− f(x⋆)− h(x⋆)) + 1 + Bkµ

2 ∥zk − x⋆∥22.

■

The final corollary follows from the same arguments as those used
for Corollary B.3. It provides the final bound for Algorithm 32.

Corollary B.5. Let h ∈ F0,∞, f ∈ Fµ,L(dom h), and x⋆ ∈ argminx {F (x)
≜ f(x) + h(x)}. For any N ∈ N, N ≥ 1, and x0 ∈ Rd, the output of
Algorithm 32 satisfies

F (xN )− F⋆ ≤ min
{

2
N2 ,

(
1−

√
µ

ℓ

)−N
}

ℓ∥x0 − x⋆∥22,

with ℓ = max{αL, L0}.

Proof. The proof follows the same arguments as those for Corollary B.3,
using the potential from Theorem B.4 and the fact that the output of
the algorithm satisfies (4.21). ■
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On Worst-case Analyses for First-order Methods

C.1 Principled Approaches to Worst-case Analyses

In this section, we show that obtaining convergence rates and proofs can
be framed as finding feasible points to certain convex problems. More
precisely, all convergence guarantees from Section 4 and Section 5 can
be obtained as feasible points to certain linear matrix inequalities (LMI).
As we see in what follows, this approach can be seen as a principled
approach to worst-case analysis of first-order methods: the approach
fails only when no such guarantees can be found. The purpose of this
section is to provide complete examples of the LMIs for a few cases of
interest: analyses of gradient and accelerated gradient methods, as well
as pointers to the relevant literature. We provide a full derivation for the
base case, and leave advanced ones as exercises for the reader. Notebooks
for obtaining the corresponding LMIs are provided in Section C.5.

The elements of this section are largely inspired by the presentation
of Taylor and Bach (2019) with elements borrowed from the presentation
of Taylor, Hendrickx and Glineur (2017), which is itself largely inspired
by that of Drori and Teboulle (2014). The arguments are also similar to
the line of work by Lessard, Recht and Packard (2016) and follow-up
works, see, e.g., [211], [213]. The latter line of works is similar in spirit to
the former, but framed in control-theoretic terms, via so-called integral

203
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quadratic constraints, popularized by Megretski and Rantzer [263].
These techniques are analogous and mostly differs in their presenta-

tion styles. Roughly speaking, they can be seen as dual to each others.
That is, whereas the performance estimation viewpoint stems from the
problem of computing worst-case scenarios and approaches worst-case
guarantees as feasible point to the corresponding dual problems, the
integral quadratic constraint approach directly starts from the problem
of performing linear combination of inequalities, which is exactly the
dual problem to that of computing worst-case scenarios. Depending on
the background of the researchers involved in a work on one of those
topics, things might therefore be named in different ways. We insist
on the fact that those are really two facets of the same coin with only
subtle differences in terms of presentations.

We choose to take the performance estimation viewpoint as using
the definition of a “worst-case” allows to carefully select the most
appropriate set of inequalities to be used. Informally, this advantageous
construction allows certifying the approach to provide meaningful worst-
case guarantees: either the approach provides a satisfying worst-case
guarantee, or there exists a non-satisfying counterexample, invalidating
the existence of any satisfying guarantee of the desired form.

Further discussions and a more thorough list of references are pro-
vided in Section C.5. Readability in mind, the presentation focuses on
some examples of interest rather than on a general framework. We refer
to [3], [201], [210] for more details.

C.2 Worst-case Analysis as Optimization/Feasibility Problems

In this section, we provide examples illustrating the type of problems
that can be used for obtaining worst-case guarantees. The base idea
underlying the technique is that worst-case scenarios are by definition
solutions to certain optimization problems. In the context of first-order
convex optimization methods, those worst-case scenarios correspond
to solutions to linear semidefinite programs (SDP), which are convex;
see, e.g., [264]. It nicely follows from this theory that any worst-case
guarantee (i.e., any upper bound on a worst-case performance) can be
formulated as a feasible point to the dual problem to that of finding
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worst-case scenarios. Equivalently, those dual solutions correspond to
appropriate weighted sums of inequalities, whose weights correspond to
the values of the dual variables. Proofs from Section 4 and Section 5
correspond to such dual certificates.

Those statements are made more precise in the next sections. We
begin by providing a few examples of LMIs that can be used for designing
worst-case guarantees.

Preview: worst-case guarantees via LMIs. Perhaps the most basic
LMI that can be presented for obtaining worst-case guarantees concerns
gradient descent and its convergence in terms of distance to an optimal
point. We present it for simplicity, as the corresponding LMI only
involves very few variables. This LMI has also relatively simple solutions.
As our target here is to present the approach, we let finding their
solutions as exercises. We present the LMIs in their most raw forms,
even without a few direct simplifications.

Note that those LMIs always involve n(n− 1) “dual” variables (the
precise meaning of dual becomes clear in the sequel), where n is the
number of points at which the type of guarantee under consideration
requires using or specifying a function or gradient evaluation (either
in the algorithm or for computing the value of the guarantee). In the
following example, we need two dual variables because the guarantee
only requires using two gradients of f , namely ∇f(xk) (for expressing
a gradient step xk+1 = xk − γk∇f(xk)) and ∇f(x⋆) (for expressing
optimality of x⋆ as ∇f(x⋆) = 0).

Theorem C.1. Let τ ≥ 0 and γk ∈ R. The inequality

∥xk+1 − x⋆∥22 ≤ τ∥xk − x⋆∥22 (C.1)

holds for all d ∈ N, all f ∈ Fµ,L(Rd), all xk, xk+1, x⋆ ∈ Rd (such that
xk+1 = xk − γk∇f(xk) and ∇f(x⋆) = 0), if and only if

∃λ1, λ2 ≥ 0 :


λ1 = λ2

0 ⪯

τ − 1 + µL(λ1+λ2)
2(L−µ) γk − Lλ1+µλ2

2(L−µ)
γk − Lλ1+µλ2

2(L−µ) −γ2
k + λ1+λ2

2(L−µ)

 .
(C.2)
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We emphasize that the message underlying Theorem C.1 is that
verifying a worst-case convergence guarantee of the form (C.1) boils
down to verifying the feasibility of a certain convex problem. It is
relatively straightforward to convert a feasible point of (C.2) to a proof
that only consists of a weighted linear combination of inequalities, see,
e.g., [265, Theorem 3.1]. The corresponding weights are the values of
the multipliers (that is, in Theorem C.1, the weights are λ1 and λ2) as
showcased in Section 4 and Section 5.

As we see in Section C.3, changing the Lyapunov, or potential,
function to be verified also changes the LMI to be solved. The desired
LMI can be obtained following a principled approach presented in the
sequel. In particular, the following result is slightly more complicated
and corresponds to verifying the potential provided by Theorem 4.2.
One should note that those LMIs can be solved numerically, provid-
ing nice guides for choosing appropriate analytical weights. Symbolic
computations and computer algebra software might also help.

The following LMI relies on 6 dual variables λ1, . . . , λ6 as it involves
gradients and/or function values of f(·) at three points: xk, xk+1, and
x⋆, thereby fixing n = 3 and hence n(n− 1) = 6 dual variables.

Theorem C.2. Let Ak+1, Ak ≥ 0 and γk ∈ R. The inequality

Ak+1(f(xk+1)− f⋆) + L
2 ∥xk+1 − x⋆∥22 ≤ Ak(f(xk)− f⋆) + L

2 ∥xk − x⋆∥22

holds for all d ∈ N, all f ∈ FL(Rd), all xk, xk+1, x⋆ ∈ Rd (such that
xk+1 = xk − γk∇f(xk) and ∇f(x⋆) = 0) if and only if

∃λ1,λ2, . . . , λ6 ≥ 0 :

0 = Ak + λ1 + λ2 − λ4 − λ6
0 = −Ak+1 − λ2 + λ3 + λ4 − λ5

0 ⪯


0 ⋆ ⋆

1
2(γkL− λ1) λ1+λ2+λ4+λ6−γ2

kL2−2γkLλ2
2L ⋆

−λ3
2

1
2

(
γk(λ3 + λ4)− λ2+λ4

L

)
λ2+λ3+λ4+λ5

2L

 ,

(where ⋆’s denote symmetric elements in the matrix).

Remark C.1. The LMIs of this section are put in their “raw” forms, for
simplicity of the presentation (which does not focus on solving those
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LMIs analytically. Of course, a few simplifications are relatively direct:
for instance, any feasible point will have λ1 = γkL and λ3 = 0, as the
corresponding matrix could not be positive semidefinite otherwise.

As we discuss in the sequel (see Remark C.4), it is also relatively
straightforward to obtain weaker versions of those LMIs which are then
only sufficient for obtaining valid worst-case guarantees. Those simplified
LMIs might be simpler to solve analytically, and might therefore be
advantageous in certain contexts. Brief discussions and pointers for this
topic are provided in Remark C.4 and Section C.5.

A strongly convex version of Theorem C.2 is provided in Theo-
rem C.5. It is slightly more algrebaic in its vanilla form, but allows
recovering the results of Theorem 4.10 as a feasible point. Analyses of
accelerated methods can be obtained in a similar way, as illustrated
by the following LMI. The latter uses on 12 dual variables λ1, . . . , λ12,
as it relies on evaluating gradients and/or function values of f(·) at
four points: yk, xk, xk+1, and x⋆, so n = 4 and hence n(n − 1) = 12.
Although this LMI might appear as a bit of a brutal approach to worst-
case analysis, one might observe that many of elements of the LMI can
be set to zero due to the structure of the problem.

Theorem C.3. Let Ak+1, Ak ≥ 0 and αk, γk, τk ∈ R, and consider the
iteration

yk = xk + τk(zk − xk)
xk+1 = yk − αk∇f(yk)
zk+1 = zk − γk∇f(yk).

(C.3)

The inequality

Ak+1(f(xk+1)− f⋆) + L
2 ∥zk+1 − x⋆∥22 ≤ Ak(f(xk)− f⋆) + L

2 ∥zk − x⋆∥22

holds for all d ∈ N, all f ∈ FL(Rd), and all xk, xk+1, zk, zk+1, x⋆ ∈ Rd

(such that xk+1, zk+1 are generated by (C.3) and ∇f(x⋆) = 0) if and
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only if

∃λ1,λ2, . . . , λ12 ≥ 0 :

0 = Ak + λ1 + λ2 − λ4 − λ6 − λ8 + λ11
0 = −Ak+1 − λ2 + λ3 + λ4 − λ5 − λ9 + λ12
0 = λ7 + λ8 + λ9 − λ10 − λ11 − λ12

0 ⪯


0 0 S1,3 S1,4 S1,5
0 0 S2,3 S2,4 S2,5

S1,3 S2,3 S3,3 S3,4 S3,5
S1,4 S2,4 S3,4 S4,4 S4,5
S1,5 S2,5 S3,5 S4,5 S5,5

 ,

with
S1,3 = 1

2(λ7(τk − 1) + λ8τk),
S1,4 = −1

2(λ1 + τk(λ2 + λ11)), S1,5 = 1
2(λ3(τk − 1) + λ4τk),

S2,3 = 1
2(γkL− τk(λ7 + λ8)),

S2,4 = 1
2τk(λ2 + λ11), S2,5 = −1

2τk(λ3 + λ4),

S3,3 = λ7 + λ8 + λ9 + λ10 + λ11 + λ12 − γ2
kL2 − 2αkLλ9

2L
,

S3,4 = −αkLλ2 + λ8 + λ11
2L

, S3,5 = 1
2

(
αk(λ3 + λ4 + λ12)− λ9 + λ12

L

)
,

S4,4 = λ1 + λ2 + λ4 + λ6 + λ8 + λ11
2L

, S4,5 = −λ2 + λ4
2L

,

S5,5 = λ2 + λ3 + λ4 + λ5 + λ9 + λ12
2L

.

C.3 Analysis of Gradient Descent via Linear Matrix Inequalities

In this section, we detail the approach to obtain LMIs such as those of
Theorem C.1, Theorem C.2 and Theorem C.3. We provide full details for
gradient descent. The same technique is presented in a more expeditious
way for its accelerated versions afterwards.

C.3.1 Linear Convergence of Gradient Descent

We consider gradient descent for minimizing smooth strongly convex
functions. For exposition purposes, we investigate a type of one-iteration
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worst-case convergence guarantee in terms of the distance to the opti-
mum (see Theorem C.1) for gradient descent, of the form:

∥xk+1 − x⋆∥22 ≤ τ∥xk − x⋆∥22 (C.4)

which are valid for all d ∈ N, xk, xk+1, x⋆ ∈ Rd and all f ∈ Fµ,L(Rd)
(L-smooth µ-strongly convex function) when xk+1 = xk − γk∇f(xk)
(gradient descent) and ∇f(x⋆) = 0 (x⋆ is optimal for f). In this context,
we denote by τ⋆ (we omit the dependence on γk, µ, and L for convenience)
the smallest value τ for which (C.4) is valid. By definition, this value
can be formulated as the solution to an optimization problem looking
for worst-case scenarios:

τ⋆ ≜ max
d,f

xk,xk+1,x⋆

∥xk+1 − x⋆∥22
∥xk − x⋆∥22

s.t. d ∈ N, f ∈ Fµ,L(Rd)
xk, xk+1, x⋆ ∈ Rd

xk+1 = xk − γk∇f(xk)
∇f(x⋆) = 0.

(C.5)

As it is, this problem does not look quite practical. However, it actually
admits an equivalent formulation as a linear semidefinite program. As
a first step for reaching this formulation, the previous problem can be
formulated in an equivalent sampled manner. That is, we sample f at
the points where the first-order information is explicitly used:

τ⋆ = max
d

fk,f⋆
gk,,g⋆

xk,xk+1,x⋆

∥xk+1 − x⋆∥22
∥xk − x⋆∥22

s.t. d ∈ N, fk, f⋆ ∈ R
xk, xk+1, x⋆, gk, g⋆ ∈ Rd

∃f ∈ Fµ,L :
{

fk = f(xk) and gk = ∇f(xk)
f⋆ = f(x⋆) and g⋆ = ∇f(x⋆)

g⋆ = 0
xk+1 = xk − γkgk,

(C.6)

and f is now represented in terms of its samples at x⋆ and xk.
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A second stage in this reformulation consists of replacing the exis-
tence of a certain f ∈ Fµ,L interpolating (or extending) the samples by
an equivalent explicit condition provided by the following theorem.

Theorem C.4 (Fµ,L-interpolation, Theorem 4 in [210]). Let L > µ ≥ 0,
I be an index set and S = {(xi, gi, fi)}i∈I ⊆ Rd × Rd × R be a set of
triplets. There exists f ∈ Fµ,L satisfying f(xi) = fi and gi ∈ ∂f(xi) for
all i ∈ I if and only if

fi ≥ fj + ⟨gj ; xi − xj⟩+ 1
2L
∥gi − gj∥22

+ µ

2(1− µ/L)∥xi − xj − 1
L(gi − gj)∥22

(C.7)

holds for all i, j ∈ I.

Theorem C.4 conveniently allows replacing the existence constraint
by a set of quadratic inequalities, reaching:

τ⋆ = max
d

fk,f⋆
gk,xk,x⋆

∥xk − γkgk − x⋆∥22
∥xk − x⋆∥22

s.t. d ∈ N, fk, f⋆ ∈ R
xk, x⋆, gk ∈ Rd

f⋆ ≥ fk + ⟨gk; x⋆ − xk⟩+ 1
2L
∥gk∥22

+ µ

2(1− µ/L)∥xk −
1
L

gk − x⋆∥22

fk ≥ f⋆ + 1
2L
∥gk∥22

+ µ

2(1− µ/L)∥xk −
1
L

gk − x⋆∥22,

(C.8)

where we also substituted xk+1 and g⋆ by their respective expressions.
Finally, we arrive to a first (convex) semidefinite reformulation of the
problem via new variables: G ⪰ 0 and F defined as

G ≜

[
∥xk − x⋆∥22 ⟨gk, xk − x⋆⟩
⟨gk, xk − x⋆⟩ ∥gk∥22

]
, F ≜ fk − f⋆.
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The problem turns out to be linear in G and F :

τ⋆ = max
G,F

G1,1 + γ2
kG2,2 − 2γkG1,2

G1,1

s.t. F ∈ R, G ∈ S2

G ⪰ 0
F + Lµ

2(L−µ)G1,1 + 1
2(L−µ)G2,2 − L

L−µG1,2 ≤ 0

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 ≤ 0.

(C.9)

Finally, a simple homogeneity argument (for any feasible (G, F ) to (C.9),
the pair (G̃, F̃ ) ≜ (G/G1,1, F/G1,1) is also feasible with the same objec-
tive value, with G̃1,1 = 1 so we can assume without loss of generality
that G1,1 = 1 without changing the optimal value of the problem—note
that it is relatively straightforward to establish that the optimal solution
satisfies G1,1 ̸= 0) allows arriving to the equivalent:

τ⋆ = max
G,F

G1,1 + γ2
kG2,2 − 2γkG1,2

s.t. F ∈ R, G ∈ S2

G ⪰ 0
F + Lµ

2(L−µ)G1,1 + 1
2(L−µ)G2,2 − L

L−µG1,2 ≤ 0

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 ≤ 0

G1,1 = 1.

(C.10)

For arriving to the desired LMI, it remains to dualize the problem. That
is, we perform the following primal-dual associations:

F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − L
L−µG1,2 ≤ 0 : λ1,

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 ≤ 0 : λ2,

G1,1 = 1 : τ.

Standard Lagrangian duality allows arriving to
τ⋆ = min

λ1,λ2,τ≥0
τ

s.t. λ1 = λ2

0 ⪯

τ − 1 + µL(λ1+λ2)
2(L−µ) γk − λ1L+λ2µ

2(L−µ)
γk − λ1L+λ2µ

2(L−µ) −γ2
k + λ1+λ2

2(L−µ)

 ,

(C.11)
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where we used the fact there is no duality gap, as one can show the
existence of a Slater point [13]. One such Slater point can be obtained
by applying gradient descent on the function f(x) = 1

2x⊤diag(L, µ)x
(i.e., d = 2) with xk = (1, 1). A formal statement is provided in [210,
Theorem 6].

Theorem C.1 is now a direct consequence of the dual reformula-
tion (C.11), as provided by the following proof.

Proof of Theorem C.1. (Sufficiency, ⇐) If there exists a feasible point
(τ, λ1, λ2) for (C.2), weak duality implies that it is an upper bound on
τ⋆ by construction.

(Necessity, ⇒) For any τ such that there exists no λ1, λ2 ≥ 0 for
which (τ, λ1, λ2) is feasible for (C.2), it follows that τ ≤ τ⋆, and strong
duality implies that there exists a problem instance (f ∈ Fµ,L, d ∈ N,
and xk ∈ Rd) on which ∥xk+1−x⋆∥22 = τ⋆∥xk−x⋆∥22 ≥ τ∥xk−x⋆∥22. ■

Remark C.2. Following similar lines as those of this section, one can
verify other types of inequalities, beyond (C.1), simply by changing
the objective in (C.5). This allows obtaining the statement from Theo-
rem C.2 and Theorem C.3.

Remark C.3. Finding analytical solutions to such LMIs (parametrized
by the algorithm and problem parameters) might be challenging. For
gradient descent, the solution is provided in e.g., [98, Section 4.4]
and [265, Theorem 3.1]. For more complicated cases, one can rely on
numerical inspiration for finding analytical solutions (or upper bounds
on it).

Remark C.4. It is possible to obtain “weaker” LMIs based on other sets
of inequalities (which are necessary but not sufficient for interpolation).
Those LMIs are then only sufficient for finding worst-case guarantees.
Those alternate LMIs might enjoy simpler analytical solutions, but this
comes at the cost of loosing a priori tightness guarantees. This is in
general not a problem if the worst-case guarantee is satisfying, but
the subtle consequence is that those LMIs might then fail to provide a
satisfying guarantee even when there exists one.
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C.3.2 Potential Function for Gradient Descent

For formulating the LMI for verifying potential functions as those of
Theorem 4.2 and Theorem 4.10, one essentially has to follow the same
steps as in the previous section. The strongly convex version is a bit
heavy and is provided below. In short, verifying that

ϕk ≜ Ak(f(xk)− f⋆) + L+µAk
2 ∥xk − x⋆∥22

is a potential function, that is, ϕk+1 ≤ ϕk (for all f ∈ Fµ,L, d ∈ N, and
xk ∈ Rd), amount to verify that

0 ≥ max {ϕk+1 − ϕk : d ∈ N, f ∈ Fµ,L, xk, xk+1, x⋆ ∈ Rd,

xk+1 = xk − γk∇f(xk), and ∇f(x⋆) = 0} ,

where the maximum is taken over d, f , xk, xk+1 and x⋆. This problem
can be reformulated as in Section C.3 using the same technique with
more samples. More precisely, this formulation requires sampling the
function f at three points (instead of two): x⋆, xk, and xk+1, and hence
6 dual variables are required (because 6 inequalities of the form (C.7)
are used for describing the sampled version of the function f). The
formal statement is provided by the following theorem, without a proof.

Theorem C.5. Let Ak+1, Ak ≥ 0 and γk ∈ R. The inequality

Ak+1(f(xk+1)− f⋆) + L+µAk+1
2 ∥xk+1 − x⋆∥22

≤ Ak(f(xk)− f⋆) + L+µAk
2 ∥xk − x⋆∥22

holds for all d ∈ N, all f ∈ Fµ,L(Rd), all xk, xk+1, x⋆ ∈ Rd (such that
xk+1 = xk − γk∇f(xk) and ∇f(x⋆) = 0) if and only if

∃λ1, λ2, . . . , λ6 ≥ 0 :



0 = Ak + λ1 + λ2 − λ4 − λ6
0 = −Ak+1 − λ2 + λ3 + λ4 − λ5

0 ⪯

S1,1 S1,2 S1,3
S1,2 S2,2 S2,3
S1,3 S2,3 S3,3

 ,
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with

S1,1 = 1
2µ
(
Ak −Ak+1 + L(λ1+λ3+λ5+λ6)

L−µ

)
S1,2 = −γk(µAk+1(µ−L)+L(µ(λ3+λ5+1)−L))+λ6µ+λ1L

2(L−µ)

S1,3 = −λ5µ+λ3L
2(L−µ)

S2,2 = γ2
k(µAk+1(µ−L)+L(µ(λ2+λ3+λ4+λ5+1)−L))−2γk(λ4µ+λ2L)+λ1+λ2+λ4+λ6

2(L−µ)

S2,3 = γk(µ(λ2+λ5)+L(λ3+λ4))−λ2−λ4
2(L−µ)

S3,3 = λ2+λ3+λ4+λ5
2(L−µ) .

Note again that a notebook is provided in Section C.5 for obtaining
and verifying this LMI formulation via symbolic computations.

C.4 Accelerated Gradient Descent via Linear Matrix Inequalities

We provide the main ideas for formulating the LMI for verifying potential
functions as those of Theorem 4.10 and Theorem 4.12. In short, verifying
that

ϕk ≜ Ak(f(xk)− f⋆) + L+µAk
2 ∥zk − x⋆∥22

is a potential function, that is, ϕk+1 ≤ ϕk (for all f ∈ Fµ,L, d ∈ N, and
xk, zk, x⋆ ∈ Rd, ∇f(x⋆) = 0), amounts to verify that

0 ≥ max {ϕk+1 − ϕk : d ∈ N, f ∈ Fµ,L, zk, xk, x⋆ ∈ Rd, ∇f(x⋆) = 0,

and yk, xk+1, zk+1 ∈ Rd generated by (4.17)
}

,

where the maximum is taken over d, f , the iterates, as well as x⋆. This
problem can be cast as a SDP using the same ideas as in Section C.3
with more samples, again. More precisely, this formulation requires
sampling the function f at four points: x⋆, xk, xk+1, and yk. The case
µ = 0 is covered by Theorem C.3.

C.5 Notes and References

General frameworks. The whole idea of using semidefinite program-
ming for analyzing first-order methods dates back to [3] (more details
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and examples in [83], [209]). The principled approach to worst-case analy-
sis using performance estimation problems with interpolation/extension
arguments was proposed in in [210], and generalized to more problem
setups in [201]. The integral quadratic approach to first-order meth-
ods was proposed in [98], specifically for studying linearly converging
methods (focus on strong convexity and related notions). Those two
related methodologies were then further extended and linked in dif-
ferent setup [84], [161], [175], [206], [211], [213], [266]–[269]. Among
those developments, some works performed analyses via “weaker” LMIs,
based on other sets of inequalities which are necessary but not sufficient
for interpolation; see, e.g., [270]. The advantage of this approach is
that it is often simpler to obtain analytical solutions to some of those
LMIs, at the cost of loosing tightness guarantees (which might not be a
problem when the guarantee is satisfying). This is in general the case
for IQC-based works. In those cases, non-tightness is usually coupled
with the search for a Lyapunov function. In general, it is possible to
simultaneously look for a tight guarantee and a Lyapunov/potential
function, see e.g., [84], [267]. A simplified approach to performance
estimation problems was implemented in the performance estimation
toolbox [214, PESTO].

Designing methods using semidefinite programming. The optimized
gradient method (OGM) was apparently the first method obtained
by optimizing its worst-case using SDPs/LMIs. It was obtained as a
solution to a convex optimization problem by Drori and Teboulle [3],
which was later solved analytically by Kim and Fessler [4]. The same
method was obtained through an analogy with the conjugate gradient
method [203], which might serve as a strategy for designing method in
various setups. Optimized methods can be developed for other criteria
and setups as well. As an example, optimized methods for gradient
norms ∥∇f(xN )∥22 are studied in Kim and Fessler [166], [202], in the
smooth convex setting. See also Section 4.6.1 and Section 4.6.2; in
particular, the Triple Momentum Method (TMM) [95] was designed
as a time-independent optimized gradient method, through Lyapunov
arguments (and IQCs). See also [88], [100], [101], [271] for different ways
of recovering the TMM. Optimized methods were also developed in other
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setups, such as fixed-point iteration [206] and monotone inclusions [207]
(which turned out to be a particular case of [206]).

Specific methods. The SDP/LMI approaches were taken further for
studying first-order methods in a few different contexts. It was originally
used for studying gradient-type methods (see, e.g., [3], [83], [98], [210])
and accelerated/fast gradient-type methods (see, e.g., [3], [83], [95],
[98], [99], [175], [201], [210], [213], [272]) for convex minimization. It
was used later for analyzing, among others, nonsmooth setups [203],
[209], stochastic [84], [266], [268], [273], coordinate-descent [84], [274],
nonconvex setups [275], [276], proximal methods [166], [200], [201],
[208], splitting methods [265], [277], [278], monotone inclusions and
variational inequalities [278]–[281], fixed-point iterations [206], and
distributed/decentralized optimization [282], [283].

Obtaining and solving the LMIs. For solving the LMIs, standard nu-
merical semidefinite optimization packages can be used, see, e.g., [Yalmip,
Article:Sedumi, Article:Mosek, toh2012implementation]. For ob-
taining and verifying analytical solutions, symbolic computing might
also be a great asset. For the purpose of reproducibility, we provide note-
books for obtaining the LMI formulations of this section symbolically,
and for solving them numerically, at https://github.com/AdrienTaylor/
AccelerationMonograph.

Full text available at: http://dx.doi.org/10.1561/2400000036

https://github.com/AdrienTaylor/AccelerationMonograph
https://github.com/AdrienTaylor/AccelerationMonograph


Acknowledgements

The authors would like to warmly thank Raphaël Berthier, Mathieu
Barré, Aymeric Dieuleveut, Fabian Pedregosa and Baptiste Goujaud
for comments on early versions of this manuscript; for spotting a few
typos; and for discussions and developments related to Section 2, Sec-
tion 4, and Section 5. We are also greatly indebted to Lenaïc Chizat,
Laurent Condat, Jelena Diakonikolas, Alexander Gasnikov, Shuvomoy
Das Gupta, Pontus Giselsson, Cristóbal Guzmán, Julien Mairal, and
Irène Waldspurger for spotting a few typos and inconsistencies in the
first version of the manuscript.

We further want to thank Francis Bach, Sébastien Bubeck, Radu-
Alexandru Dragomir, Yoel Drori, Hadrien Hendrikx, Reza Babanezhad,
Claude Brezinski, Pavel Dvurechensky, Hervé Le Ferrand, Georges Lan,
Adam Ouorou, Michela Redivo-Zaglia, Simon Lacoste-Julien, Vincent
Roulet, and Ernest Ryu for fruitful discussions and pointers, which
largely simplified the writing and revision process of this manuscript.

AA is also extremely grateful to the French ministry of education
and école Etienne Marcel for keeping school mostly open during the
2020-2021 pandemic.

AA is at the Département d’informatique de l’ENS, École normale
supérieure, UMR CNRS 8548, PSL Research University, 75005 Paris,
France and INRIA. AA would like to acknowledge support from the
ML and Optimisation joint research initiative with the funds AXA

217

Full text available at: http://dx.doi.org/10.1561/2400000036



218 Acknowledgements

pour la Recherche and Kamet Ventures, a Google focused award, as
well as funding from the French government under the management of
the Agence Nationale de la Recherche as part of the “Investissements
d’avenir” program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Insti-
tute). AT is at INRIA and the Département d’informatique de l’ENS,
École normale supérieure, CNRS, PSL Research University, 75005 Paris,
France. AT acknowledges support from the European Research Council
(ERC grant SEQUOIA 724063).

Full text available at: http://dx.doi.org/10.1561/2400000036



References

[1] Y. Nesterov, “A method of solving a convex programming prob-
lem with convergence rate O(1/k2),” Soviet Mathematics Dok-
lady, vol. 27, no. 2, 1983, pp. 372–376.

[2] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM Journal on Imaging
Sciences, vol. 2, no. 1, 2009, pp. 183–202.

[3] Y. Drori and M. Teboulle, “Performance of first-order methods for
smooth convex minimization: A novel approach,” Mathematical
Programming, vol. 145, no. 1-2, 2014, pp. 451–482.

[4] D. Kim and J. A. Fessler, “Optimized first-order methods
for smooth convex minimization,” Mathematical Programming,
vol. 159, no. 1-2, 2016, pp. 81–107.

[5] Y. Nesterov, Introductory Lectures on Convex Optimization.
Springer, 2003.

[6] P. Tseng, On accelerated proximal gradient methods for convex-
concave optimization, 2008. [Online]. Available: http://www.mit.
edu/~dimitrib/PTseng/papers.html.

[7] A. C. Aitken, “On Bernoulli’s numerical solution of algebraic
equations,” Proceedings of the Royal Society of Edinburgh, vol. 46,
1927, pp. 289–305.

219

Full text available at: http://dx.doi.org/10.1561/2400000036

http://www.mit.edu/~dimitrib/PTseng/papers.html
http://www.mit.edu/~dimitrib/PTseng/papers.html


220 References

[8] P. Wynn, “On a device for computing the em(Sn) transforma-
tion,” Mathematical Tables and Other Aids to Computation,
vol. 10, no. 54, 1956, pp. 91–96.

[9] E. J. Anderson and P. Nash, Linear programming in infinite-
dimensional spaces. Chichester: Wiley, 1987.

[10] O. Güler, “New proximal point algorithms for convex minimiza-
tion,” SIAM Journal on Optimization, vol. 2, no. 4, 1992, pp. 649–
664.

[11] R. D. Monteiro and B. F. Svaiter, “An accelerated hybrid proxi-
mal extragradient method for convex optimization and its impli-
cations to second-order methods,” SIAM Journal on Optimiza-
tion, vol. 23, no. 2, 2013, pp. 1092–1125.

[12] H. Lin, J. Mairal, and Z. Harchaoui, “A universal catalyst for
first-order optimization,” in Advances in Neural Information
Processing Systems (NIPS), 2015.

[13] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[14] J.-F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagas-
tizábal, Numerical optimization: theoretical and practical aspects.
Springer Science & Business Media, 2006.

[15] J. Nocedal and S. Wright, Numerical optimization. Springer
Science & Business Media, 2006.

[16] R. T. Rockafellar, Convex Analysis. Princeton.: Princeton Uni-
versity Press., 1970.

[17] R. T. Rockafellar and R. J.-B. Wets, Variational analysis,
vol. 317. Springer Science & Business Media, 2009.

[18] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and
minimization algorithms I: Fundamentals, vol. 305. Springer
science & business media, 2013.

[19] A. S. Nemirovsky and B. T. Polyak, “Iterative methods for
solving linear ill-posed problems under precise information.,”
ENG. CYBER., no. 4, 1984, pp. 50–56.

[20] D. A. Flanders and G. Shortley, “Numerical determination of
fundamental modes,” Journal of Applied Physics, vol. 21, no. 12,
1950, pp. 1326–1332.

Full text available at: http://dx.doi.org/10.1561/2400000036



References 221

[21] J. C. Mason and D. C. Handscomb, Chebyshev polynomials. CRC
press, 2002.

[22] G. H. Golub and R. S. Varga, “Chebyshev semi-iterative methods,
successive overrelaxation iterative methods, and second order
richardson iterative methods,” Numerische Mathematik, vol. 3,
no. 1, 1961, pp. 147–156.

[23] E. Süli and D. F. Mayers, An introduction to numerical analysis.
Cambridge university press, 2003.

[24] M. H. Gutknecht and S. Röllin, “The chebyshev iteration revis-
ited,” Parallel Computing, vol. 28, no. 2, 2002, pp. 263–283.

[25] G. H. Golub and R. S. Varga, “Chebyshev semi-iterative methods,
successive overrelaxation iterative methods, and second order
richardson iterative methods,” Numerische Mathematik, vol. 3,
no. 1, 1961, pp. 157–168.

[26] A. S. Nemirovsky, Information-based complexity of convex pro-
gramming, Lecture notes, 1994.

[27] A. S. Nemirovsky and D. Yudin, Problem complexity and method
efficiency in optimization. 1983.

[28] A. S. Nemirovsky, “Information-based complexity of linear op-
erator equations,” Journal of Complexity, vol. 8, no. 2, 1992,
pp. 153–175.

[29] E. Stiefel, “Methods of conjugate gradients for solving linear sys-
tems,” Journal of Research of the National Bureau of Standards,
vol. 49, 1952, pp. 409–435.

[30] T. A. Straeter, “On the extension of the davidon-broyden class
of rank one, quasi-newton minimization methods to an infinite
dimensional hilbert space with applications to optimal control
problems,” Tech. Rep., 1971.

[31] Y. Saad and M. H. Schultz, “Gmres: A generalized minimal
residual algorithm for solving nonsymmetric linear systems,”
SIAM Journal on scientific and statistical computing, vol. 7,
no. 3, 1986, pp. 856–869.

[32] B. Fischer, “Polynomial based iteration methods for symmetric
linear systems,” 1996.

Full text available at: http://dx.doi.org/10.1561/2400000036



222 References

[33] F. Pedregosa and D. Scieur, “Acceleration through spectral
density estimation,” in Proceedings of the 37th International
Conference on Machine Learning (ICML), 2020.

[34] J. Lacotte and M. Pilanci, “Optimal randomized first-order
methods for least-squares problems,” in Proceedings of the 37th
International Conference on Machine Learning (ICML), 2020.

[35] D. Scieur and F. Pedregosa, “Universal asymptotic optimality
of polyak momentum,” in Proceedings of the 37th International
Conference on Machine Learning (ICML), 2020.

[36] D. G. Anderson, “Iterative procedures for nonlinear integral
equations,” Journal of the ACM (JACM), vol. 12, no. 4, 1965,
pp. 547–560.

[37] A. Sidi, W. F. Ford, and D. A. Smith, “Acceleration of conver-
gence of vector sequences,” SIAM Journal on Numerical Analysis,
vol. 23, no. 1, 1986, pp. 178–196.

[38] C. C. Paige and M. A. Saunders, “Solution of sparse indefinite
systems of linear equations,” SIAM journal on numerical analysis,
vol. 12, no. 4, 1975, pp. 617–629.

[39] H. F. Walker and P. Ni, “Anderson acceleration for fixed-point
iterations,” SIAM Journal on Numerical Analysis, vol. 49, no. 4,
2011, pp. 1715–1735.

[40] A. Sidi, “Efficient implementation of minimal polynomial and
reduced rank extrapolation methods,” Journal of Computational
and Applied Mathematics, vol. 36, no. 3, 1991, pp. 305–337.

[41] D. Scieur, A. d’Aspremont, and F. Bach, “Regularized nonlinear
acceleration,” in Advances in Neural Information Processing
Systems (NIPS), 2016.

[42] E. E. Tyrtyshnikov, “How bad are Hankel matrices?” Numerische
Mathematik, vol. 67, no. 2, 1994, pp. 261–269.

[43] D. Scieur, E. Oyallon, A. d’Aspremont, and F. Bach, “Online
regularized nonlinear acceleration,” preprint arXiv:1805.09639,
2018.

[44] M. Barré, A. Taylor, and A. d’Aspremont, “Convergence of
constrained Anderson acceleration,” preprint arXiv:2010.15482,
2020.

Full text available at: http://dx.doi.org/10.1561/2400000036



References 223

[45] D. Scieur, F. Bach, and A. d’Aspremont, “Nonlinear acceleration
of stochastic algorithms,” in Advances in Neural Information
Processing Systems (NIPS), 2017.

[46] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums
with the stochastic average gradient,” Mathematical Program-
ming, vol. 162, no. 1-2, 2017, pp. 83–112.

[47] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incre-
mental gradient method with support for non-strongly convex
composite objectives,” in Advances in Neural Information Pro-
cessing Systems (NIPS), 2014.

[48] R. Johnson and T. Zhang, “Accelerating stochastic gradient
descent using predictive variance reduction,” in Advances in
Neural Information Processing Systems (NIPS), 2013.

[49] V. Mai and M. Johansson, “Anderson acceleration of proximal
gradient methods,” in Proceedings of the 37th International Con-
ference on Machine Learning (ICML), 2020.

[50] F. H. Clarke, Optimization and nonsmooth analysis, vol. 5. SIAM,
1990.

[51] R. Mifflin, “Semismooth and semiconvex functions in constrained
optimization,” SIAM Journal on Control and Optimization,
vol. 15, no. 6, 1977, pp. 959–972.

[52] L. Qi and J. Sun, “A nonsmooth version of newton’s method,”
Mathematical programming, vol. 58, no. 1-3, 1993, pp. 353–367.

[53] D. A. Smith, W. F. Ford, and A. Sidi, “Extrapolation methods
for vector sequences,” SIAM review, vol. 29, no. 2, 1987, pp. 199–
233.

[54] K. Jbilou and H. Sadok, “Some results about vector extrapo-
lation methods and related fixed-point iterations,” Journal of
Computational and Applied Mathematics, vol. 36, no. 3, 1991,
pp. 385–398.

[55] C. Brezinski and M. R. Zaglia, Extrapolation methods: theory
and practice. Elsevier, 1991.

[56] K. Jbilou and H. Sadok, “Analysis of some vector extrapolation
methods for solving systems of linear equations,” Numerische
Mathematik, vol. 70, no. 1, 1995, pp. 73–89.

Full text available at: http://dx.doi.org/10.1561/2400000036



224 References

[57] K. Jbilou and H. Sadok, “Vector extrapolation methods. appli-
cations and numerical comparison,” Journal of Computational
and Applied Mathematics, vol. 122, no. 1-2, 2000, pp. 149–165.

[58] C. Brezinski, “Convergence acceleration during the 20th cen-
tury,” Numerical Analysis: Historical Developments in the 20th
Century, 2001, p. 113.

[59] C. Brezinski and M. Redivo–Zaglia, “The genesis and early
developments of aitken’s process, shanks’ transformation, the
ε–algorithm, and related fixed point methods,” Numerical Algo-
rithms, vol. 80, no. 1, 2019, pp. 11–133.

[60] E. Gekeler, “On the solution of systems of equations by the
epsilon algorithm of wynn,” Mathematics of Computation, vol. 26,
no. 118, 1972, pp. 427–436.

[61] C. Brezinski, “Sur un algorithme de résolution des systèmes non
linéaires,” Comptes Rendus de l’Académie des Sciences de Paris,
vol. 272, no. A, 1971, pp. 145–148.

[62] C. Brezinski, “Application de l’ε-algorithme à la résolution des
systèmes non linéaires,” Comptes Rendus de l’Académie des
Sciences de Paris, vol. 271, no. A, 1970, pp. 1174–1177.

[63] A. Toth and C. Kelley, “Convergence analysis for anderson
acceleration,” SIAM Journal on Numerical Analysis, vol. 53,
no. 2, 2015, pp. 805–819.

[64] H.-R. Fang and Y. Saad, “Two classes of multisecant meth-
ods for nonlinear acceleration,” Numerical Linear Algebra with
Applications, vol. 16, no. 3, 2009, pp. 197–221.

[65] S. Cabay and L. Jackson, “A polynomial extrapolation method
for finding limits and antilimits of vector sequences,” SIAM
Journal on Numerical Analysis, vol. 13, no. 5, 1976, pp. 734–752.

[66] M. Mešina, “Convergence acceleration for the iterative solution
of the equations X = AX + f ,” Computer Methods in Applied
Mechanics and Engineering, vol. 10, no. 2, 1977, pp. 165–173.

[67] R. Eddy, “Extrapolating to the limit of a vector sequence,” in
Information linkage between applied mathematics and industry,
Elsevier, 1979, pp. 387–396.

Full text available at: http://dx.doi.org/10.1561/2400000036



References 225

[68] A. Sidi, “Extrapolation vs. projection methods for linear systems
of equations,” Journal of Computational and Applied Mathemat-
ics, vol. 22, no. 1, 1988, pp. 71–88.

[69] W. F. Ford and A. Sidi, “Recursive algorithms for vector extrap-
olation methods,” Applied numerical mathematics, vol. 4, no. 6,
1988, pp. 477–489.

[70] A. Sidi and Y. Shapira, “Upper bounds for convergence rates of
acceleration methods with initial iterations,” Numerical Algo-
rithms, vol. 18, no. 2, 1998, pp. 113–132.

[71] A. Sidi, “Vector extrapolation methods with applications to
solution of large systems of equations and to pagerank compu-
tations,” Computers & Mathematics with Applications, vol. 56,
no. 1, 2008, pp. 1–24.

[72] A. Sidi, “Minimal polynomial and reduced rank extrapolation
methods are related,” Advances in Computational Mathematics,
vol. 43, no. 1, 2017, pp. 151–170.

[73] A. Sidi, Vector extrapolation methods with applications. SIAM,
2017.

[74] C. Brezinski, M. Redivo-Zaglia, and Y. Saad, “Shanks se-
quence transformations and anderson acceleration,” SIAM Re-
view, vol. 60, no. 3, 2018, pp. 646–669.

[75] C. Brezinski, S. Cipolla, M. Redivo-Zaglia, and Y. Saad, “Shanks
and Anderson-type acceleration techniques for systems of non-
linear equations,” preprint arXiv:2007.05716, 2020.

[76] A. Sidi, “Convergence and stability properties of minimal polyno-
mial and reduced rank extrapolation algorithms,” SIAM Journal
on Numerical Analysis, vol. 23, no. 1, 1986, pp. 197–209.

[77] A. Sidi and J. Bridger, “Convergence and stability analyses for
some vector extrapolation methods in the presence of defec-
tive iteration matrices,” Journal of Computational and Applied
Mathematics, vol. 22, no. 1, 1988, pp. 35–61.

[78] A. Sidi, “A convergence study for reduced rank extrapolation on
nonlinear systems,” Numerical Algorithms, 2019, pp. 1–26.

[79] C. Brezinski, “Généralisations de la transformation de shanks,
de la table de padé et de l’ε-algorithme,” Calcolo, vol. 12, no. 4,
1975, pp. 317–360.

Full text available at: http://dx.doi.org/10.1561/2400000036



226 References

[80] Y. Nesterov, “Gradient methods for minimizing composite func-
tions,” Mathematical Programming, vol. 140, no. 1, 2013, pp. 125–
161.

[81] A. Cauchy, “Méthode générale pour la résolution des systemes
d’équations simultanées,” Comptes Rendus de l’Académie des
Sciences de Paris, vol. 25, no. 1847, 1847, pp. 536–538.

[82] N. Bansal and A. Gupta, “Potential-function proofs for gradient
methods,” Theory of Computing, vol. 15, no. 1, 2019, pp. 1–32.

[83] Y. Drori, “Contributions to the complexity analysis of optimiza-
tion algorithms,” Ph.D. dissertation, Tel-Aviv University, 2014.

[84] A. Taylor and F. Bach, “Stochastic first-order methods: Non-
asymptotic and computer-aided analyses via potential func-
tions,” in Proceedings of the 32nd Conference on Learning Theory
(COLT), 2019.

[85] D. Kim and J. A. Fessler, “On the convergence analysis of the
optimized gradient method,” Journal of Optimization Theory
and Applications, vol. 172, no. 1, 2017, pp. 187–205.

[86] C. Guzmán and A. S. Nemirovsky, “On lower complexity bounds
for large-scale smooth convex optimization,” Journal of Com-
plexity, vol. 31, no. 1, 2015, pp. 1–14.

[87] Y. Drori, “The exact information-based complexity of smooth
convex minimization,” Journal of Complexity, vol. 39, 2017,
pp. 1–16.

[88] Y. Drori and A. Taylor, “On the oracle complexity of smooth
strongly convex minimization,” Journal of Complexity, 2021.

[89] A. S. Nemirovsky, “On optimality of krylov’s information when
solving linear operator equations,” Journal of Complexity, vol. 7,
no. 2, 1991, pp. 121–130.

[90] Y. Drori, “On the properties of convex functions over open sets,”
preprint arXiv:1812.02419, 2018.

[91] M. Baes, Estimate sequence methods: Extensions and approxi-
mations, 2009. [Online]. Available: http://www.optimization-
online.org/DB_FILE/2009/08/2372.pdf.

[92] A. C. Wilson, B. Recht, and M. I. Jordan, “A lyapunov analysis
of accelerated methods in optimization,” The Journal of Machine
Learning Research (JMLR), vol. 22, no. 113, 2021, pp. 1–34.

Full text available at: http://dx.doi.org/10.1561/2400000036

http://www.optimization-online.org/DB_FILE/2009/08/2372.pdf
http://www.optimization-online.org/DB_FILE/2009/08/2372.pdf


References 227

[93] B. Shi, S. S. Du, M. I. Jordan, and W. J. Su, “Understand-
ing the acceleration phenomenon via high-resolution differential
equations,” Mathematical Programming, 2021, pp. 1–70.

[94] A. Taylor and Y. Drori, “An optimal gradient method for smooth
strongly convex minimization,” preprint arXiv:2101.09741, 2021.

[95] B. Van Scoy, R. A. Freeman, and K. M. Lynch, “The fastest
known globally convergent first-order method for minimizing
strongly convex functions,” IEEE Control Systems Letters, vol. 2,
no. 1, 2017, pp. 49–54.

[96] S. Bubeck, Y. T. Lee, and M. Singh, “A geometric alter-
native to nesterov’s accelerated gradient descent,” preprint
arXiv:1506.08187, 2015.

[97] D. Drusvyatskiy, M. Fazel, and S. Roy, “An optimal first order
method based on optimal quadratic averaging,” SIAM Journal
on Optimization, vol. 28, no. 1, 2018, pp. 251–271.

[98] L. Lessard, B. Recht, and A. Packard, “Analysis and design
of optimization algorithms via integral quadratic constraints,”
SIAM Journal on Optimization, vol. 26, no. 1, 2016, pp. 57–95.

[99] S. Cyrus, B. Hu, B. Van Scoy, and L. Lessard, “A robust accel-
erated optimization algorithm for strongly convex functions,” in
Proceedings of the 2018 American Control Conference (ACC),
2018.

[100] K. Zhou, A. M.-C. So, and J. Cheng, “Boosting first-order meth-
ods by shifting objective: New schemes with faster worst case
rates,” in Advances in Neural Information Processing Systems
(NeuRIPS), 2020.

[101] L. Lessard and P. Seiler, “Direct synthesis of iterative algorithms
with bounds on achievable worst-case convergence rate,” in Pro-
ceedings of the 2020 American Control Conference (ACC), 2020.

[102] S. Bubeck, “Convex optimization: Algorithms and complexity,”
Foundations and Trends in Machine Learning, vol. 8, no. 3-4,
2015, pp. 231–357.

[103] S. Chen, S. Ma, and W. Liu, “Geometric descent method for con-
vex composite minimization,” in Advances in Neural Information
Processing Systems (NIPS), 2017.

Full text available at: http://dx.doi.org/10.1561/2400000036



228 References

[104] S. Karimi and S. Vavasis, “A single potential governing conver-
gence of conjugate gradient, accelerated gradient and geometric
descent,” preprint arXiv:1712.09498, 2017.

[105] J. Douglas and H. H. Rachford, “On the numerical solution
of heat conduction problems in two and three space variables,”
Transactions of the American mathematical Society, vol. 82, no. 2,
1956, pp. 421–439.

[106] R. Glowinski and A. Marroco, “Sur l’approximation, par élé-
ments finis d’ordre un, et la résolution, par pénalisation-dualité
d’une classe de problèmes de dirichlet non linéaires,” ESAIM:
Mathematical Modelling and Numerical Analysis-Modélisation
Mathématique et Analyse Numérique, vol. 9, no. R2, 1975, pp. 41–
76.

[107] P.-L. Lions and B. Mercier, “Splitting algorithms for the sum of
two nonlinear operators,” SIAM Journal on Numerical Analysis,
vol. 16, no. 6, 1979, pp. 964–979.

[108] G. Peyré, “The numerical tours of signal processing-advanced
computational signal and image processing,” IEEE Computing
in Science and Engineering, vol. 13, no. 4, 2011, pp. 94–97.

[109] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and
Trends in Optimization, vol. 1, no. 3, 2014, pp. 127–239.

[110] A. Chambolle and T. Pock, “An introduction to continuous
optimization for imaging,” Acta Numerica, vol. 25, 2016, pp. 161–
319.

[111] J. A. Fessler, “Optimization methods for magnetic resonance
image reconstruction: Key models and optimization algorithms,”
IEEE Signal Processing Magazine, vol. 37, no. 1, 2020, pp. 33–40.

[112] A. Goldstein, “Cauchy’s method of minimization,” Numerische
Mathematik, vol. 4, no. 1, 1962, pp. 146–150.

[113] L. Armijo, “Minimization of functions having lipschitz continuous
first partial derivatives,” Pacific Journal of mathematics, vol. 16,
no. 1, 1966, pp. 1–3.

[114] S. R. Becker, E. J. Candès, and M. C. Grant, “Templates for con-
vex cone problems with applications to sparse signal recovery,”
Mathematical Programming Computation, vol. 3, no. 3, 2011,
pp. 165–218.

Full text available at: http://dx.doi.org/10.1561/2400000036



References 229

[115] B. O’Donoghue and E. Candes, “Adaptive restart for accelerated
gradient schemes,” Foundations of computational mathematics,
vol. 15, no. 3, 2015, pp. 715–732.

[116] V. Roulet and A. d’Aspremont, “Sharpness, restart and acceler-
ation,” in Advances in Neural Information Processing Systems
(NIPS), 2017.

[117] A. Ben-Tal and A. S. Nemirovsky, Lectures on modern convex
optimization : analysis, algorithms, and engineering applications,
ser. MPS-SIAM series on optimization. SIAM, 2001.

[118] A. Juditsky and A. S. Nemirovsky, “First order methods for
nonsmooth convex large-scale optimization, i: General purpose
methods,” Optimization for Machine Learning, vol. 30, no. 9,
2011, pp. 121–148.

[119] A. Beck and M. Teboulle, “Mirror descent and nonlinear pro-
jected subgradient methods for convex optimization,” Operations
Research Letters, vol. 31, no. 3, 2003, pp. 167–175.

[120] Y. Nesterov and V. Shikhman, “Quasi-monotone subgradient
methods for nonsmooth convex minimization,” Journal of Opti-
mization Theory and Applications, vol. 165, no. 3, 2015, pp. 917–
940.

[121] A. Beck and M. Teboulle, “Fast gradient-based algorithms for
constrained total variation image denoising and deblurring prob-
lems,” IEEE Transactions on Image Processing, vol. 18, no. 11,
2009, pp. 2419–2434.

[122] E. K. Ryu and S. Boyd, “Primer on monotone operator methods,”
Appl. Comput. Math, vol. 15, no. 1, 2016, pp. 3–43.

[123] G. Chierchia, E. Chouzenoux, P. L. Combettes, and J.-C. Pesquet,
The proximity operator repository. user’s guide, 2020. [Online].
Available: http://proximity-operator.net/download/guide.pdf.

[124] G. B. Passty, “Ergodic convergence to a zero of the sum of
monotone operators in hilbert space,” Journal of Mathematical
Analysis and Applications, vol. 72, no. 2, 1979, pp. 383–390.

[125] L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi,
“Proximal splitting algorithms: A tour of recent advances, with
new twists,” preprint arXiv:1912.00137, 2019.

Full text available at: http://dx.doi.org/10.1561/2400000036

http://proximity-operator.net/download/guide.pdf


230 References

[126] K. Scheinberg, D. Goldfarb, and X. Bai, “Fast first-order methods
for composite convex optimization with backtracking,” Founda-
tions of Computational Mathematics, vol. 14, no. 3, 2014, pp. 389–
417.

[127] L. Calatroni and A. Chambolle, “Backtracking strategies for
accelerated descent methods with smooth composite objectives,”
SIAM Journal on Optimization, vol. 29, no. 3, 2019, pp. 1772–
1798.

[128] M. I. Florea and S. A. Vorobyov, “An accelerated composite
gradient method for large-scale composite objective problems,”
IEEE Transactions on Signal Processing, vol. 67, no. 2, 2018,
pp. 444–459.

[129] M. I. Florea and S. A. Vorobyov, “A generalized accelerated
composite gradient method: Uniting nesterov’s fast gradient
method and fista,” IEEE Transactions on Signal Processing,
2020.

[130] A. Auslender and M. Teboulle, “Interior gradient and proximal
methods for convex and conic optimization,” SIAM Journal on
Optimization, vol. 16, no. 3, 2006, pp. 697–725.

[131] A. V. Gasnikov and Y. Nesterov, “Universal method for stochas-
tic composite optimization problems,” Computational Mathe-
matics and Mathematical Physics, vol. 58, no. 1, 2018, pp. 48–
64.

[132] I. Necoara, Y. Nesterov, and F. Glineur, “Linear convergence
of first order methods for non-strongly convex optimization,”
Mathematical Programming, vol. 175, no. 1-2, 2019, pp. 69–107.

[133] O. Hinder, A. Sidford, and N. Sohoni, “Near-optimal methods for
minimizing star-convex functions and beyond,” in Proceedings
of the 33rd Conference on Learning Theory (COLT), 2020.

[134] J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter, “From
error bounds to the complexity of first-order descent methods for
convex functions,” Mathematical Programming, vol. 165, no. 2,
2017, pp. 471–507.

[135] Y. Nesterov, “Smooth minimization of non-smooth functions,”
Mathematical Programming, vol. 103, no. 1, 2005, pp. 127–152.

Full text available at: http://dx.doi.org/10.1561/2400000036



References 231

[136] G. Lan, Z. Lu, and R. D. Monteiro, “Primal-dual first-order meth-
ods with O(1/ϵ) iteration-complexity for cone programming,”
Mathematical Programming, vol. 126, no. 1, 2011, pp. 1–29.

[137] J. Diakonikolas and C. Guzmán, “Complementary composite
minimization, small gradients in general norms, and applications
to regression problems,” preprint arXiv:2101.11041, 2021.

[138] A. Juditsky, G. Lan, A. S. Nemirovsky, and A. Shapiro, “Stochas-
tic approximation approach to stochastic programming,” SIAM
Journal on Optimization, vol. 19, no. 4, 2009, pp. 1574–1609.

[139] A. d’Aspremont, C. Guzman, and M. Jaggi, “Optimal affine-
invariant smooth minimization algorithms,” SIAM Journal on
Optimization, vol. 28, no. 3, 2018, pp. 2384–2405.

[140] Z. Allen-Zhu and L. Orecchia, “Linear coupling: An ultimate
unification of gradient and mirror descent,” in Proceedings of
the 8th Innovations in Theoretical Computer Science Conference
(ITCS), 2017.

[141] W. Su, S. Boyd, and E. Candes, “A differential equation for
modeling nesterov’s accelerated gradient method: Theory and
insights,” in Advances in Neural Information Processing Systems
(NIPS), 2014.

[142] D. Scieur, V. Roulet, F. Bach, and A. d’Aspremont, “Integration
methods and optimization algorithms,” in Advances in Neural
Information Processing Systems (NIPS), 2017.

[143] W. Krichene, A. Bayen, and P. L. Bartlett, “Accelerated mirror
descent in continuous and discrete time,” in Advances in Neural
Information Processing Systems (NIPS), 2015.

[144] A. Wibisono, A. C. Wilson, and M. I. Jordan, “A variational per-
spective on accelerated methods in optimization,” in Proceedings
of the National Academy of Sciences, 2016.

[145] H. Attouch, Z. Chbani, J. Peypouquet, and P. Redont, “Fast
convergence of inertial dynamics and algorithms with asymptotic
vanishing viscosity,” Mathematical Programming, vol. 168, no. 1,
2018, pp. 123–175.

Full text available at: http://dx.doi.org/10.1561/2400000036



232 References

[146] B. Sun, J. George, and S. Kia, “High-resolution modeling of
the fastest first-order optimization method for strongly convex
functions,” in Proceedings of the 59th Conference on Decision
and Control (CDC), 2020.

[147] B. Shi, S. S. Du, W. Su, and M. I. Jordan, “Acceleration via sym-
plectic discretization of high-resolution differential equations,” in
Advances in Neural Information Processing Systems (NeurIPS),
2019.

[148] J. Diakonikolas and L. Orecchia, “The approximate duality gap
technique: A unified theory of first-order methods,” SIAM Jour-
nal on Optimization, vol. 29, no. 1, 2019, pp. 660–689.

[149] J. W. Siegel, “Accelerated first-order methods: Differential equa-
tions and lyapunov functions,” preprint arXiv:1903.05671, 2019.

[150] J. M. Sanz Serna and K. C. Zygalakis, “The connections be-
tween Lyapunov functions for some optimization algorithms and
differential equations,” SIAM Journal on Numerical Analysis,
vol. 59, no. 3, 2021, pp. 1542–1565.

[151] M. Even, R. Berthier, F. Bach, N. Flammarion, P. Gaillard, H.
Hendrikx, L. Massoulié, and A. Taylor, “A continuized view on
nesterov acceleration for stochastic gradient descent and ran-
domized gossip,” in Advances in Neural Information Processing
Systems (NeurIPS), 2021.

[152] O. Devolder, “Stochastic first order methods in smooth convex
optimization,” CORE discussion paper, Tech. Rep., 2011.

[153] A. Kulunchakov and J. Mairal, “Estimate sequences for stochastic
composite optimization: Variance reduction, acceleration, and
robustness to noise,” The Journal of Machine Learning Research
(JMLR), vol. 21, no. 155, 2020, pp. 1–52.

[154] Y. Nesterov, “Primal-dual subgradient methods for convex prob-
lems,” Mathematical programming Series B, vol. 120, no. 1, 2009,
pp. 221–259.

[155] L. Xiao, “Dual averaging methods for regularized stochastic learn-
ing and online optimization,” The Journal of Machine Learning
Research (JMLR), vol. 11, 2010, pp. 2543–2596.

Full text available at: http://dx.doi.org/10.1561/2400000036



References 233

[156] A. Juditsky and Y. Nesterov, “Deterministic and stochastic
primal-dual subgradient algorithms for uniformly convex mini-
mization,” Stochastic Systems, vol. 4, no. 1, 2014, pp. 44–80.

[157] A. Juditsky and A. S. Nemirovsky, “First order methods for
nonsmooth convex large-scale optimization, ii: Utilizing problems
structure,” Optimization for Machine Learning, vol. 30, no. 9,
2011, pp. 149–183.

[158] H. H. Bauschke, J. Bolte, and M. Teboulle, “A descent lemma be-
yond lipschitz gradient continuity: First-order methods revisited
and applications,” Mathematics of Operations Research, vol. 42,
no. 2, 2016, pp. 330–348.

[159] M. Teboulle, “A simplified view of first order methods for op-
timization,” Mathematical Programming, vol. 170, no. 1, 2018,
pp. 67–96.

[160] H. Lu, R. M. Freund, and Y. Nesterov, “Relatively smooth convex
optimization by first-order methods, and applications,” SIAM
Journal on Optimization, vol. 28, no. 1, 2018, pp. 333–354.

[161] R.-A. Dragomir, A. B. Taylor, A. d’Aspremont, and J. Bolte,
“Optimal complexity and certification of Bregman first-order
methods,” Mathematical Programming, 2021, pp. 1–43.

[162] F. Hanzely, P. Richtarik, and L. Xiao, “Accelerated bregman
proximal gradient methods for relatively smooth convex opti-
mization,” Computational Optimization and Applications, vol. 79,
no. 2, 2021, pp. 405–440.

[163] D. H. Gutman and J. F. Peña, “A unified framework for breg-
man proximal methods: Subgradient, gradient, and accelerated
gradient schemes,” preprint arXiv:1812.10198, 2018.

[164] A. S. Nemirovsky and D. B. Yudin, “Problem complexity and
method efficiency in optimization.,” Willey-Interscience, New
York, 1983.

[165] Y. Nesterov, “How to make the gradients small,” Optima. Math-
ematical Optimization Society Newsletter, no. 88, 2012, pp. 10–
11.

[166] D. Kim and J. A. Fessler, “Optimizing the efficiency of first-order
methods for decreasing the gradient of smooth convex functions,”
Journal of Optimization Theory and Applications, 2020.

Full text available at: http://dx.doi.org/10.1561/2400000036



234 References

[167] J. Diakonikolas and P. Wang, “Potential function-based frame-
work for making the gradients small in convex and min-max
optimization,” preprint arXiv:2101.12101, 2021.

[168] J. Lee, C. Park, and E. K. Ryu, “A geometric structure of
acceleration and its role in making gradients small fast,” preprint
arXiv:2106.10439, 2021.

[169] Y. Malitsky and K. Mishchenko, “Adaptive gradient descent with-
out descent,” in Proceedings of the 37th International Conference
on Machine Learning (ICML), 2020.

[170] A. d’Aspremont, “Smooth optimization with approximate gra-
dient,” SIAM Journal on Optimization, vol. 19, no. 3, 2008,
pp. 1171–1183.

[171] M. Schmidt, N. Le Roux, and F. Bach, “Convergence rates of
inexact proximal-gradient methods for convex optimization,”
in Advances in Neural Information Processing Systems (NIPS),
2011.

[172] O. Devolder, F. Glineur, and Y. Nesterov, “First-order methods
of smooth convex optimization with inexact oracle,” Mathemati-
cal Programming, vol. 146, no. 1-2, 2014, pp. 37–75.

[173] O. Devolder, “Exactness, inexactness and stochasticity in first-
order methods for large-scale convex optimization,” Ph.D. dis-
sertation, 2013.

[174] O. Devolder, F. Glineur, and Y. Nesterov, “Intermediate gradient
methods for smooth convex problems with inexact oracle,” CORE
discussion paper, Tech. Rep., 2013.

[175] N. S. Aybat, A. Fallah, M. Gurbuzbalaban, and A. Ozdaglar,
“Robust accelerated gradient methods for smooth strongly convex
functions,” SIAM Journal on Optimization, vol. 30, no. 1, 2020,
pp. 717–751.

[176] S. Villa, S. Salzo, L. Baldassarre, and A. Verri, “Accelerated
and inexact forward-backward algorithms,” SIAM Journal on
Optimization, vol. 23, no. 3, 2013, pp. 1607–1633.

[177] L. Bottou and O. Bousquet, “The tradeoffs of large scale learn-
ing,” in Advances in Neural Information Processing Systems
(NIPS), 2007.

Full text available at: http://dx.doi.org/10.1561/2400000036



References 235

[178] H. Robbins and S. Monro, “A stochastic approximation method,”
The annals of mathematical statistics, 1951, pp. 400–407.

[179] G. Lan, “Efficient methods for stochastic composite optimiza-
tion,” School of Industrial and Systems Engineering, Georgia
Institute of Technology, Tech. Rep., 2008. [Online]. Available:
http://www.optimization-online.org/DB_HTML/2008/08/
2061.html.

[180] C. Hu, W. Pan, and J. Kwok, “Accelerated gradient methods
for stochastic optimization and online learning,” in Advances in
Neural Information Processing Systems (NIPS), 2009.

[181] G. Lan, “An optimal method for stochastic composite opti-
mization,” Mathematical Programming, vol. 133, no. 1-2, 2012,
pp. 365–397.

[182] P. Dvurechensky and A. Gasnikov, “Stochastic intermediate
gradient method for convex problems with stochastic inexact or-
acle,” Journal of Optimization Theory and Applications, vol. 171,
no. 1, 2016, pp. 121–145.

[183] N. S. Aybat, A. Fallah, M. Gurbuzbalaban, and A. Ozdaglar, “A
universally optimal multistage accelerated stochastic gradient
method,” in Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[184] E. Gorbunov, M. Danilova, and A. Gasnikov, “Stochastic opti-
mization with heavy-tailed noise via accelerated gradient clip-
ping,” in Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[185] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate
ascent methods for regularized loss minimization,” The Journal
of Machine Learning Research (JMLR), vol. 14, 2013, pp. 567–
599.

[186] A. J. Defazio, T. S. Caetano, and J. Domke, “Finito: A faster,
permutable incremental gradient method for big data problems,”
in Proceedings of the 31st International Conference on Machine
Learning (ICML), 2014.

[187] J. Mairal, “Incremental majorization-minimization optimization
with application to large-scale machine learning,” SIAM Journal
on Optimization, vol. 25, no. 2, 2015, pp. 829–855.

Full text available at: http://dx.doi.org/10.1561/2400000036

http://www.optimization-online.org/DB_HTML/2008/08/2061.html
http://www.optimization-online.org/DB_HTML/2008/08/2061.html


236 References

[188] S. Shalev-Shwartz and T. Zhang, “Accelerated proximal stochas-
tic dual coordinate ascent for regularized loss minimization,”
in Proceedings of the 31st International Conference on Machine
Learning (ICML), 2014.

[189] Z. Allen-Zhu, “Katyusha: The first direct acceleration of stochas-
tic gradient methods,” The Journal of Machine Learning Re-
search (JMLR), vol. 18, no. 1, 2017, pp. 8194–8244.

[190] K. Zhou, F. Shang, and J. Cheng, “A simple stochastic variance
reduced algorithm with fast convergence rates,” in Proceedings of
the 35th International Conference on Machine Learning (ICML),
2018.

[191] K. Zhou, Q. Ding, F. Shang, J. Cheng, D. Li, and Z.-Q. Luo,
“Direct acceleration of SAGA using sampled negative momen-
tum,” in Proceedings of the 22nd International Conference on
Artificial Intelligence and Statistics (AISTATS), 2019.

[192] Y. Nesterov, “Efficiency of coordinate descent methods on huge-
scale optimization problems,” SIAM Journal on Optimization,
vol. 22, no. 2, 2012, pp. 341–362.

[193] Y. T. Lee and A. Sidford, “Efficient accelerated coordinate de-
scent methods and faster algorithms for solving linear systems,”
in 54th Symposium on Foundations of Computer Science, pp. 147–
156, 2013.

[194] O. Fercoq and P. Richtárik, “Accelerated, parallel, and proximal
coordinate descent,” SIAM Journal on Optimization, vol. 25,
no. 4, 2015, pp. 1997–2023.

[195] Y. Nesterov and S. U. Stich, “Efficiency of the accelerated coor-
dinate descent method on structured optimization problems,”
SIAM Journal on Optimization, vol. 27, no. 1, 2017, pp. 110–123.

[196] Y. Nesterov and B. T. Polyak, “Cubic regularization of Newton
method and its global performance,” Mathematical Programming,
vol. 108, no. 1, 2006, pp. 177–205.

[197] Y. Nesterov, “Accelerating the cubic regularization of New-
ton’s method on convex problems,” Mathematical Programming,
vol. 112, no. 1, 2008, pp. 159–181.

Full text available at: http://dx.doi.org/10.1561/2400000036



References 237

[198] A. Gasnikov, P. Dvurechensky, E. Gorbunov, E. Vorontsova, D.
Selikhanovych, and C. Uribe, “Optimal tensor methods in smooth
convex and uniformly convex optimization,” in Proceedings of
the 32nd Conference on Learning Theory (COLT), 2019.

[199] Y. Nesterov, “Implementable tensor methods in unconstrained
convex optimization,” Mathematical Programming, 2019, pp. 1–
27.

[200] D. Kim and J. A. Fessler, “Another look at the fast iterative
shrinkage/thresholding algorithm (FISTA),” SIAM Journal on
Optimization, vol. 28, no. 1, 2018, pp. 223–250.

[201] A. B. Taylor, J. M. Hendrickx, and F. Glineur, “Exact worst-
case performance of first-order methods for composite convex
optimization,” SIAM Journal on Optimization, vol. 27, no. 3,
2017, pp. 1283–1313.

[202] D. Kim and J. A. Fessler, “Generalizing the optimized gradient
method for smooth convex minimization,” SIAM Journal on
Optimization, vol. 28, no. 2, 2018, pp. 1920–1950.

[203] Y. Drori and A. B. Taylor, “Efficient first-order methods for
convex minimization: A constructive approach,” Mathematical
Programming, vol. 184, no. 1, 2020, pp. 183–220.

[204] D. Kim and J. A. Fessler, “Adaptive restart of the optimized gra-
dient method for convex optimization,” Journal of Optimization
Theory and Applications, vol. 178, no. 1, 2018, pp. 240–263.

[205] C. Park, J. Park, and E. K. Ryu, “Factor-
√

2 acceleration of
accelerated gradient methods,” preprint arXiv:2102.07366, 2021.

[206] F. Lieder, “On the convergence rate of the halpern-iteration,”
Optimization Letters, vol. 15, no. 2, 2021, pp. 405–418.

[207] D. Kim, “Accelerated proximal point method for maximally
monotone operators,” Mathematical Programming, 2021, pp. 1–
31.

[208] M. Barré, A. Taylor, and F. Bach, “Principled analyses and
design of first-order methods with inexact proximal operators,”
preprint arXiv:2006.06041, 2020.

[209] Y. Drori and M. Teboulle, “An optimal variant of kelley’s cutting-
plane method,” Mathematical Programming, vol. 160, no. 1-2,
2016, pp. 321–351.

Full text available at: http://dx.doi.org/10.1561/2400000036



238 References

[210] A. B. Taylor, J. M. Hendrickx, and F. Glineur, “Smooth strongly
convex interpolation and exact worst-case performance of first-
order methods,” Mathematical Programming, vol. 161, no. 1-2,
2017, pp. 307–345.

[211] M. Fazlyab, A. Ribeiro, M. Morari, and V. M. Preciado, “Analysis
of optimization algorithms via integral quadratic constraints:
Nonstrongly convex problems,” SIAM Journal on Optimization,
vol. 28, no. 3, 2018, pp. 2654–2689.

[212] E. De Klerk, F. Glineur, and A. B. Taylor, “On the worst-case
complexity of the gradient method with exact line search for
smooth strongly convex functions,” Optimization Letters, vol. 11,
no. 7, 2017, pp. 1185–1199.

[213] B. Hu and L. Lessard, “Dissipativity theory for nesterov’s accel-
erated method,” in Proceedings of the 34th International Con-
ference on Machine Learning (ICML), 2017.

[214] A. B. Taylor, J. M. Hendrickx, and F. Glineur, “Performance
estimation toolbox (pesto): Automated worst-case analysis of
first-order optimization methods,” in Proceedings of the 56th
Conference on Decision and Control (CDC), 2017.

[215] H. Lin, J. Mairal, and Z. Harchaoui, “Catalyst acceleration for
first-order convex optimization: From theory to practice,” The
Journal of Machine Learning Research (JMLR), vol. 18, no. 1,
2018, pp. 7854–7907.

[216] J.-J. Moreau, “Fonctions convexes duales et points proximaux
dans un espace hilbertien,” Comptes Rendus de l’Académie des
Sciences de Paris, vol. 255, 1962, pp. 2897–2899.

[217] J.-J. Moreau, “Proximité et dualité dans un espace hilbertien,”
Bulletin de la Société mathématique de France, vol. 93, 1965,
pp. 273–299.

[218] B. Martinet, “Régularisation d’inéquations variationnelles par
approximations successives,” Revue Française d’Informatique et
de Recherche Opérationnelle, vol. 4, 1970, pp. 154–158.

[219] B. Martinet, “Détermination approchée d’un point fixe d’une
application pseudo-contractante. cas de l’application prox.,”
Comptes Rendus de l’Académie des Sciences de Paris, vol. 274,
1972, pp. 163–165.

Full text available at: http://dx.doi.org/10.1561/2400000036



References 239

[220] C. Lemaréchal and C. Sagastizábal, “Practical aspects of the
Moreau–Yosida regularization: Theoretical preliminaries,” SIAM
Journal on Optimization, vol. 7, no. 2, 1997, pp. 367–385.

[221] O. Güler, “On the convergence of the proximal point algorithm
for convex minimization,” SIAM Journal on Control and Opti-
mization, vol. 29, no. 2, 1991, pp. 403–419.

[222] M. Barré, A. Taylor, and F. Bach, “A note on approximate
accelerated forward-backward methods with absolute and rela-
tive errors, and possibly strongly convex objectives,” preprint
arXiv:2106.15536, 2021.

[223] C. Paquette, H. Lin, D. Drusvyatskiy, J. Mairal, and Z. Har-
chaoui, “Catalyst for gradient-based nonconvex optimization,”
in Proceedings of the 21st International Conference on Artificial
Intelligence and Statistics (AISTATS), 2018.

[224] A. Kulunchakov and J. Mairal, “A generic acceleration framework
for stochastic composite optimization,” in Advances in Neural
Information Processing Systems (NeurIPS), 2019.

[225] R. T. Rockafellar, “A dual approach to solving nonlinear program-
ming problems by unconstrained optimization,” Mathematical
Programming, vol. 5, no. 1, 1973, pp. 354–373.

[226] R. T. Rockafellar, “Augmented Lagrangians and applications of
the proximal point algorithm in convex programming,” Mathe-
matics of operations research, vol. 1, no. 2, 1976, pp. 97–116.

[227] A. N. Iusem, “Augmented Lagrangian methods and proximal
point methods for convex optimization,” Investigación Operativa,
vol. 8, no. 11-49, 1999, p. 7.

[228] J. Eckstein and P. J. Silva, “A practical relative error criterion for
augmented lagrangians,” Mathematical Programming, vol. 141,
no. 1-2, 2013, pp. 319–348.

[229] J. Eckstein, “Splitting methods for monotone operators with
applications to parallel optimization,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 1989.

[230] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and Trends in
Machine learning, vol. 3, no. 1, 2011, pp. 1–122.

Full text available at: http://dx.doi.org/10.1561/2400000036



240 References

[231] J. Eckstein and W. Yao, “Augmented Lagrangian and alternating
direction methods for convex optimization: A tutorial and some
illustrative computational results,” RUTCOR Research Reports,
vol. 32, no. 3, 2012.

[232] S. Salzo and S. Villa, “Inexact and accelerated proximal point
algorithms,” Journal of Convex analysis, vol. 19, no. 4, 2012,
pp. 1167–1192.

[233] M. V. Solodov and B. F. Svaiter, “A hybrid approximate
extragradient–proximal point algorithm using the enlargement
of a maximal monotone operator,” Set-Valued Analysis, vol. 7,
no. 4, 1999, pp. 323–345.

[234] M. V. Solodov and B. F. Svaiter, “A hybrid projection-proximal
point algorithm,” Journal of convex analysis, vol. 6, no. 1, 1999,
pp. 59–70.

[235] M. V. Solodov and B. F. Svaiter, “Error bounds for proximal
point subproblems and associated inexact proximal point algo-
rithms,” Mathematical Programming, vol. 88, no. 2, 2000, pp. 371–
389.

[236] M. V. Solodov and B. F. Svaiter, “A unified framework for
some inexact proximal point algorithms,” Numerical functional
analysis and optimization, vol. 22, no. 7-8, 2001, pp. 1013–1035.

[237] A. Ivanova, D. Grishchenko, A. Gasnikov, and E. Shulgin,
“Adaptive catalyst for smooth convex optimization,” preprint
arXiv:1911.11271, 2019.

[238] J. Mairal, “Cyanure: An open-source toolbox for empirical
risk minimization for python, c++, and soon more,” preprint
arXiv:1912.08165, 2019.

[239] Y. Nesterov, “Inexact accelerated high-order proximal-point
methods,” CORE discussion paper, Tech. Rep., 2020.

[240] Y. Nesterov, “Inexact high-order proximal-point methods with
auxiliary search procedure,” CORE discussion paper, Tech. Rep.,
2020.

[241] J. Bolte, A. Daniilidis, and A. Lewis, “The lojasiewicz inequality
for nonsmooth subanalytic functions with applications to sub-
gradient dynamical systems,” SIAM Journal on Optimization,
vol. 17, no. 4, 2007, pp. 1205–1223.

Full text available at: http://dx.doi.org/10.1561/2400000036



References 241

[242] A. S. Nemirovsky and Y. Nesterov, “Optimal methods of smooth
convex minimization,” USSR Computational Mathematics and
Mathematical Physics, vol. 25, no. 2, 1985, pp. 21–30.

[243] Y. Nesterov, “Universal gradient methods for convex optimiza-
tion problems,” Mathematical Programming, vol. 152, no. 1-2,
2015, pp. 381–404.

[244] G. Li and T. K. Pong, “Calculus of the exponent of Kurdyka–
Łojasiewicz inequality and its applications to linear convergence
of first-order methods,” Foundations of computational mathe-
matics, vol. 18, no. 5, 2018, pp. 1199–1232.

[245] J.-S. Pang, “A posteriori error bounds for the linearly-constrained
variational inequality problem,” Mathematics of Operations Re-
search, vol. 12, no. 3, 1987, pp. 474–484.

[246] Z.-Q. Luo and P. Tseng, “On the linear convergence of de-
scent methods for convex essentially smooth minimization,”
SIAM Journal on Control and Optimization, vol. 30, no. 2, 1992,
pp. 408–425.

[247] P. Tseng, “Approximation accuracy, gradient methods, and er-
ror bound for structured convex optimization,” Mathematical
Programming, vol. 125, no. 2, 2010, pp. 263–295.

[248] Z. Zhou and A. M.-C. So, “A unified approach to error bounds
for structured convex optimization problems,” Mathematical
Programming, 2017, pp. 1–40.

[249] T. Kerdreux, A. d’Aspremont, and S. Pokutta, “Restarting
Frank-Wolfe,” in Proceedings of the 22nd International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), 2019.

[250] S. Lacoste-Julien and M. Jaggi, “On the global linear convergence
of Frank-Wolfe optimization variants,” in Advances in Neural
Information Processing Systems (NIPS), 2015.

[251] A. Cohen, W. Dahmen, and R. DeVore, “Compressed sensing
and best k-term approximation,” Journal of the AMS, vol. 22,
no. 1, 2009, pp. 211–231.

[252] M. Ito and M. Fukuda, “Nearly optimal first-order methods for
convex optimization under gradient norm measure: An adaptive
regularization approach,” Journal of Optimization Theory and
Applications, 2021, pp. 1–35.

Full text available at: http://dx.doi.org/10.1561/2400000036



242 References

[253] S. Lojasiewicz, “Une propriété topologique des sous-ensembles
analytiques réels,” Les équations aux dérivées partielles, 1963,
pp. 87–89.

[254] K. Kurdyka, “On gradients of functions definable in o-minimal
structures,” in Annales de l’institut Fourier, vol. 48, pp. 769–783,
1998.

[255] Z. Zhou, Q. Zhang, and A. M.-C. So, “L1, p-norm regulariza-
tion: Error bounds and convergence rate analysis of first-order
methods,” in Proceedings of the 32nd International Conference
on Machine Learning (ICML), 2015.

[256] D. Davis, D. Drusvyatskiy, and V. Charisopoulos, “Stochastic
algorithms with geometric step decay converge linearly on sharp
functions,” preprint arXiv:1907.09547, 2019.

[257] E. De Klerk, F. Glineur, and A. B. Taylor, “Worst-case conver-
gence analysis of inexact gradient and newton methods through
semidefinite programming performance estimation,” SIAM Jour-
nal on Optimization, vol. 30, no. 3, 2020, pp. 2053–2082.

[258] A. S. Nemirovsky and D. B. Yudin, “Information-based complex-
ity of mathematical programming (in Russian),” Izvestia AN
SSSR, Ser. Tekhnicheskaya Kibernetika (the journal is translated
to English as Engineering Cybernetics. Soviet J. Computer &
Systems Sci.), vol. 1, 1983.

[259] A. S. Nemirovsky, “Orth-method for smooth convex optimiza-
tion,” Izvestia AN SSSR, Transl.: Eng. Cybern. Soviet J. Comput.
Syst. Sci, vol. 2, 1982, pp. 937–947.

[260] G. Narkiss and M. Zibulevsky, Sequential subspace optimization
method for large-scale unconstrained problems. Technion-IIT,
Department of Electrical Engineering, 2005.

[261] S. Karimi and S. A. Vavasis, “A unified convergence bound
for conjugate gradient and accelerated gradient,” preprint
arXiv:1605.00320, 2016.

[262] J. Diakonikolas and L. Orecchia, “Conjugate gradients and ac-
celerated methods unified: The approximate duality gap view,”
preprint arXiv:1907.00289, 2019.

Full text available at: http://dx.doi.org/10.1561/2400000036



References 243

[263] A. Megretski and A. Rantzer, “System analysis via integral
quadratic constraints,” IEEE Transactions on Automatic Control,
vol. 42, no. 6, 1997, pp. 819–830.

[264] L. Vandenberghe and S. Boyd, “Applications of semidefinite
programming,” Applied Numerical Mathematics, vol. 29, no. 3,
1999, pp. 283–299.

[265] A. B. Taylor, J. M. Hendrickx, and F. Glineur, “Exact worst-
case convergence rates of the proximal gradient method for
composite convex minimization,” Journal of Optimization Theory
and Applications, vol. 178, no. 2, 2018, pp. 455–476.

[266] B. Hu, P. Seiler, and A. Rantzer, “A unified analysis of stochastic
optimization methods using jump system theory and quadratic
constraints,” in Proceedings of the 30th Conference on Learning
Theory (COLT), 2017.

[267] A. Taylor, B. Van Scoy, and L. Lessard, “Lyapunov functions for
first-order methods: Tight automated convergence guarantees,”
in Proceedings of the 35th International Conference on Machine
Learning (ICML), 2018.

[268] B. Hu, P. Seiler, and L. Lessard, “Analysis of biased stochas-
tic gradient descent using sequential semidefinite programs,”
Mathematical Programming, vol. 187, no. 1, 2021, pp. 383–408.

[269] E. K. Ryu and W. Yin, Large-Scale Convex Optimization via
Monotone Operators. 2020.

[270] C. Park and Ryu, “Optimal first-order algorithms as a function
of inequalities,” preprint arXiv:2110.11035, 2021.

[271] D. Gramlich, C. Ebenbauer, and C. W. Scherer, “Convex
synthesis of accelerated gradient algorithms for optimization
and saddle point problems using lyapunov functions,” preprint
arXiv:2006.09946, 2020.

[272] S. Safavi, B. Joshi, G. França, and J. Bento, “An explicit con-
vergence rate for nesterov’s method from sdp,” in IEEE Interna-
tional Symposium on Information Theory (ISIT), pp. 1560–1564,
2018.

Full text available at: http://dx.doi.org/10.1561/2400000036



244 References

[273] B. Hu, S. Wright, and L. Lessard, “Dissipativity theory for accel-
erating stochastic variance reduction: A unified analysis of SVRG
and katyusha using semidefinite programs,” in Proceedings of
the 35th International Conference on Machine Learning (ICML),
2018.

[274] Z. Shi and R. Liu, “Better worst-case complexity analysis of
the block coordinate descent method for large scale machine
learning,” in 16th IEEE International Conference on Machine
Learning and Applications (ICMLA), 2017.

[275] H. Abbaszadehpeivasti, E. de Klerk, and M. Zamani, “The exact
worst-case convergence rate of the gradient method with fixed
step lengths for L-smooth functions,” Optimization Letters, 2021.

[276] H. Abbaszadehpeivasti, E. de Klerk, and M. Zamani, “On the
rate of convergence of the difference-of-convex algorithm (DCA),”
reprint arXiv:2109.13566, 2021.
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