
Stochastic Optimization
Methods for Policy

Evaluation in Reinforcement
Learning

Full text available at: http://dx.doi.org/10.1561/2400000045

Other titles in Foundations and Trends® in Optimization

Atomic Decomposition via Polar Alignment: The Geometry of Structured
Optimization
Zhenan Fan, Halyun Jeong, Yifan Sun and Michael P. Friedlander
ISBN: 978-1-68083-742-1

Optimization Methods for Financial Index Tracking: From Theory to
Practice
Konstantinos Benidis, Yiyong Feng and Daniel P. Palomar
ISBN: 978-1-68083-464-2

The Many Faces of Degeneracy in Conic Optimization
Dmitriy Drusvyatskiy and Henry Wolkowicz
ISBN: 978-1-68083-390-4

Full text available at: http://dx.doi.org/10.1561/2400000045

Stochastic Optimization Methods
for Policy Evaluation in
Reinforcement Learning

Yi Zhou
University of Utah

Shaocong Ma
University of Utah

s.ma@utah.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2400000045

Foundations and Trends® in Optimization

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

Y. Zhou and S. Ma. Stochastic Optimization Methods for Policy Evaluation in
Reinforcement Learning. Foundations and Trends® in Optimization, vol. 6, no. 3,
pp. 145–192, 2024.

ISBN: 978-1-63828-371-3
© 2024 Y. Zhou and S. Ma

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2400000045

Part II

The Policy Evaluation
Problem and Value-Based

RL Algorthims

Full text available at: http://dx.doi.org/10.1561/2400000045

3
Introduction to The Policy Evaluation Problem

In this part, we introduce various RL algorithms that are developed
based on value functions of states and actions. These RL algorithms
aim to address the RL problem in the formulation I, and they are
based on classic theories on MDP and Bellman type equations [36], [37],
[39]. Specifically, we focus on the policy evaluation problem under the
formulation I, which aims to learn the state value function associated
with a given policy.

Recall that we have defined the state value function Vπ(s), which
corresponds to the expected total reward that one can obtain by starting
from state s and following policy π. This state value function plays a
fundamental role in RL, as both the formulations I and II are based on
it. In particular, one of the most fundamental question is the followng
policy evaluation problem.

Given a fixed policy π, how to evaluate its state value function Vπ?
We note that the above problem only aims to evaluate the value

function of a given policy, and it does not talk about how to improve
the policy. Nevertheless, as we show in later sections, policy evaluation
algorithms are widely exploited by many policy optimization algorithms.

18

Full text available at: http://dx.doi.org/10.1561/2400000045

19

There are many algorithms for solving the policy evaluation problem,
and they generally fall into two major categories that adopt different
settings. Specifically, the first class of algorithms consider the setting
where the transition kernel P of the environment is known and accessible,
and the algorithms are based on the Bellman type equations. Other
algorithms consider the complementary setting where the transition
kernel P of the environment is unknown, and these algorithms utilize
stochastic samples drawn from the MDP to iteratively learn the value
function. Next, we provide a comprehensive introduction to both classes
of policy evaluation algorithms.

Full text available at: http://dx.doi.org/10.1561/2400000045

4
Policy Evaluation with Known Transition Kernel

We first consider the scenario where the transition kernel P of the
underlying environment is known a priori. This usually requires a good
knowledge and modeling of the dynamic environment. In this case, by
definition of the state value function, we can rewrite it as follows.

Vπ(s) = E[r0 + γr1 + γ2r2 + · · · |s0 = s, π]
= E[r0 + γ(r1 + γr2 + · · ·)|s0 = s, π]
= E[r0 + γVπ(s1)|s0 = s, π]

=
∑
a,s′

P(s′|s, a)π(a|s)
(
r(s, a, s′) + γVπ(s′)

)
,

where the third equality uses the definition of state value function
starting at s1, and the last equality expands the expectation over the
randomness of a0, s1. Therefore, we obtain the following fundamental
so-called Bellman equation for state value functions.

(Bellman equation and Bellman operator):

Vπ(s) =
∑
a,s′

P(s′|s, a)π(a|s)
(
r(s, a, s′) + γVπ(s′)

) △= TπVπ(s).

For simplicity, we define the right hand side of the Bellman equation as
an operator Tπ applied to the state value function Vπ(s), and we call it

20

Full text available at: http://dx.doi.org/10.1561/2400000045

21

the Bellman operator. It can be seen that the state value function is
essentially a fixed point of the Bellman operator Tπ, and in fact it is
the unique fixed point. Moreover, the Bellman operator Tπ is a linear
operator that requires the knowledge of the transition kernel P. Based
on these observations, the following classic algorithms can be applied
to solve the above equation for the state value function.

• Solving the linear equation. Since the Bellman equation is a linear
equation, we can directly solve it by computing a proper inverse.
However, this requires high computation complexity;

• Value iteration. Viewing the Bellman equation as a fixed point
equation, we can apply iterative fixed point updates to compute
the value function. Specifically, starting with any V0(s), we update
it iteratively as

Vt+1(s) = TπVt(s), ∀s.

It can be shown that Tπ is a contraction operator and therefore
the above fixed point iterations converge to the true value function
at a linear convergence rate [30].

The above methods can effectively learn the state value function
given full knowledge of the transition kernel. However, in most cases, it is
not possible to have such full knowledge, nor do we have a perfect model
of the environment. This further motivates us to develop model-free
approaches for policy evaluation.

Full text available at: http://dx.doi.org/10.1561/2400000045

5
Model-Free Policy Evaluation Algorithms

In this section, we consider the complementary setting, in which we do
not assume access to the environment transition kernel P. Instead, we
let the RL agent interact with the environment and collect samples from
the MDP to learn the state value function. There are many model-free
algorithms developed for policy evaluation, and they can be categorized
into two categories based on the samples used: on-policy TD learning
algorithms and off-policy TD learning algorithms.

5.1 On-Policy TD Learning

We first consider the on-policy setting. To elaborate, let π be the policy
of which we want to evaluate the state value function Vπ. Since we do
not have any knowledge of the environment model, we follow the policy
π and interact with the environment to generate a trajectory of samples
queried from the MDP. Such a trajectory of samples is referred to as
the on-policy data, which means that the data is generated by following
the target policy π. We formally define it as follows.

Definition 5.1 (On-policy data). Let π be the target policy to be evalu-
ated. Then, the MDP samples {st, at, rt, st+1}∞

t=0 collected following π
is called on-policy data.

22

Full text available at: http://dx.doi.org/10.1561/2400000045

5.1. On-Policy TD Learning 23

We note that on-policy data must be collected under the target
policy π. In particular, these samples are usually not independent as
the transition of the states are based on the action generated by the
policy and the underlying transition kernel. As we discuss later, such
data dependence is a key challenge for analyzing the convergence of
model-free policy evaluation algorithms. Next, we introduce several
popular model-free algorithms for policy evaluation in the on-policy
setting.

5.1.1 On-Policy TD(0) Algorithm

Recall the following Bellman equation for the state value function.

Vπ(s) = E
[
r(s, a, s′) + γVπ(s′)

]
.

Note that the expectation involves the transition kernel, which we do
not have access to in the model-free setting. One simple idea is to
leverage the on-policy data to approximate the above expectation and
perform fixed point type updates. Specifically, suppose we start with
an initialized value function V . Then, for every on-policy data sample
(st, at, rt, st+1), we can use rt + γV (st+1) to approximate the above
expectation and perform the following update.

V (st) = rt + γV (st+1)︸ ︷︷ ︸
target

This makes sense because st+1 is a realization of the follow-up state of
st. We refer to the quantity rt + γV (st+1) as the ‘target’ for the current
state value V (st). The classic on-policy TD(0) algorithm is essentially a
damped version of the above update, as shown in the following equation,
where 0 < η < 1 is a learning rate hyperparameter.

TD(0): V (st) = ηV (st) + (1 − η)
(
rt + γV (st+1)

)
= V (st) + η

(
rt + γV (st+1) − V (st)

)︸ ︷︷ ︸
temporal difference (TD)

The update quantity rt +γV (st+1)−V (st) is referred to as the temporal
difference, i.e., the difference between the target rt + γV (st+1) and the
current estimate of the value function V (st).

Full text available at: http://dx.doi.org/10.1561/2400000045

24 Model-Free Policy Evaluation Algorithms

5.1.2 On-Policy TD(λ) Algorithm

The target rt + γV (st+1) used in TD(0) is based on one follow-up state
transition, which usually results in a high variance estimation. TD(λ)
[39] further improves the TD(0) algorithm by leveraging multi-step
state transitions to form the target. Specifically, consider the following
generalized n-step target

G
(n)
t := rt + γrt+1 + · · · + γn−1rt+n−1 + γnV (st+n).

It can be seen that G
(1)
t reduces to the target used in the TD(0)

algorithm. Then, in TD(λ), we use a linear combination of n-step targets
with geometric decaying coefficients to form the following Gλ

t -return,
which is used as the target in the temporal difference term.

TD(λ): V (st) = V (st) + η
(
Gλ

t − V (st)
)
, where Gλ

t = (1 − λ)
∞∑

n=1

λn−1G
(n)
t .

By leveraging the n-step targets over more state transition samples
queried from the on-policy data, TD(λ) can effectively reduce the
variance in its stochastic updates.

5.1.3 TD learning with Function Approximation

When we implement the aforementioned TD learning algorithms, we
need to keep a table V (·) for the state value function whose size equals
the cardinality |S| of the state space. This can be costly in both compu-
tation and storage aspects for many practical applications that have a
large or even infinite state space. To address this curse of dimensionality
issue, an effective and widely used technique is function approximation,
i.e., we can use proper parameterized models to track and approximate
the state value function. In particular, the following three types of
parameterized models are popular choices in both theory and practice.

• Linear model. We model the value of any state as a parameterized
linear function Vθ(s) = ϕ⊤

s θ, where θ is the model parameter (to
be learned) and ϕs is the feature vector associated with state
s (fixed and pre-specified). Normally, the feature vector ϕs is
designed either by domain knowledge or generated via certain

Full text available at: http://dx.doi.org/10.1561/2400000045

5.1. On-Policy TD Learning 25

distribution (Gaussian), and its dimensionality is much smaller
than that for encoding the original state s.

• Neural network model. Since the state value function can be
highly non-linear in the high dimensional state space, it is natural
and motivating to exploit the great expressive power of modern
neural networks (NN) to approximate it [35], [41]. Specifically,
the state value function is modeled as Vθ(s) = NNθ(s), where
NNθ denotes a general deep neural network with parameter θ. It
takes the (encoded) state s as the input and outputs a scalar that
approximates the corresponding state value.

• General non-linear model. In recent years, there have been mod-
eling approach beyond the constraints of linearity and neural
networks to encompass a broader class of functions [28], [45]. Here,
we define the state value function as Vθ(s) = fθ(s), where fθ

represents a general non-linear function parameterized by θ. This
structure considers the arbitrary smooth function approximation
and allows for greater flexibility in capturing complex relationships
within the state space, accommodating scenarios where neither
linear nor neural network models suffice.

When adopting function approximation, the updates of TD learn-
ing algorithms need to be adjusted. For example, consider the TD(0)
algorithm with function approximation. Suppose we start with an ini-
tialization θ0 of the model parameters for the state value function Vθ.
Then, in time t we observe an MDP sample (st, at, rt, st+1) and define
the target Gt := rt + γVθt(st+1). To update the model parameters, we
define the quadratic loss ℓt(θ) := 1

2
(
Vθ(st) −Gt

)2 and consider applying
gradient descent to optimize it. This leads to the following TD(0) update
rule under function approximation.

TD(0) with function approximation:
θt+1 = θt − ηgt(θt), where gt(θt) =

(
Vθ(st) −Gt

)
∇θVθ(st).

It can be seen that the updates take place in the model parameter space,
as opposed to the state space in the standard TD(0) algorithm. Moreover,
the temporal difference term in the update gt(θt) is multiplied by the

Full text available at: http://dx.doi.org/10.1561/2400000045

26 Model-Free Policy Evaluation Algorithms

gradient term ∇θVθ(st) to transform the update into the parameter
space.

5.1.4 Analysis of TD(0) with Linear Function Approximation

In this section, we sketch the convergence analysis of the TD(0) algo-
rithm with linear function approximation. Although TD(0) with linear
function approximation is a simple and basic algorithm that has been
widely used for policy evaluation, understanding their convergence be-
havior turns out to be highly non-trivial due to several major challenges.
First, the TD update term gt corresponds to the gradient of a time
varying loss function ℓt, and such a non-fixed objective function makes
it hard to apply the standard analysis of gradient descent algorithm.
Second, unlike conventional stochastic optimization algorithms that use
i.i.d. samples to compute the stochastic updates, TD(0) uses highly
dependent samples queried from the underlying MDP, which cause ad-
ditional statistical bias that needs to be quantified in the convergence
analysis.

Summary of existing work. The asymptotic convergence of TD(0) has
been extensively studied in earlier works by Benveniste et al. [3], Borkar
[5], Tadić [40], and Tsitsiklis et al. [42]. In these studies, TD(0) was
shown to asymptotically converge to the true state value function, but no
convergence rate was established. Recently, the non-asymptotic (finite-
time) convergence of TD(0) was established in Dalal et al. [12] with i.i.d.
samples, and in Bhandari et al. [4] and Srikant et al. [34] with dependent
Markovian samples queried from the MDP. In the following discussion,
we sketch the key technical proof of non-asymptotic convergence of
TD(0) with dependent Markovian samples developed in Bhandari et al.
[4].

Throughout, we consider the following variant of TD(0) with the
linear function approximation model Vθ(s) := ϕ⊤

s θ in a finite state space
S. Here, the operator ΠR is a projection operator onto the Euclidean
ball with radius R > 0, which is to guarantee boundedness of model
parameters in the learning process.

Full text available at: http://dx.doi.org/10.1561/2400000045

5.1. On-Policy TD Learning 27

θt+1 = ΠR

(
θt + ηgt(θt)

)
,

where gt(θt) = (rt + γϕ⊤
st+1θt − ϕ⊤

st
θt)ϕst

As we elaborated before, one of the major challenge in the analysis
is how to deal with the dependent samples queried from the MDP.
To address this challenge, Bhandari et al. [4] considered the following
geometric mixing property of the Markov chain associated with the
underlying MDP.

Assumption 5.1 (Geometric mixing). Denote µπ as the state stationary
distribution associated with the MDP under the target policy π. Then,
there exists κ > 0 and ρ ∈ (0, 1) such that for all t ≥ 0,

sup
s∈S

dTV
(
P(st ∈ ·|s0 = s), µπ

)
≤ κρt,

where dTV(P,Q) denotes the total-variation distance between the prob-
ability measures P and Q.

To explain, note that P(st ∈ ·|s0 = s) denotes the distribution of
state st conditioning on the initial state s0, whereas µπ is the state
stationary distribution under the target policy π. Therefore, the above
property assumes that the state distribution in the future t time steps
converges to the state stationary distribution at a geometric rate, i.e.,
the more we look ahead, the closer we are to the state stationary
distribution. In particular, such an assumption has been shown to hold
for all irreducible and aperiodic Markov chains, which is the case for
many RL scenarios.

To proceed, assume we have in total n distinct states and define the
feature matrix Φ := [ϕ⊤

s1 ; . . . ;ϕ⊤
sn

] where ϕs ∈ Rd corresponds to the
feature vector associated with state s. We assume that all the column
feature vectors are independent, i.e., Φ has full column rank. Then, the
entire value table can be written as Vθ := [Vθ(s1); . . . ;Vθ(sn)] = Φθ,
which is a linear model. It has been shown in Bhandari et al. [4] that
TD(0) with linear function approximation converges to the optimal
model parameter θ∗ that satisfies the following projected Bellman equa-
tion.

Vθ∗ = ΠLTπVθ∗ , where L := {Φx|x ∈ Rd}.

We first state the main theorem on the finite-time convergence rate.

Full text available at: http://dx.doi.org/10.1561/2400000045

28 Model-Free Policy Evaluation Algorithms

Theorem 5.1 (Finite-time convergence, [4]). Suppose Assumption 5.1
hold and choose learning rate η ≤ O(1

1−γ) for TD(0) with linear function
approximation. Then, after T iterations, it holds that

E
[
∥θT − θ∗∥2] ≤ O

(
exp(−cηT)∥θ0 − θ∗∥2 + η

τmix(η)
1 − γ

)
,

where c > 0 is a universal constant and τmix(η) := min{t | κρt ≤ η} is
the mixing time of Markov chain.

The above theorem shows that with a constant learning rate, TD(0)
with linear function approximation converges to a small neighborhood of
the optimal model parameter θ∗ at a linear convergence rate. Specifically,
the radius of the neighborhood is proportional to the choice of learning
rate η and the mixing time τmix(η) of the Markov chain. In particular,
a larger learning rate η would imply a faster linear convergence factor
exp(−cηT), but will lead to a larger convergence error η τmix(η)

1−γ . Moreover,
the mixing time τmix(η) characterizes how fast the state distribution
P(st ∈ ·|s0 = s) converges to the stationary distribution µπ and affects
the convergence error. In the extreme case where the samples are i.i.d.
generated from µπ (i.e., the mixing time is zero), the convergence error
vanishes and we can achieve exact convergence.

Proof Sketch. Here, we provide a sketch of the proof to illustrate
the key technical steps. Recall the TD(0) update with linear function
approximation: θt+1 = ΠR

(
θt + ηgt(θt)

)
, where the TD update gt(·)

depends on the sample Ot = {st, at, rt, st+1} queried from the underlying
MDP. Then, we define the expected update g(θ) := E[gt(θ)], where E is
taken over the randomness of the sample Ot ∼ µπ. By the update rule
of TD(0) and following some standard analysis steps, we can establish
the following key inequality.

E
[
∥θt+1 − θ∗∥2] ≤ E

[
∥θt − θ∗∥2]− 2η(1 − γ)E

[
∥Vθt − Vθ∗∥2

D

]
(5.1)

+ η E
[
⟨gt(θt) − ḡ(θt), θt − θ∗⟩︸ ︷︷ ︸

Bias ζ(θt,Ot)

]
+ O(η2), (5.2)

where ∥ · ∥D is a norm defined via a certain positive definite matrix
D, and it can be shown that E

[
∥Vθt − Vθ∗∥2

D

]
≥ σ∥θt − θ∗∥2 for some

Full text available at: http://dx.doi.org/10.1561/2400000045

5.1. On-Policy TD Learning 29

σ > 0. Therefore, in order to unroll the above inequality over t and
establish the final convergence result, the key is to bound the bias term
ζ(θt, Ot) := E

[
⟨gt(θt) − ḡ(θt), θt − θ∗⟩

]
. To elaborate, if the sample Ot is

sampled from the state stationary distribution µπ independently, then
we have P(Ot|θt) = P(Ot) = µπ and therefore E[gt(θt)|θt] = g(θt), which
implies that the bias term ζ(θt, Ot) = 0. However, in an MDP, the
sample Ot is actually correlated with the previous samples {Ok}t−1

k=0 and
therefore P(Ot|θt) ̸= P(Ot) (note that θt is generated by using previous
samples).

To bound the bias term ζ(θt, Ot) with dependent samples, Bhandari
et al. [4] introduced the following de-correlation technique. To elaborate,
we first rewrite the bias term as the following summation series.

ζ(θt, Ot) = ζ(θt−τ , Ot) +
t−1∑

i=t−τ

(
ζ(θi+1, Ot) − ζ(θi, Ot)

)
.

In particular, by using the update rule, the last summation term∑t−1
i=t−τ

(
ζ(θi+1, Ot) − ζ(θi, Ot)

)
can be upper bounded by G2ητ for

some G > 0, and this bound can be controlled by choosing a proper
learning rate η > 0 and hyperparameter τ > 0. On the other hand,
the other bias term ζ(θt−τ , Ot) now involves θt−τ , which depends on
the samples that are observed before time t− τ − 1. By the geometric
mixing property of the Markov chain, the correlation between these old
samples and the sample Ot diminishes geometrically with regard to τ ,
and therefore the bias term can be effectively bounded as follows.

E[ζ(θt−τ , Ot)] ≤ 2∥ζ∥∞ sup
s
dT V

(
P(st|st−τ = s), µ

)
≤ 4G2κρτ .

Substituting the above two inequalities into (5.2) and rearranging terms,
we can obtain a recursion on E

[
∥θt −θ∗∥2], which derives the final finite-

time convergence rate via elementary calculation.

5.1.5 Connection to Linear Stochastic Approximation

Under linear function approximation, the TD(0) algorithm has a close
connection to the classic linear stochastic approximation (SA) algorithm.
To explain, the classic linear SA algorithm takes the following update

Full text available at: http://dx.doi.org/10.1561/2400000045

30 Model-Free Policy Evaluation Algorithms

(Linear SA): θt+1 = θt + η
(
A(Ot)θt + b(Ot)

)
,

where A(Ot) is a matrix and b(Ot) is a vector, both of which depend on
a certain observation Ot from an underlying Markov chain. Then, the
TD(0) algorithm with linear function approximation can be rewritten
as the linear SA update by defining the following quantities.

Ot = (st, st+1)⊤

A(Ot) = −ϕst

(
ϕ⊤

st
− γϕ⊤

st+1

)
b(Ot) = rtϕst

Therefore, the TD(0) algorithm with linear function approximation
is a special case of the linear SA algorithm with Markovian samples,
whose convergence has been established using Lyapunov-type analysis
in Srikant et al. [33].

5.1.6 Variance-Reduced TD Learning

The variance-reduced TD learning is a variant of TD(0), addressing the
high variance issue inherent in standard TD learning methods. This
approach leverages techniques for variance reduction from SVRG [16],
resulting in more stable and efficient learning algorithms. Based on the
standard TD(0), the variance-reduced TD learning uses past information
to estimate the “full gradient” to reduce the variance as described as
follows: At the begining of each epoch m, the VRTD algorithm evaluates
the pseudo-gradient of a large batch data to estimate such “full gradient”.
Then for each iteration, it ultilizes the batch peudo-gradient to reduce
the variance of each stochastic gradient as

θm,t+1 = θm,t + α
(
gxjm,t

(θm,t) − gxjm,t

(
θ̃m−1

)
+ gm

(
θ̃m−1

))
(5.3)

Here, gx(θ) := Axθ + bx is the standard semi-gradient of TD-learning,
gm

(
θ̃m−1

)
= 1

M

∑
xi∈Bm

gxi

(
θ̃m−1

)
is the estimation of the “full gradi-

ent” using trajectory averaging, M and α are the batch size and the
learning rate, respectively.

Summary of existing work. The convergence analysis of variance-
reduced TD learning has been actively explored in Korda et al. [19],

Full text available at: http://dx.doi.org/10.1561/2400000045

5.1. On-Policy TD Learning 31

Mustafin et al. [29], and Xu et al. [47]. More explicitly, Xu et al. [47]
provided a detailed analysis of the non-asymptotic convergence of a
variance-reduced TD algorithm, establishing its superiority over tradi-
tional TD in terms of convergence rate and error reduction. It is worthy
mention that as pointed out by Mustafin et al. [29], without apply-
ing the variance reduction techniques, the standard TD learning may
achieve the sub-optimal convergence rate, and applying the variance
reduction technqiue will fill this gap and achieve the minimax optimal
dependence on the factor 1

1−γ . In the following discussion, we sketch the
key technical proof of non-asymptotic convergence of VRTD with i.i.d.
samples developed in Xu et al. [47]. To be adapted to the linear approx-
imation setting, the VRTD algorithm makes the following additional
assumptions compared to the convergence analysis of TD-learning:

Assumption 5.2 (Bounded feature). ∥ϕs∥ ≤ 1 for all s ∈ S.

Assumption 5.3 (Non-singularity). The following matrix is non-singular

A := Eµb,πb
[ρs,a(γϕsϕ

⊤
s′ − ϕsϕ

⊤
s)].

Assumption 5.2 is sufficiently mild since all bounded features can
be normalized to 1. Assumption 5.3 ensures that the optimal parameter
θ∗ = −A−1b exists and is unique. For convenience, in the convergence
analysis of VRTD, we assume the data sample (s, a) are directly sampled
from the distribution µπ instead of following a stochastic process; the
main idea of VRTD algorithm is the same. Here, we re-state its main
theorem:

Theorem 5.2. Consider the VRTD algorithm in (5.3). Suppose Assump-
tions 5.2 and Assumption 5.3 hold. If the learning rate α < λA

8(1+γ)2 and

the batch size M > 4(1+γ)2α2+1
α[λA−8α(1+γ)2] , then for all m ∈ N,

E
[∥∥∥θ̃m − θ∗

∥∥∥2
]

≤ Cm
1

∥∥∥θ̃0 − θ∗
∥∥∥2

+ O(α/M),

where C1 :=
(
4α(1 + γ)2 + 4(1+γ)2α2+1

αM

)
1

λA−4α(1+γ)2 (with C1 < 1 by
appropriately choosing α and M).

Full text available at: http://dx.doi.org/10.1561/2400000045

32 Model-Free Policy Evaluation Algorithms

This convergence upper bound demonstrates that, with a judiciously
chosen learning rate α and batch size M , the VRTD algorithm linearly
converges to a neighborhood of the optimal parameters, with an error
order of O(α

M). Traditional convergence analysis of TD-learning, such
as that in Bhandari et al. [4], presents an error term of O(α), indicating
the necessity for a small learning rate to ensure convergence to a
desired approximation of the optimal parameters. In contrast, the
VRTD algorithm permits the use of a constant-level learning rate. By
choosing a sufficiently large batch size M , the algorithm can achieve
high-accuracy solutions without the need to diminish the learning rate.

Proof Sketch. We briefly introduce the main steps of proving this
theorem. Since the variance-reduction algorithm mainly focuses on the
gap between the optimal parameter θ∗ and the epoch-wise parameter
m, our first step is to bound the iteration within the m-th epoch. By
considering the decomposition of the last update (i.e. the M -th iteration
in the epoch), we have

∥θm,M − θ∗∥2 =∥θm,M−1 + α(gxjm,M
(θm,M−1) − gxjm,M

(θ̃m−1) + gm(θ̃m−1))

− θ∗∥2

=∥θm,M−1 − θ∗∥2 + 2α(θm,M−1 − θ∗)⊤(gxjm,M
(θm,M−1)

− gxjm,M
(θ̃m−1) + gm(θ̃m−1))

+ α2∥gxjm,M
(θm,M−1) − gxjm,M

(θ̃m−1) + gm(θ̃m−1)∥2.

(5.4)

Since we target to solve the recursion for the inner loop iteration over
M , we aim to bound everything in the form of either ∥θm,M−1 − θ∗∥2 or
∥θ̃m−θ∗∥2. The inner product term contributes to the linear convergence
as

(θm,M−1 − θ∗)⊤
(
gxjm,M

(θm,M−1) − gxjm,M

(
θ̃m−1

)
+ gm

(
θ̃m−1

))
≤ − λA∥θm,M−1 − θ∗∥2 (5.5)

due the the negative definite of the matrix AT + A which largest
eigenvalue is denoted as λA. The last term introduces the variance error:

Full text available at: http://dx.doi.org/10.1561/2400000045

5.1. On-Policy TD Learning 33

E
[∥∥gxjm,M (θm,M−1) − gxjm,M

(
θ̃m−1

)
+ gm

(
θ̃m−1

)∥∥2 | Fm,M−1

]
≤ 4(1 + γ)2E

[
∥θm,M−1 − θ∗∥2

2 | Fm,M−1
]

+ 4(1 + γ)2E
[∥∥θ̃m−1 − θ∗∥∥2

2
| Fm,M−1

]
+ 2E

[∥∥gm

(
θ̃m−1

)
− g
(
θ̃m−1

)∥∥2
2

| Fm,M−1

]
. (5.6)

Summarizing them together and solving the iteration, we get

E
[∥∥θ̃m − θ∗∥∥2

2
| Fm,0

]
≤1/M + 4α2(1 + γ)2

αλA − 4α2(1 + γ)2

∥∥θ̃m−1 − θ∗∥∥2
2

+ 2α

λA − 4α(1 + γ)2 E
[∥∥gm

(
θ̃m−1

)
− g
(
θ̃m−1

)∥∥2
2

| Fm,0

]
.

(5.7)

The last term represents the variance error. It can be bounded as

E
[∥∥∥gm

(
θ̃m−1

)
− g

(
θ̃m−1

)∥∥∥2

2
| Fm,0

]
≤ 1
M

(
D1∥θ̃m−1 − θ∗∥2 +D2

)
,

(5.8)

where D1 = 2(1 + γ)2 and D2 = 4
(
(1 + γ)2R2

θ + r2
max

)
. The term dif-

ferentiate the VRTD algorithm from the standard TD-learning analysis.
Here, the variance error decreases as the batch size M increases. For
M = 1, this analysis reduces to the standard TD-learning algorithm
and have a constant variance. Solving the iteration over m leads to the
final bound

E
[∥∥∥θ̃m − θ∗

∥∥∥2

2

]
≤ Cm

1

∥∥∥θ̃0 − θ∗
∥∥∥2

2
+ 2D2α

(1 − C1) (λA − 4α(1 + γ)2)M .

(5.9)

As highlighted in Mustafin et al. [29], the proof presented in Xu et
al. [47] deviates from the traditional convex optimization framework,
specifically regarding the convergence upper bound. The convergence
upper bound should linearly depend on the condition number of the
problem and SVRG algorithm should inherit this property. The derived
complexity from the previous theorem gives Õ(1

λ2
Aϵ

), does not match
the optimal dependence Õ(1

λAϵ). This discrepancy has been addressed
with an improved technique developed in Mustafin et al. [29].

Full text available at: http://dx.doi.org/10.1561/2400000045

34 Model-Free Policy Evaluation Algorithms

5.2 Off-Policy TD Learning

In on-policy TD learning, the algorithm leverages the samples queried
by following the target policy π. However, this usually requires imple-
menting the target policy and interacting with the environment for a
long episode, which can be time-consuming and unrealistic in many
cases. In this section, we consider a complementary setting, i.e., the
off-policy setting, where we have access to the MDP samples generated
by following a certain fixed behavior policy πb. We formally define it as
follows.

Definition 5.2 (Off-policy data). Let πb be a behavior policy, which is
in general different from the target policy π. Then, the MDP samples
{st, at, rt, st+1}∞

t=0 collected following πb is called off-policy data.

We note that off-policy data is collected under the behavior policy
πb, and therefore the data distribution is different from that collected
under the target policy π. Hence, in the algorithm design for off-policy
TD learning, we must adjust the data distribution so that the learned
value function is associated with the target policy. On the other hand,
one may propose to apply the TD(0) with linear function approximation
to off-policy evaluation. However, it has been shown that there exists
simple examples for which this algorithm diverges in the off-policy
setting [2]. To summarize, special TD learning algorithms need to be
designed in the off-policy setting.

5.2.1 Gradient TD Framework for Off-Policy Evaluation

The gradient TD framework is a foundation for developing several
advanced TD learning algorithms for off-policy evaluation [37]. Consider
linear function approximation of the form Vθ(s) = ϕ⊤

s θ and recall that
the optimal θ∗ satisfies the projected Bellman equation Vθ∗ = ΠLTπVθ∗ .
Then, it is natural to measure the quality of a parameter θ in state
s based on the square error (Vθ − ΠLTπVθ)2. In the off-policy setting,
since the MDP data is collected following the behavior policy πb, the
states that we visit follow the state stationary distribution µb associated
with πb. Therefore, we can only evaluate the square error over the

Full text available at: http://dx.doi.org/10.1561/2400000045

5.2. Off-Policy TD Learning 35

state stationary distribution µb, and this motivates us to consider the
following mean-square projected Bellman error (MSPBE) [37].

(MSPBE): J(θ) := Es∼µb

[
Vθ(s) − ΠLTπVθ(s)

]2
.

Since the above objective function takes a quadratic form, it is natural
to consider applying gradient descent algorithms to optimize it over θ.
Specifically, define the TD error term δt(θ) := rt + γϕ⊤

st+1θ − ϕ⊤
st
θ, then

the above MSPBE can be rewritten as

J(θ) = Eµb,π[δt(θ)ϕst]⊤Eµb
[ϕstϕ

⊤
st

]−1Eµb,π[δt(θ)ϕst],

where Eµb
is taken over st ∼ µb and Eπ is taken over the distribution

of the next state st+1, which depends on st, π(at|st) and P(st+1|at, st).
However, the expectation Eµb,π is hard to approximate using samples,
because µb is induced by the behavior policy πb while π is the target
policy that we do not implement. In order to approximate these expec-
tations using the off-policy data, we first rewrite the expectation into
the following weighted sampling form.

(Importance sampling): Eµb,π[δt(θ)ϕst] = Eµb,πb

[π(at|st)
πb(at|st)

δt(θ)ϕst

]
,

where we define the ratio ρt = π(at|st)
πb(at|st) as the importance sampling

ratio, which can be computed before hand given both policies π and πb.
In view of the importance sampling form, the expectation Eµb,πb

now
involves only the behavior policy and therefore can be estimated using
the off-policy data (collected under the behavior policy). Then, we can
compute the gradient of the MSPBE as follows, where the expectation
is taken over µb and πb.

−1
2∇J(θ) = E

[
ρt(ϕst − γϕst+1)ϕ⊤

st

]
E
[
ϕstϕ

⊤
st

]−1E[ρtδt(θ)ϕst]. (5.10)

To apply gradient descent, we need to estimate the expectation terms
involved in the above gradient formula. However, as those expectation
terms take a product form, using a single set of samples to estimate all
of them will lead to a large bias. On the other hand, querying multiple
independent sets of samples is usually unrealistic. In the following two
subsections, we will introduce advanced two-timescale algorithm designs
that allow us to accurately track the product of expectations using a
single trajectory of off-policy data.

Full text available at: http://dx.doi.org/10.1561/2400000045

36 Model-Free Policy Evaluation Algorithms

5.2.2 GTD2 Algorithm for Off-Policy Evaluation

The GTD2 algorithm, first developed in Sutton et al. [37], [38], leverages
a two-timescale update design to decouple and estimate the product of
expectations involved in the gradient formula in (5.10). More specifically,
the main idea is to view the product of the last two expectations in
(5.10) as an auxiliary variable, i.e., ω∗(θ) := E

[
ϕstϕ

⊤
st

]−1E[ρtδt(θ)ϕst].
Then, the gradient of the MSPBE can be rewritten as

−1
2∇J(θ) = E

[
ρt(ϕst − γϕst+1)ϕ⊤

st

]
ω∗(θ). (5.11)

Interestingly, the auxiliary variable ω∗(θ) turns out to be the solution
of the following special least-mean-square (LMS) problem.

(LMS): ω∗(θ) = argminu E
[
ϕ⊤

st
u− ρtδt(θ)

]2
. (5.12)

Therefore, to estimate the expectation term in (5.11), we can use
off-policy data samples to approximate it. Moreover, to estimate the
auxiliary variable ω∗(θ) in (5.11), we can apply online stochastic gra-
dient descent (SGD) to solve the LMS problem in (5.12) to obtain an
approximated solution. This constitutes to the following two-timescale
updates of the GTD2 algorithm.

(GTD2): θt+1 = θt + αtρt(ϕst − γϕst+1)ϕ⊤
st
ωt,

ωt+1 = ωt + βt(ρtδt(θt)ϕst − ϕstϕ
⊤
st
ωt).

To explain, in the first update, the term ρt(ϕst −γϕst+1)ϕ⊤
st

approximates
the expectation term E

[
ρt(ϕst − γϕst+1)ϕ⊤

st

]
in (5.11). Moreover, the

second update corresponds to an online SGD update that solves the
LMS problem. We also note that αt, βt > 0 are learning rates, and
usually we set βt > αt so that the second timescale update adapts faster
than the first timescale update. Intuitively, this is because ωt tracks
ω∗(θt) while θt keeps being updated.

5.2.3 TDC Algorithm for Off-Policy Evaluation

The TDC algorithm also adopts two-timescale updates and is similar to
the GTD2 algorithm, but it decouples the gradient formula in (5.10) in

Full text available at: http://dx.doi.org/10.1561/2400000045

5.2. Off-Policy TD Learning 37

a slightly different way. Specifically, from the gradient formula in (5.11)
we obtain that

−1
2∇J(θ) = E

[
ρt(ϕst − γϕst+1)ϕ⊤

st

]
ω∗(θ)

= E
[
ρtδt(θ)ϕst

]
− γE

[
ρtϕst+1ϕ

⊤
st

]
ω∗(θ),

where the second equality leverages the definition of ω∗(θ). The above
gradient formula also decouples the product of expectations. Therefore,
we can use off-policy samples to estimate the two expectations and then
use online SGD to track ω∗(θ) as we did in GTD2. This leads to the
following two-timescale TDC updates.

(TDC): θt+1 = θt + αtρt(δt(θt)ϕst − γϕst+1ϕ
⊤
st
ωt),

ωt+1 = ωt + βt(ρtδt(θt)ϕst − ϕstϕ
⊤
st
ωt).

It can be seen that both GTD2 and TDC use the same second timescale
update to track the ω∗(θ).

5.2.4 Analysis of TDC with Linear Function Approximation

To help understand the convergence behavior of two-timescale TD learn-
ing algorithms for off-policy evaluation, we provide a sketch of the
finite-time convergence analysis of TDC with linear function approxi-
mation. In particular, we consider the following variant of TDC, which
adopts two additional projection operations to avoid divergence of the
parameters.

θt+1 = ΠRθ

(
θt + αtρt(δt(θt)ϕst − γϕst+1ϕ

⊤
st
ωt)
)
,

ωt+1 = ΠRω

(
ωt + βt(ρtδt(θt)ϕst − ϕstϕ

⊤
st
ωt)
)
.

Here, Rθ, Rω > 0 are the radius of Euclidean balls. There are two major
challenges in the analysis. The first challenge is that the off-policy data
samples are correlated with each other, as they are queried from the
MDP induced by the behavior policy πb. The second challenge is that
the TDC has two updates that are intertwined with each other.
Summary of existing work. Two time-scale policy evaluation al-
gorithms such as TDC and GTD2 were first introduced in Sutton et
al. [37], [38], where the asymptotic convergence of both algorithms
with i.i.d. samples were established. Their non-asymptotic convergence

Full text available at: http://dx.doi.org/10.1561/2400000045

38 Model-Free Policy Evaluation Algorithms

rates were established in Dalal et al. [11] as special cases of a two
time-scale linear stochastic approximation (SA) algorithm. Recently,
the non-asymptotic convergence analysis of TDC and two-time scale
linear SA over Makovian samples were established in Xu et al. [48] and
Kaledin et al. [17], respectively.

The finite-time analysis of TDC in the off-policy setting is based on
the following two key assumptions.

Assumption 5.4 (Geometric mixing). Denote µb as the state stationary
distribution associated with the MDP under the behavior policy πb.
Then, there exists κ > 0 and ρ ∈ (0, 1) such that for all t ≥ 0,

sup
s∈S

dTV
(
P(st ∈ ·|s0 = s), µb

)
≤ κρt,

where dTV(P,Q) denotes the total-variation distance between the prob-
ability measures P and Q.

Assumption 5.5 (Non-singularity). The following matrices are non-
singular

A := Eµb,πb
[ρs,a(γϕsϕ

⊤
s′ − ϕsϕ

⊤
s)], C := −Eµb

[ϕsϕ
⊤
s].

These assumptions are critical for ensuring the convergence of TDC
in the off-policy setting. As introduced in the previous section (Assump-
tion 5.1) The geometric mixing assumption gives that P(st ∈ ·|s0 = s),
the distribution of state st conditioning on the initial state s0, converges
to the stationary distribution µπ at a geometric rate. The non-singularity
assumption guarantees that the optimal parameter θ∗ = −A−1b for
b = Eµb,πb

[ρs, ar(s, a, s′)ϕs] is well-defined and all feature vectors are
linearly independent.

Under these assumptions, it has been shown in Xu et al. [48] and
Kaledin et al. [17] that TDC with linear function approximation exhibits
a finite-time convergence behavior in the off-policy setting. We re-state
the main theorem as follows:

Theorem 5.3 (Finite-time convergence of TDC, [48]). Suppose Assump-
tion 5.4 and Assumption 5.5 hold and choose diminishing learning rate
αt = cα

(1+t)σ and βt = cβ

(1+t)ν with 0 < ν < σ < 1 for some constant cα

Full text available at: http://dx.doi.org/10.1561/2400000045

5.2. Off-Policy TD Learning 39

and cβ. Let ϵ and ϵ′ be sufficiently small. Then, after T iterations, it
holds that

E ∥θt − θ∗∥2
2 ≤ O

(
e

−|λθ|cα
1−σ (t1−σ−1)

)
+ O

(
log t
tσ

)
+ O

(
log t
tν

+ h(σ, ν)
)1−ϵ′

E ∥zt∥2
2 ≤ O

(
log t
tν

)
+ O(h(σ, ν))

where h(σ, ν) =
{

1
tν , σ > 1.5ν

1
t2(σ−ν)−ϵ , ν < σ ≤ 1.5ν . Moreover, if 0 < ν < σ =

1, there exists cα and cβ such that

E ∥θt − θ∗∥2
2 ≤ O

(
(log t)2

t

)
+ O

(log t
tν

+ h(1, ν)
)1−ϵ′

This theorem demonstrates that the two time-scale TDC algorithm
with diminishing stepsizes converges to the optimal parameter θ∗ at a
rate depending on the choices of σ, ν for the two-time scale learning
rates. The convergence rate is influenced by the tracking error zt, which
is a unique aspect of two time-scale algorithms. The terms in the bounds
reflect the balance between the convergence rate and the accumulated
error due to the diminishing stepsizes. In particular, the tracking error
term h(σ, ν) captures how closely wt follows the stationary point ψ(θt) =
−C−1(b+Aθt) at each step.

Proof Sketch. In this proof sketch, we outline the key technical steps
to demonstrate the convergence of the two time-scale TDC algorithm.
Instead of directly analyzing the convergence of {θt} and {wt}, we
incorporate the tracking error zt into the TDC updates and reformulate
the analysis in terms of {θt} and the tracking error {zt} as shown as
follows:
θt+1 = ΠRθ (θt + αt (f1 (θt, Ot) + g1 (zt, Ot))) ,

zt+1 = ΠRw

(
zt + βt (f2 (θt, Ot) + g2 (zt, Ot)) − C−1 (b + Aθt)

)
+ C−1 (b + Aθt+1) ,

where

f1 (θt, Ot) =
(
At −BtC

−1A
)
θt +

(
bt −BtC

−1b
)
,g1 (zt, Ot) = Btzt

f2 (θt, Ot) =
(
At − CtC

−1A
)
θt +

(
bt − CtC

−1b
)
,g2 (zt, Ot) = Ctzt

withe the observation at t-th time step Ot = (sa, at, rt, st+1).

Full text available at: http://dx.doi.org/10.1561/2400000045

40 Model-Free Policy Evaluation Algorithms

Then we derive preliminary bound on E∥zt∥2
2. We decompose the

mean square tracking error E∥zt∥2
2 into several components: an expo-

nentially decaying term, a variance term, a bias term, and a slow drift
term. Each of these components is then individually bounded, leading
to a preliminary upper bound on E∥zt∥2

2 of the order O(1/tσ−ν).
To obtain a tighter bound, Xu et al. [48] recursively substituting

the preliminary bound of E∥zt∥2
2 into its own expression, particularly

focusing on the slow drift term, refine the decay rate to E∥zt∥2
2 =

O(h(σ, ν)) as shown in the following bound:

E ∥zt∥2
2 ≤ O

(log t
tν

)
+ O(h(σ, ν)),

where h(σ, ν) =
{

1
tν , σ > 1.5ν

1
t2(σ−ν)−ϵ . ν < σ ≤ 1.5ν for any sufficiently small

constant ϵ ∈ (0, σ − ν].
Lastly, we can derive the final bound on E∥θt − θ∗∥2

2. The training
error E∥θt −θ∗∥2

2 is decomposed into similar components as the tracking
error: an exponentially decaying term, a variance term, a bias term, and
a tracking error term. Each term is individually bounded. The decay
rate of E∥zt∥2

2 and E∥θt − θ∗∥2
2 are then recursively substituted into the

expression for the tracking error term. This process yields an upper
bound on the training error of the order O(h(σ, ν)1−ϵ′). By combining
each of these terms, we obtain the final bound for E∥θt − θ∗∥2

2 as stated
in Theorem 5.3.

5.2.5 Mini-Batch and Variance-Reduced TDC

We further introduce two popular variants of the TDC algorithm with
linear function approximation. The first variant is the mini-batch TDC
algorithm analyzed in Xu et al. [46]. Different from the standard TDC,
mini-batch TDC uses a batch of M off-policy samples queried from
the MDP to generate one update in each iteration, as shown in the
following update rule.

Full text available at: http://dx.doi.org/10.1561/2400000045

5.2. Off-Policy TD Learning 41

(Mini-batch TDC):

θt+1 = θt + αt

M

(t+1)M−1∑
i=tM

ρi(δi(θt)ϕsi − γϕsi+1ϕ
⊤
si
ωt),

ωt+1 = ωt + βt

M

(t+1)M−1∑
i=tM

(ρiδi(θt)ϕsi − ϕsiϕ
⊤
si
ωt).

The mini-batch updates help substantially reduce the variance of the
updates and therefore larger learning rates can be used. Moreover, in the
analysis of its convergence, we do not need to add the extra projection
steps as adopted in the standard TDC.

The second variant of the TDC algorithm with linear function
approximation is the variance-reduced TDC (VRTDC) [27]. As used in
the analysis of TDC, for the t-th sample xt = (st, at, rt, st+1) and the
behavior policy πb, we define the following shortcut notations:

At := ρ(st, at)ϕ(st)(γϕ(st+1) − ϕ(st))⊤, bt := rtρ(st, at)ϕ(st), (5.13)
Bt := −γρ(st, at)ϕ(st+1)ϕ(st)⊤, Ct := −ϕ(st)ϕ(st)⊤,

where ρ(s, a) := π(a|s)
πb(a|s) is the importance sampling ratio. The VRTDC

algorithm iterates through m outer-loops, each involving M inner-loops.
In each m-th outer-loop, initial parameters θ(m)

0 , w
(m)
0 are updated from

θ̃(m−1), w̃(m−1). After querying M independent samples, batch pseudo-
gradients G̃(m), H̃(m) are computed for inner-loop updates using the
SVRG scheme. The final parameters θ̃(m), w̃(m) for each loop are the
averaged parameters from the inner-loops. Projections are applied in
updates to maintain parameters within predefined bounds, ensuring
stability and convergence. We note that the projection operators are
widely used in the literature, e.g., Bhandari et al. [4], Bubeck [9], Dalal
et al. [11], [12], Kushner [21], Lacoste-Julien et al. [22], Xu et al. [48], and
Zou et al. [49]. Throughout this section, we assume the radius Rθ, Rw

of the projected Euclidean balls satisfy that Rθ ≥ max{∥A∥∥b∥, ∥θ∗∥},
Rw ≥ 2∥C−1∥∥A∥Rθ.

Since the TDC algorithm has the natural two time-scale structure,
the design of VRTDC also considers the variance reduction on both
parameters θ and ω:

Full text available at: http://dx.doi.org/10.1561/2400000045

42 Model-Free Policy Evaluation Algorithms

θ
(m)
t+1 = ΠRθ

[
θ

(m)
t + α

(
G

(m)
t

(
θ

(m)
t , w

(m)
t

)
− G

(m)
t

(
θ̃(m−1), w̃(m−1))+ G̃(m)

)]
,

(5.14)

w
(m)
t+1 = ΠRw

[
w

(m)
t + β

(
H

(m)
t

(
θ

(m)
t , w

(m)
t

)
− H

(m)
t

(
θ̃(m−1), w̃(m−1))+ H̃(m)

)]
,

where for a batch of M samples Bm and

G̃(m) = 1
M

∑
x∈Bm

(
Axθ̃

(m−1) + bx +Bxw̃
(m−1)

)
,

H̃(m) = 1
M

∑
x∈Bm

(
Axθ̃

(m−1) + bx + Cxw̃
(m−1)

)
.

The convergence analysis of VRTDC relies on the same assumption
as the TDC algorithm, Assumption 5.4 and Assumption 5.5. We re-state
its main result as follows:

Theorem 5.4. Suppose Assumption 5.4 and Assumption 5.5 hold. For
the VRTDC algorithm with Markovian samples, there exists learning
rates α, β with β = O(α

2
3) and the batch size M such that the output

of the algorithm satisfies

E∥θ̃(m) − θ∗∥2 ≤ O(Dm +M−1 + β2),

where D ∈ (0, 1) for the given selected learning rates and batch size.

Proof Sketch. The proof consists of the following three key steps:
First, we develop the preliminary bound for

∑M−1
t=0 ∥θ(m)

t − θ∗∥2. Denote
E

θ
(m)
0

as the expectation conditional on θ(m)
0 . Let O(f(α,M)) represent

some variable C · f(α,M) for some constant C. Then there exists
learning rates α, β, and the batch size M such that

E
θ

(m)
0

M−1∑
t=0

∥θ(m)
t − θ∗∥2 ≤O(1

α
+ αM)∥θ̃(m−1) − θ∗∥2 + O(1)

+ O(1)E
θ

(m)
0

∥z(m)
t ∥2 + O(αM)E

θ
(m)
0

∥z̃(m−1)∥2,

This step bounds
∑M−1

t=0 ∥θ(m)
t − θ∗∥2 in terms of

∑M−1
t=0 ∥z(m)

t ∥2,
∥z̃(m−1)∥2, and ∥θ̃(m−1) − θ∗∥2.

Second, we develop the preliminary bound for
∑M−1

t=0 ∥z(m)
t ∥2.

Full text available at: http://dx.doi.org/10.1561/2400000045

5.2. Off-Policy TD Learning 43

M−1∑
t=0

E
θ

(m)
0

∥z
(m)
t ∥2 ≤O(1

β
+ βM + α2

β2 M)E
θ

(m)
0

∥z̃(m−1)∥2 + O(1)

+ O
(

β + α2

β2

)(M−1∑
t=0

E
θ

(m)
0

∥θ
(m)
t − θ∗∥2

+ ME
θ

(m)
0

∥θ̃(m−1) − θ∗∥2
)

.

This step bounds
∑M−1

t=0 ∥z(m)
t ∥2 in terms of

∑M−1
t=0 ∥θ(m)

t − θ∗∥2,
∥z̃(m−1)∥2, and ∥θ̃(m−1) − θ∗∥2. Plugging it into the preliminary bound
of
∑M−1

t=0 ∥θ(m)
t −θ∗∥2, we obtain an upper bound of

∑M−1
t=0 ∥θ(m)

t −θ∗∥2

in terms of ∥z̃(m−1)∥2, and ∥θ̃(m−1) − θ∗∥2.
Lastly, we develop the final non-asymptotic bound for ∥z̃m∥2.

E∥z̃(m)∥2 ≤
(1
Mβ

· 12
λC

)m
E∥z̃(0)∥2 + O(β + α2

β2 + 1
M

).

By plugging this bound into the previous upper bounds, we will ob-
tain a relation between E∥θ̃(m) − θ∗∥ and E∥θ̃(m−1) − θ∗∥. Recursively
telescoping this inequality leads to our final result.

Full text available at: http://dx.doi.org/10.1561/2400000045

References

[1] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau,
A. Courville, and Y. Bengio, “An actor-critic algorithm for se-
quence prediction,” in Proc. International Conference on Learning
Representations, 2017.

[2] L. Baird, “Residual algorithms: Reinforcement learning with func-
tion approximation,” in Machine Learning Proceedings 1995, El-
sevier, 1995, pp. 30–37.

[3] A. Benveniste, P. Priouret, and M. Métivier, Adaptive Algorithms
and Stochastic Approximations. Springer-Verlag, 1990.

[4] J. Bhandari, D. Russo, and R. Singal, “A finite time analysis of
temporal difference learning with linear function approximation,”
arXiv preprint arXiv:1806.02450, 2018.

[5] V. S. Borkar, Stochastic approximation: a dynamical systems
viewpoint, vol. 48. Springer, 2009.

[6] L. Bottou, “Large-scale machine learning with stochastic gradi-
ent descent,” in Proceedings of COMPSTAT’2010: 19th Inter-
national Conference on Computational StatisticsParis France,
August 22-27, 2010 Keynote, Invited and Contributed Papers,
Springer, pp. 177–186, 2010.

[7] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, Openai gym, 2016. eprint: arXiv :
1606.01540.

44

Full text available at: http://dx.doi.org/10.1561/2400000045

arXiv:1606.01540
arXiv:1606.01540

References 45

[8] G. Brunner, O. Richter, Y. Wang, and R. Wattenhofer, “Teaching
a machine to read maps with deep reinforcement learning,” in
Proc. Association for the Advancement of Artificial Intelligence
(AAAI, Nov. 2017.

[9] S. Bubeck, “Convex optimization: Algorithms and complexity,”
Foundations and Trends® in Machine Learning, vol. 8, no. 3-4,
2015, pp. 231–357.

[10] X. Chen, S. Li, H. Li, S. Jiang, Y. Qi, and L. Song, “Generative
adversarial user model for reinforcement learning based recommen-
dation system,” in Proc. International Conference on Machine
Learning, vol. 97, pp. 1052–1061, 2019.

[11] G. Dalal, B. Szorenyi, G. Thoppe, and S. Mannor, “Finite sample
analysis of two-timescale stochastic approximation with applica-
tions to reinforcement learning,” in Proc. Conference on Learning
Theory (COLT), 2018.

[12] G. Dalal, B. Szörényi, G. Thoppe, and S. Mannor, “Finite sample
analysis of two-timescale stochastic approximation with applica-
tions to reinforcement learning,” Proceedings of Machine Learning
Research, vol. 75, 2018, pp. 1–35.

[13] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast in-
cremental gradient method with support for non-strongly convex
composite objectives,” in Proc. Advances in Neural Information
Processing Systems (NeurIPS), pp. 1646–1654, 2014.

[14] M. P. Deisenroth, G. Neumann, and J. Peters, A Survey on Policy
Search for Robotics. 2013.

[15] R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin,
and P. Richtárik, “Sgd: General analysis and improved rates,” in
International conference on machine learning, PMLR, pp. 5200–
5209, 2019.

[16] R. Johnson and T. Zhang, “Accelerating stochastic gradient de-
scent using predictive variance reduction,” in Advances in neural
information processing systems, pp. 315–323, 2013.

[17] M. Kaledin, E. Moulines, A. Naumov, V. Tadic, and H.-T. Wai,
“Finite time analysis of linear two-timescale stochastic approxi-
mation with markovian noise,” arXiv:2002.01268, 2020.

Full text available at: http://dx.doi.org/10.1561/2400000045

46 References

[18] J. Kober Jens and Peters, “Reinforcement learning in robotics: A
survey,” in pp. 9–67, Springer, 2014.

[19] N. Korda and P. La, “On TD (0) with function approximation:
Concentration bounds and a centered variant with exponential con-
vergence,” in Proc. International Conference on Machine Learning
(ICML), pp. 626–634, 2015.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” Advances in
neural information processing systems, vol. 25, 2012.

[21] H. Kushner, “Stochastic approximation: A survey,” Wiley Inter-
disciplinary Reviews: Computational Statistics, vol. 2, no. 1, 2010,
pp. 87–96.

[22] S. Lacoste-Julien, M. Schmidt, and F. Bach, “A simpler approach
to obtaining an O(1/t) convergence rate for the projected stochas-
tic subgradient method,” arXiv preprint arXiv:1212.2002, 2012.

[23] J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and J. Gao,
“Deep reinforcement learning for dialogue generation,” in Proc.
Conference on Empirical Methods in Natural Language Processing,
pp. 1192–1202, 2016.

[24] F. Liu, S. Li, L. Zhang, C. Zhou, R. Ye, Y. Wang, and J. Lu,
“3DCNN-DQN-RNN: A deep reinforcement learning framework
for semantic parsing of large-scale 3D point clouds,” in Proc.
International Conference on Computer Vision (ICCV), pp. 5679–
5688, 2017.

[25] S. Ma, Z. Chen, Y. Zhou, K. Ji, and Y. Liang, “Data sampling
affects the complexity of online sgd over dependent data,” in
Uncertainty in Artificial Intelligence, PMLR, pp. 1296–1305, 2022.

[26] S. Ma, Z. Chen, Y. Zhou, and S. Zou, “Greedy-gq with variance
reduction: Finite-time analysis and improved complexity,” in
International Conference on Learning Representations, 2020.

[27] S. Ma, Y. Zhou, and S. Zou, “Variance-reduced off-policy tdc learn-
ing: Non-asymptotic convergence analysis,” Advances in neural
information processing systems, vol. 33, 2020, pp. 14 796–14 806.

Full text available at: http://dx.doi.org/10.1561/2400000045

References 47

[28] H. Maei, C. Szepesvari, S. Bhatnagar, D. Precup, D. Silver, and
R. S. Sutton, “Convergent temporal-difference learning with arbi-
trary smooth function approximation,” Advances in neural infor-
mation processing systems, vol. 22, 2009.

[29] A. Mustafin, A. Olshevsky, and I. C. Paschalidis, “Closing the gap
between svrg and td-svrg with gradient splitting,” arXiv preprint
arXiv:2211.16237, 2022.

[30] D. P and Bertsekas, Dynamic programming and optimal control,
vol. 1, 2. Athena scientific Belmont, MA, 1995.

[31] M. L. Puterman, Markov Decision Processes. Wiley, 1994.
[32] N. Sharma, S. Zhang, S. R. S. Venkata, F. Malandra, N. Mas-

tronarde, and J. Chakareski, “Deep reinforcement learning for
delay-sensitive lte downlink scheduling,” in IEEE Annual In-
ternational Symposium on Personal, Indoor and Mobile Radio
Communications, IEEE, pp. 1–6, 2020.

[33] R. Srikant and L. Ying, “Finite-time error bounds for linear
stochastic approximation andtd learning,” in Proc. Conference on
Learning Theory, vol. 99, pp. 2803–2830, 25–28 Jun 2019.

[34] R. Srikant and L. Ying, “Finite-time error bounds for linear
stochastic approximation andtd learning,” in Conference on Learn-
ing Theory, PMLR, pp. 2803–2830, 2019.

[35] T. Sun, D. Li, and B. Wang, “Finite-time analysis of adaptive tem-
poral difference learning with deep neural networks,” Advances in
Neural Information Processing Systems, vol. 35, 2022, pp. 19 592–
19 604.

[36] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine Learning, vol. 3, no. 1, 1988, pp. 9–44.

[37] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C.
Szepesvári, and E. Wiewiora, “Fast gradient-descent methods for
temporal-difference learning with linear function approximation,”
in Proc. International Conference on Machine Learning (ICML),
pp. 993–1000, 2009.

[38] R. S. Sutton, C. Szepesvári, and H. R. Maei, “A convergent o(n)
algorithm for off-policy temporal-difference learning with linear
function approximation,” In Proc. Advances in Neural Information
Processing Systems (NIPS), vol. 21, no. 21, 2008, pp. 1609–1616.

Full text available at: http://dx.doi.org/10.1561/2400000045

48 References

[39] R. S. Sutton and A. G. Barto, Reinforcement Learning: An In-
troduction, Second Edition. The MIT Press, Cambridge, Mas-
sachusetts, 2018.

[40] V. Tadić, “On the convergence of temporal-difference learning
with linear function approximation,” Machine learning, vol. 42,
no. 3, 2001, pp. 241–267.

[41] H. Tian, I. C. Paschalidis, and A. Olshevsky, “On the perfor-
mance of temporal difference learning with neural networks,”
arXiv preprint arXiv:2312.05397, 2023.

[42] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE transactions on
automatic control, vol. 42, no. 5, 1997, pp. 674–690.

[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[44] M. Wainwright, “Variance-reduced q-learning is minimax opti-
mal,” arXiv:1906.04697, Jun. 2019.

[45] Y. Wang, S. Zou, and Y. Zhou, “Non-asymptotic analysis for
two time-scale tdc with general smooth function approximation,”
Advances in Neural Information Processing Systems, vol. 34, 2021,
pp. 9747–9758.

[46] T. Xu and Y. Liang, “Sample complexity bounds for two timescale
value-based reinforcement learning algorithms,” in Proc. Interna-
tional Conference on Artificial Intelligence and Statistics, vol. 130,
pp. 811–819, 13–15 Apr 2021.

[47] T. Xu, Z. Wang, Y. Zhou, and Y. Liang, “Reanalysis of vari-
ance reduced temporal difference learning,” in Proc. International
Conference on Learning Representations (ICLR), 2020.

[48] T. Xu, S. Zou, and Y. Liang, “Two time-scale off-policy TD learn-
ing: Non-asymptotic analysis over Markovian samples,” in Proc.
Advances in Neural Information Processing Systems (NeurIPS),
pp. 10 633–10 643, 2019.

[49] S. Zou, T. Xu, and Y. Liang, “Finite-sample analysis for SARSA
with linear function approximation,” in Advances in Neural In-
formation Processing Systems, pp. 8665–8675, 2019.

Full text available at: http://dx.doi.org/10.1561/2400000045

