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ABSTRACT 

This monograph deals with methods for stochastic or data-
driven optimization. The overall goal in these methods is to 
minimize a certain parameter-dependent objective function 
that for any parameter value is an expectation of a noisy 
sample performance objective whose measurement can be 
made from a real system or a simulation device depending 
on the setting used. We present a class of model-free ap-
proaches based on stochastic approximation which involve 
random search procedures to eÿciently make use of the 
noisy observations. The idea here is to simply estimate the 
minima of the expected objective via an incremental-update 
or recursive procedure and not to estimate the whole objec-
tive function itself. We provide both asymptotic as well as 
fnite sample analyses of the procedures used for convex as 
well as non-convex objectives. 

We present algorithms that either estimate the gradient in 
gradient-based schemes or estimate both the gradient and 
the Hessian in Newton-type procedures using random di-
rection approaches involving noisy function measurements. 

Prashanth L. A. and Shalabh Bhatnagar (2025), “Gradient-Based Algorithms for 
Zeroth-Order Optimization”, Foundations and Trends R in Optimization: Vol. 8, No. 
1–3, pp 1–332. DOI: 10.1561/2400000047. 
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Hence the class of approaches that we study fall under the 
broad category of zeroth order optimization methods. We 
provide both asymptotic convergence guarantees in the gen-
eral setup as well as asymptotic normality results for various 
algorithms. We also provide an introduction to stochastic 
recursive inclusions as well as their asymptotic convergence 
analysis. This is necessitated because many of these settings 
involve set-valued maps for any given parameter. We also 
present a couple of interesting applications of these methods 
in the domain of reinforcement learning. Five appendices 
at the end of this work quickly summarize the basic ma-
terial. A large portion of this work is driven by our own 
contributions to this area. 
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Preface 

This monograph is written with the idea of providing a self-contained 
introduction to stochastic gradient algorithms for solving a zeroth-order 
optimization problem. Towards this goal, we have included a detailed 
introduction to stochastic approximation which provides the basic frame-
work for the analysis of incremental update algorithms with noise, that 
indeed form the backbone of algorithms in areas such as reinforcement 
learning, and stochastic optimization with unbiased as well as biased 
gradient information. We provide a detailed coverage of zeroth-order 
gradient estimation procedures, including classic approaches such as 
simultaneous perturbation stochastic approximation (SPSA), smoothed 
functional (SF), as well as more recent approaches dealt with in the 
literature. The convergence analysis that we provide includes both 
asymptotic guarantees via the ordinary di˙erential equation (ODE) and 
di˙erential inclusion (DI) approaches, as well as non-asymptotic bounds. 
The convergence analyses should be of interest to students as well as 
researchers working in the broad area of stochastic optimization and 
machine learning. 

Figure 1 provides a visual depiction of the dependencies between the 
individual sections and appendices in the monograph. We now provide 
a few guidelines on how to read this monograph. 

3 
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Section 1

Appendix CAppendix BAppendix A Appendix D Appendix E

Section 2

Section 3

Section 4 Section 5 Section 8

Section 6

Section 7

Figure 1: A schematic representation of the dependencies between the sections and 
appendices in the monograph. 

• If you are an expert researcher well-versed in the feld of stochastic 
approximation, then we suggest reading Sections 3 to 5. These sec-
tions cover (i) gradient estimation in a zeroth-order setting, where 
only noisy function measurements are available; and (ii) asymp-
totic as well as non-asymptotic analysis of stochastic gradient 
algorithms with zeroth-order gradient estimates. If you fnd the 
material in these sections interesting, then you could go further to 
stochastic Newton algorithms with zeroth-order Hessian estimates. 
These topics are covered in Section 6. You could also check out 
Section 7, which describes variants of stochastic gradient/Newton 
algorithms designed to escape saddle points and converge to local 
optima. 

• If you are a student who has done a frst course in probability, 
and someone who would like to conduct research in the area of 
zeroth-order optimization, then we suggest you pick up the back-
ground material covered in the appendices, in particular, ODEs 
and di˙erential inclusions (Appendix A), conditional expectations 
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and martingales (Appendix B) and smoothness/convexity (Ap-
pendix D). Thereafter, we recommend understanding stochastic 
approximation, gradient estimation and analysis of stochastic 
gradient algorithms in that order from Sections 2 to 4. Intro-
duction to stochastic Newton methods and their analyses, which 
form the content of subsequent sections, could be done after the 
zeroth-order gradient algorithms/analyses are covered. 

• If you are also a reinforcement learning (RL) researcher, then the 
material covered in Section 8 could be of interest. In this section, 
we present zeroth-order variations of the well-known REINFORCE 
policy gradient method. In particular, we establish that such 
zeroth-order variants are competent and in many RL applications, 
REINFORCE style gradient estimation is not feasible, making 
zeroth-order schemes more amenable. One such setting that we 
cover is risk-sensitive RL, where the objective is not the usual 
value function, which is an expected value. Instead, we consider 
alternate functionals of the distribution and describe zeroth-order 
policy gradient algorithms for optimizing such functionals. 

From a teaching viewpoint, the material in this monograph can be 
utilized for a semester-long course, with an optional followup course on 
the shorter side, say one-quarter. In the former course, the background 
material on ODEs and di˙erential inclusions, conditional expectations 
and martingales and smoothness and convexity could be introduced 
frst. These correspond to Appendices A, B and D. Next, the content 
in Sections 1 to 5 on stochastic gradient algorithms/analyses could 
be covered. Sections 2.6 and 2.7 could be skipped in this course. The 
followup course could cover Sections 6 to 8 on the stochastic Newton 
algorithms/analyses and RL applications as well as the skipped sections 
mentioned above. 

We would like to thank Praneeth Netrapalli for useful inputs about 
the perturbed gradient descent algorithm, and Aditya Mahajan for 
useful discussions on two timescale stochastic approximation. We thank 
Prof. James Spall for his detailed comments on an earlier draft and an 
anonymous reviewer for pointers to references that had been missed 
earlier. We would like to thank our students Soumen Pachal, Sumedh 
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Gupte, Anmol Panda, Shaun Mathew and Ayman Akhter for pointing 
out typos and minor errors in the earlier versions of this manuscript. 
Part of this work was supported through a J. C. Bose Fellowship, Project 
No. DFTM/ 02/ 3125/M/04/AIR-04 from DRDO under DIA-RCOE, 
the Walmart Center for Tech Excellence at IISc (CSR Grant WMGT-23-
0001), and the RBCCPS, IISc. A portion of this monograph was written 
when the frst author was visiting the Centre for Machine Intelligence 
and Data Sciences (C-MInDS) at the Indian Institute of Technology 
Bombay. 
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1 
Introduction 

1.1 Zeroth-Order Optimization 

The underlying processes in many engineering systems can often be 
quantifed by defning suitable objective functions. However, quite often, 
these functions are not analytically known but their noisy measure-
ments or samples are available. Further, one is often interested in fnding 
optima of such functions despite the challenge that the functions them-
selves are not known analytically. One may be tempted to try and 
estimate the whole function through multiple observations from the 
underlying process at di˙erent parameter values that would in turn 
reveal the function optima. However, such a function estimation scheme 
would in general be extremely computationally intensive, more so, since 
we are interested in obtaining the optima of objective functions over 
continuously valued sets. 

Our primary objective here will be to fnd the minima of a perfor-
mance objective whose analytical form is not known, however, noise-
corrupted observations or samples from such a function are made avail-
able either through a simulation device or as “real” data. The solution 
approaches that we present shall not aim at estimating the objective 
function itself but make use of the available “noisy” data recursively 
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8 Introduction 

Figure 1.1: Model-free optimization framework. 

and converge thereby to the optima. Thus, in the end, even though 
we may still not know the precise nature of the performance objective, 
the scheme would nonetheless converge to an optimum of the unknown 
function. 

To state it more formally, our goal here will be to fnd a parameter 
θ * such that 

θ * ∈ arg min f(θ), (1.1)
θ 

given noisy samples or observations of the performance objective f . As 
illustrated in Figure 1.1, an iterative optimization algorithm queries the 
zeroth-order oracle for the objective value at the parameter θn at time 
instant n, and receives the observation f(θn) + ξn. Here ξn, n ≥ 1 is a 
sequence of “noise” random variables. For instance, as we consider in this 
monograph, this sequence could be a martingale di˙erence sequence. 
It is important to note here that the noisy observations f(θn) + ξn 
above cannot be separated into the objective function value f(θn) and 
the noise component ξn to infer the form of the objective function 
directly from the given noise corrupted data. Thus, it is assumed that 
the noisy data samples are obtained either from a simulation device 
or a real system. The obtained data is then used by the optimization 
algorithm. Since we do not estimate the objective function f and yet 
run the optimization procedure using only noisy samples, we refer many 
times to techniques that solve such problems as model-free optimization 
methods. On the contrary, approaches that are based on estimating 
the function f are called model-based optimization techniques. The 
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9 1.2. Applications 

performance value f(θ) and the sample performance g(θ, ξ) = f(θ) + ξ 
are related as f(θ) = E[g(θ, ξ)], where E[·] denotes the expectation 
w.r.t the distribution of ξ. It is assumed here that the noise random 
variable ξ has a mean of zero. 

Note also that (1.1) contains “∈” instead of “=”. This is because 
the minimizer need not be unique and so arg min f(θ) would constitute 

θ 
the set of all parameters θ that attain the minimum. The set is a 
singleton if the minimizing parameter is unique. In general, fnding 
one of the minimizers is suÿcient in such problems. However, it is 
important to observe that fnding a global minimum, in this setting, 
is far more computationally intensive than fnding a local minimum. 
In this monograph, we shall focus on solution methods that aim at 
fnding a local minimum. In most applications, the minima are also 
isolated in the sense that around any minimum, one can draw a ball 
of a small enough radius such that it contains only the given (and no 
other) minimum. 

1.2 Applications 

Several real-world systems in disciplines such as communication net-
works, healthcare, and fnance are too complex to directly optimize 
among a set of choices. A viable alternative is to build a simulator for 
various components of the system, and then perform the optimization 
over decisions or choices via simulator access. Simulation optimization 
refers to this setting, where the goal is to fnd the optimum choice for 
a certain design parameter. For a given parametric description of the 
system, performance evaluations using the simulator are typically noisy 
(i.e., have a spread or distribution), and each simulation to obtain an 
evaluation is often computationally expensive. Thus, in addition to 
searching for optima, a good simulation optimization algorithm should 
ensure that the number of function evaluations is small. 

Simulation optimization falls under the realm of zeroth-order op-
timization, and gradient-based algorithms are eÿcient solution alter-
natives for fnding an optimum using observations from a simulator. 
The reader is referred to [88] for a detailed introduction to simulation 
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10 Introduction 

optimization. For a survey of simulation software catering to a variety 
of applications, see [189]. 

An area of practical interest for zeroth-order optimization algorithms 
is reinforcement learning (RL) [25], [26], [136], [186]. In a typical RL 
setting, the goal is to maximize the cumulative reward over time by 
learning an optimal policy to choose actions. The underlying formalism is 
of a Markov decision process (MDP), where the algorithm interacts with 
the environment through actions, and as a response the environment 
changes its state and provides a reward. In an MDP, the next state 
depends on the current state and the chosen action. 

Policy gradient methods [33], [123], [188] are a popular solution 
approach for such problems. The basis for such algorithms is the policy 
gradient theorem, which motivates the use of likelihood ratio based 
gradient estimates. While such an approach of obtaining unbiased 
gradient estimates works in a risk-neutral RL setting, the same is not 
true if one incorporates a risk measure in the problem framework. As an 
example, one could modify the problem to fnd a policy with the highest 
mean cumulative discounted reward, while imposing a constraint on 
the variance. In such a setting, it is diÿcult to employ the likelihood 
ratio method for estimating gradient, and simultaneous perturbation 
methods, which we discuss in detail in this monograph, are a viable 
alternative. In [158], the authors employ such an approach to fnd a 
risk-optimal policy, which handles a mean-variance tradeo˙. Moreover, 
in [195], the authors show that a policy gradient algorithm employing 
the simultaneous perturbation method for gradient estimation performs 
on par with REINFORCE—an algorithm that uses the likelihood ratio 
method for gradient estimation. 

More generally, zeroth order optimization approaches have been 
found useful in the context of simulation optimization under inequality 
constraints [42], actor-critic algorithms which are RL algorithms based 
on the policy iteration procedure [1], [43], simulation-based algorithms 
for fnding optimal policies in fnite horizon MDPs [36], RL algorithms 
for constrained MDPs [34], [44], as well as discrete parameter simulation 
optimization [46], [97]. In [40], the problem of fnding the optimal policy 
in an MDP setting conditioned on a rare event is considered and a zeroth 
order simulation optimization algorithm is presented and analysed. It is 
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11 1.3. Stochastic Approximation Algorithms 

shown that the resulting scheme has close connections with risk sensitive 
MDPs with exponentiated costs. In most of the aforementioned settings, 
it is not easy to obtain likelihood ratio based sample gradient estimates, 
hence application of zeroth order methods becomes inevitable. 

A more recent application of zeroth-order optimization algorithms, 
of the type discussed in this monograph, is in the context of large 
language models (LLMs), which are nearly ubiquitous, with widespread 
adoption across various disciplines. Traditional methods for LLM tuning 
involve high compute costs. To reduce the computational burden of 
LLM tuning, zeroth-order optimization methods have been explored 
recently, cf. [132]. This approach is less compute-intensive compared 
to a traditional backpropagation scheme with the well-known ADAM 
step-size schedule. 

Adversarial machine learning is another recent application, where 
zeroth-order optimization techniques have been applied successfully to 
construct black-box adversarial examples, cf. [5], [28], [67], [68], [76], 
[108], [109], [140]. The idea here is to use zeroth-order gradient estimates, 
similar to SPSA discussed earlier, to approximate the gradient of a target 
neural network, and use this model to general adversarial images that 
lead to misclassifcation. Such adversarial examples are concerning from 
a security viewpoint, in a safety critical application such as autonomous 
driving. Zeroth-order gradient estimates have also been employed to 
make machine learning models robust during training, see [204]. 

1.3 Stochastic Approximation Algorithms 

The algorithms that we shall present here are all going to be of the 
stochastic approximation type. The basic stochastic approximation 
scheme, also referred to as the Robbins-Monro algorithm, named after 
its inventors, H. Robbins and S. Monro, see [168], was designed to fnd 
the zeros of an unknown function h: Rd → Rd . The algorithm tunes 
up the parameter values incrementally based on noisy observations of 
the function h obtained using the most recent parameter values as they 
become available. The basic stochastic approximation scheme has the 
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following form: 

θn+1 = θn + a(n)(h(θn) + ξn), (1.2) 

starting from an initial parameter estimate θ0 ∈ Rd . Here, a(n), n ≥ 0 
is the step-size sequence of positive real numbers. Given the parameter 
update θn at the nth epoch, a noise-corrupted measurement h(θn) + ξn 
of the objective is obtained and used to update the parameter θn to 
obtain a new parameter θn+1 according to (1.2). As can be seen, smaller 
step sizes while reducing the noise e˙ects result in more graceful albeit 
slower convergence. On the other hand, larger step sizes result in faster 
tracking of the function’s zeros though at the cost of higher variance in 
the iterates. A crucial aspect is one of ensuring convergence that would 
result in the desired outcome. This and other related aspects will be 
made more precise in later sections. 

Typical applications of stochastic approximation algorithms include 
fnding the fxed points of a function whose noisy estimates alone are 
available, as well as fnding a minimum of a function again under 
noisy observations. In the former case, h(θ) in (1.2) can have the form 
h(θ) = g(θ) − θ for some function g: Rd → Rd , while in the latter, h(θ) 
can be of the form h(θ) = −∇f(θ) for some function f : Rd → R. The 
gradient form of the objective will be of interest to us here except that 
we will assume that just like the objective function, even the gradient is 
also not known analytically to us. Noisy function measurements will be 
used to estimate the gradient. We shall also present some recent Hessian 
estimation approaches in addition to gradient estimation procedures 
that will be used in noisy Newton-based schemes. We shall see that one 
may write the noisy gradient scheme involving gradient estimates as 

θn+1 = θn + a(n)(−∇f(θn) + ξn + ηn). (1.3) 

Here h(θn) in (1.2) is replaced with −∇f(θn). However, the important 
di˙erence is that there is an extra error term ηn in (1.3) that is however 
not present in (1.2). This error arises because of the gradient estimates 
obtained from noisy function measurements. 

The original Robbins-Monro algorithm was aimed at solving the 
root fnding problem under noisy observations of the function objective 
with the noise random variables assumed to be forming an independent 
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13 1.3. Stochastic Approximation Algorithms 

and identically distributed (i.i.d) sequence. Under certain conditions, 
convergence was shown in [168] to the root of the desired system of 
equations in the mean-squared sense. Kiefer and Wolfowitz developed a 
stochastic approximation algorithm to fnd the maximizer of a given ob-
jective function, see [121]. We shall discuss this algorithm in more detail 
in the next section as indeed this was the frst zeroth-order stochastic 
optimization algorithm and used a fnite-di˙erence gradient estimate 
derived from noisy function measurements. As with [168], the objective 
function in [121] was considered to be a regression function. The iterate-
sequence was shown to converge in probability to the optimum. In [52], 
weaker conditions were developed to ensure that both Robbins-Monro 
and Kiefer-Wolfowitz algorithms converge with probability one to the 
desired equilibria. In [80], a more general objective function was consid-
ered and under weaker conditions both mean-squared convergence and 
convergence with probability one were shown. 

In another major development, the ordinary di˙erential equation 
(ODE)-based analysis of stochastic approximation algorithms was intro-
duced by [131] and [127]. It was shown that under certain conditions, 
one may study the asymptotic behavior of a stochastic approximation 
algorithm by analyzing the same for an associated ODE. The ODE 
associated with (1.2) can be seen to correspond to 

θ̇(t) = h(θ(t)). (1.4) 

The main result of [131] and [127] would say the following: 
Let θ * denote a stable equilibrium of (1.4). Then, under certain 

conditions on the driving vector feld h(·), noise sequence ξn, n ≥ 0, 
learning rates a(n), n ≥ 0, if the sequence θn governed by (1.2) enters 
infnitely often a compact subset of the domain of attraction of θ * , then 
θn → θ * almost surely. 

The above corresponds to a strong notion of recurrence for the ODE, 
and may not be applicable in many situations. In [17], [18] and [19], the 
ODE based analysis of [131] and [127] has been extended to the setting 
where the asymptotic behavior of the algorithm is analyzed via a weaker 
notion of recurrence, namely chain recurrence, of the underlying ODE. 
Most of the modern ODE based analyses follow the latter approaches. 
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14 Introduction 

1.4 Zeroth-Order Stochastic Gradient (SG) Algorithm 

Consider the following stochastic approximation scheme: 

θn+1 = θn + a(n)(−∇f(θn)), (1.5) 

where ∇f(θn) is a noisy estimate of the gradient of f(θn), with f : Rd → 
R being the objective function to be minimized. The Kiefer-Wolfowitz 
scheme, see [121], estimates the gradient ∇f(θ) using the following 
estimator: For i = 1, . . . , d, ( )1 ∇if(θn) = f(θn + δei) + ξ+(n) − f(θn − δei) − ξ−(n) ,i i2δ ( ( ))1 = (f(θn + δei) − f(θn − δei)) + ξ+(n) − ξ−(n) , (1.6)i i2δ 

where, ∇if(θn) denotes the estimate of the ith partial derivative of 
f(θn). Further, ei = (0, . . . , 0, 1, 0, . . . , 0)T is the unit d-dimensional 
vector with 1 as the ith place and all other entries as 0. Further, ξ+(n)i 

(resp. ξ−(n)) is the noise associated with the estimate of the function fi 

measured at the parameter value (θn + δei) (resp. (θn − δei)). 
Notice that in (1.6), assuming the function f to be suÿciently 

smooth, a frst order Taylor’s expansion would lead to 

f(θn + δei) − f(θn − δei) 
2δ = ∇if(θn) + O(δ2). 

This happens because the frst and the third terms in the Taylor’s 
expansion get canceled as a consequence of the balanced nature of 
the estimate. The term comprising O(δ2) contributes to the bias in 
the gradient estimate. In relation to (1.3), if δ → 0 as n → ∞ above, 
the analysis turns out to be a simple extension of the corresponding 
analysis for (1.2) (see [54, Chapter 2]). However, letting the δ-parameter 
approach zero results in constraining the choice of the step-size sequence 
{a(n)}. Nonetheless, the recursion in such a case can be shown to track 
the ODE 

θ̇(t) = −∇f(θ(t)). (1.7) 
For a fxed δ > 0, on the other hand, it can be shown that for an 

algorithm as in (1.5) with say the Kiefer-Wolfowitz gradient estimator 
(1.6), given > 0, ∃δ0 > 0, such that when the “perturbation parameter” 
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δ ∈ (0, δ0], the term ηn is O( ). Analyses with a fxed δ can be carried 
out by viewing the resulting algorithm as one involving a set-valued 

¯ map H(θ) = ∇f(θ) + B ¯(0, ), where B(0, ) is a closed ball of radius 
around the origin. The resulting scheme can then be analysed by 

viewing the limiting system as the Di˙erential Inclusion (DI) 

θ̇(t) ∈ −H(θ(t)), (1.8) 

see, for instance, [161]. 
A disadvantage with the gradient estimator defned above is that it 

requires 2d function measurements or simulations to run one update of 
the parameter according to (1.5). The amount of computation thus can 
be very high for a large value of d. In [179], the following estimator of the 
gradient has been proposed that uses only two function measurements 
regardless of the value of d. 

f(θn + δΔ(n)) + ξ+(n) − f(θn − δΔ(n)) − ξ−(n)∇if(θn) = . (1.9)2δΔi(n) 

Here, Δ(n) = (Δ1(n), . . . , Δd(n))T is a vector of i.i.d random vari-
ables Δj(n), j = 1, . . . , d, n ≥ 0 that are typically zero-mean with a 
fnite inverse moment bound. Independent symmetric Bernoulli random 
variables such as Δj(n) = ±1 w.p. 1/2 are commonly used here. A 
Taylor’s expansion as with the Kiefer-Wolfowitz estimator would give 
the following in this case: 

f(θn + δΔ(n)) − f(θn − δΔ(n)) Δ(n)T ∇f(θn)= + O(δ2)2δΔi(n) Δi(n) Σ Δj(n)∇jf(θn)= ∇if(θn) + + O(δ2). (1.10) 
j=i Δi(n) 

Note the presence of an extra (the second) term on the RHS that 
contributes to the bias. It may however be observed that [ [Σ Δj(n)∇jf(θn)

E | | θn| = 0. 
j=i Δi(n) 

It can therefore be seen that | | | | |E ∇f(θn) | θn −∇f(θn)| ≤ Cδ2 , (1.11) 

for some positive scalar C. 
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Since this estimate of ∇f is used in the recursion (1.5), a stochastic 
approximation scheme, one recovers the expectation in the asymptotic 
limit of the iterate sequence as the noise e˙ects die down. A one-
simulation estimator was proposed in [180] where the form of the 
estimator was simply 

f(θn + δΔ(n)) + ξ+(n)∇if(θn) = , i = 1, . . . , d. (1.12)
δΔi(n) 

A Taylor’s expansion on the function value without the noise term in 
(1.12) gives 

f(θn + δΔ(n)) f(θn) Σ Δj(n)∇jf(θn)= + ∇if(θn) + + O(δ). 
δΔi(n) δΔi(n) j=i Δi(n) 

The third term on the RHS above is the same as a corresponding term 
that contributes to the bias in (1.10). However, there is an additional frst 
term on the RHS that also has zero mean given the parameter update 
θn. The latter term, however, is primarily responsible for below par 
performance of this estimate because of the presence of δ, a typically 
small quantity, in the denominator. The aforementioned estimators 
are popularly referred to as two-measurement and one-measurement 
simultaneous perturbation stochastic approximation (SPSA) estimators. 

Deterministic perturbation versions of the above algorithms have 
been proposed in [41] and are seen to yield better performance par-
ticularly for the one-simulation estimators when compared with their 
random perturbation counterparts. This is because of a regular (cyclic) 
cancellation of the previously mentioned bias terms when deterministic 
perturbation schedules are used. In other work along similar lines, the 
smoothed functional estimators have been studied in [171], [119], [39], 
[30], [31], where the underlying perturbation distributions are primarily 
Gaussian, uniform and Cauchy. In [100] and [99], smoothed functional 
algorithms with q-Gaussian perturbations have been presented that are 
seen to signifcantly extend the class of perturbations and allowing for a 
continuum of distributions depending on the value of the q-parameter. 

Random directions stochastic approximation (RDSA) algorithm has 
been presented in [127] where the underlying distribution has been 
considered to be uniform on the surface of a sphere that is akin to 
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the multivariate Gaussian distribution. In [156], algorithms with i.i.d., 
uniformly distributed perturbations have been proposed. These pertur-
bations lie within a d-dimensional cube. Further, in [155], deterministic 
perturbation versions of these algorithms have been studied and ana-
lyzed. We shall be discussing some of these algorithms in more detail in 
a later section. 

1.5 Zeroth-Order Stochastic Newton (SN) Algorithm 

Recall that a SG algorithm involves the following recursion: 

θn+1 = θn − a(n)∇f(θn), (1.13) 

where ∇f(θn) is an estimate of the gradient ∇f(θn). 
There are three main shortcomings in employing a SG algorithm. 

First, from an asymptotic convergence rate analysis (cf. [82]), it is appar-( 1 ) 
ent that the SG algorithm would achieve an order O √ convergence 

n 
when the stepsize is set using the curvature of f , i.e., an = a0/n with 
a0 > δ/2λmin(∇2f(θ *)). In practice, such curvature information is sel-
dom available, and hence, it is problematic to assume such knowledge 
in setting the step-size for optimal convergence speed. Second, it is 
widely observed empirically that a SG algorithm declines fast initially, 
but slows down towards the end, i.e., when the SG iterate is near an 
optimum θ * . Third, the update rule (1.13) is not scale-invariant, i.e., 
changing θ to Bθ for some matrix B, would imply a change in the up-
date (1.13). Finally, a SG algorithm may get stuck in traps or unstable 
equilibria such as local maxima and saddle points, while the goal is for 
it to converge to local minima (esp. since convexity is not assumed). 

A second-order SN algorithm overcomes the shortcomings of a 
frst-order SG algorithm mentioned above. A general gradient-search 
algorithm involves an update rule of the form: 

θn+1 = θn − a(n)B(θn)−1∇f(θn), (1.14) 

where B(θ) for any θ ∈ Rd is a d × d matrix. The following choices of 
the B(θ) matrix are widely popular (see [27]): 
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(i) B(θ) = I (the identity matrix) for all θ: In this case, the algorithm 
(1.14) reduces to the frst-order SG algorithm (1.13). 

(ii) B(θ) is a diagonal matrix with diagonal entries being ∇2 
i,if(θ). 

This corresponds to the (second-order) Jacobi algorithm. 

(iii) B(θ) = ∇2f(θ): This corresponds to the second-order SN algo-
rithm. 

In the following, we focus on the SN algorithm (corresponding to the full 
Hessian case). As illustrated in Figure 1.2, the update rule above then 
requires computation of the Hessian as well as the gradient estimate at 
any parameter update θn. 

We elaborate on the advantages of such an algorithm over the 
frst-order scheme in (1.13) (or alternatively the case of B(θ) = I in 
(1.14)). First, such algorithms achieve the optimum speed of convergence 
without the knowledge of λmin(∇2f(θ *)). Setting a0 = 1 would suÿce. 
Second, it is generally observed that second-order methods exhibit faster 
convergence in the fnal phase, i.e., when the iterates are close to the 
optima. This can be attributed to the fact that second-order methods 
minimize a quadratic model of f , while SG algorithm (1.13) uses a 
frst-order Taylor’s approximation. Third, second-order algorithms are 

Figure 1.2: Overall fow of a second-order stochastic gradient algorithm. 
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scale-invariant, i.e., they auto-adjust to the scale of θ. Finally, second-
order algorithms avoid traps naturally, since they factor in curvature 
information through the Hessian. On the fip side, second-order methods 
have a higher per-iteration cost than their frst-order counterparts, as 
the Hessian matrix has to be inverted during each iteration. 

In the zeroth-order optimization setting that we consider, we do 
not have direct access to the gradient and the Hessian of the objective 
function. Instead, as illustrated in Figure 1.2, both gradient and Hessian 
have to be estimated from noisy function observations before performing 
a parameter update. In other words, letting ∇f(θn) and Hn denote the 
gradient and Hessian estimates, we update the parameter as follows: ( )−1 

θn+1 = θn − a(n) Hn ∇f(θn). (1.15) 

The topic of gradient estimation is handled in Section 3, while Section 6 
focuses on Hessian estimation, and the convergence analysis of (1.15), 
where we use zeroth-order estimates of both the gradient and the 
Hessian. 

To understand the problem of Hessian estimation, we now discuss a 
fnite di˙erence approximation, which requires O(d2) function measure-
ments. The simultaneous perturbation trick brings this number down 
to a small constant, regardless of the parameter dimension d. We shall 
discuss these schemes in detail in Section 6. 

Consider a scalar variable θ. A fnite di˙erence approximation of 
the frst derivative for this simple case of a scalar parameter θ is: ( )

df(θ) f(θ + δ) − f(θ − δ)≈ . (1.16)
dθ 2δ 

Assuming the objective is smooth, and employing Taylor series expan-
sions of f(θ + δ) and f(θ − δ) around θ, we obtain: 

df(θ) δ2 d2f(θ)
f(θ ± δ) = f(θ) ± δ + + O(δ3),

dθ 2 dθ2 

f(θ + δ) − f(θ − δ) df(θ)Thus, = + O(δ2).2δ dθ 

From the above, it is easy to see that the estimate (1.16) converges to 

the true gradient df(θ) in the limit as δ → 0. 
dθ 
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This idea can be extended to estimate the second derivative by 
applying a fnite di˙erence approximation to the derivative in (1.16) as 
follows: 

d2f(θ) 
dθ2 

≈ ( ) ( )
f(θ + δ + δ) − f(θ + δ − δ) f(θ − δ + δ) − f(θ − δ − δ)−2δ 2δ 

2δ 
(1.17) 

As before, using Taylor series expansions, it can be shown that the RHS 
above is a good approximation to the second derivative. 

For the case of a vector parameter, one needs to perturb each co-
ordinate separately, leading to the following scheme for estimating the 
Hessian ∇2f(θ): For any i, j ∈ {1, . . . , d}, 

∇2 
ijf(θ) ≈ 1 

( 
f(θ + δei + δej) + f(θ + δei − δej)4δ2 ) 
− (f(θ − δei + δej) − f(θ − δei − δej)) . (1.18) 

Such an approach requires 4d2 number of function measurements to form 
the Hessian estimate. In the next section, we overcome this limitation by 
employing the simultaneous perturbation trick. Before that, we extend 
the estimate in (1.18) to the noisy case as follows: Suppose we have the 
following function measurements: For any i, j ∈ {1, . . . , d}, 

y1 = f(θ + δei + δej) + ξ1ij , y2 = f(θ + δei − δej) + ξ2ij , (1.19) 
y3 = f(θ − δei + δej) + ξ3ij and y4 = f(θ − δei − δej) + ξ4ij . (1.20) 

Using these function measurements, we form the Hessian estimate H 

as follows: ( )
y1 − y2 − y3 + y4

Hij = , ∀i, j (1.21)4δ2 

Assuming the function is suÿciently smooth, as in the gradient case 
and the noise elements in the function measurements are zero mean, it 
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can be shown through Taylor series expansions that: (1
E[Hij | θ] = 4δ2 f(θ + δei + δej) + f(θ + δei − δej) ) 

− (f(θ − δei + δej) − f(θ − δei − δej)) 

= ∇2 
ijf(θ) + O(δ2). 

While the bias of the estimator is on the lower side, with explicit control 
via the δ parameter, the problem is in the number of function mea-
surements. The latter number is 4d2 , limiting the practical viability on 
high-dimensional problems. In Section 6, we discuss several alternative 
schemes using the simultaneous perturbation method for the Hessian 
method. These schemes use a small (constant) number of function mea-
surements (regardless of the parameter dimension d), while ensuring a 
bias of O(δ2). 

1.6 Organization of the Monograph 

We now describe the organization of the rest of the monograph. 
In Section 2, we provide an introduction to stochastic approximation 

algorithms and outline a few popular applications such as mean esti-
mation, gradient-type algorithms, fxed-point iterations, and quantile 
estimation. These algorithms are incremental update procedures that 
work with stochastic or noisy data as it becomes available and are 
model-free procedures. In Section 2, we provide a detailed introduction 
to stochastic approximation algorithms, provide motivating applica-
tions, and subsequently provide the main results on convergence of 
these schemes. It turns out that many of the stochastic optimization 
schemes require a treatment of algorithms with set-valued maps. We 
also present such algorithms in settings where data samples become 
available one at a time in real time, and so are Markovian. We there-
fore discuss the main convergence results in connection with these as 
well. In addition, Newton-based stochastic optimization schemes involve 
estimating the inverse of the Hessian of the objective. This cannot be 
done using the standard stochastic approximation template and we need 
such algorithms to perform updates using two-timescale procedures. We 
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therefore also discuss two-timescale stochastic approximation algorithms 
(including those with set-valued maps) in this section. 

In Section 3, we provide a variety of gradient estimators using the 
simultaneous perturbation method. These include unifed two-point as 
well as one-point gradient estimation schemes. The unifed estimates fea-
ture abstract random perturbations that are required to satisfy certain 
conditions to ensure that the bias and variance of the estimates is man-
ageable. Specializing these estimates with the specifc choice of random 
perturbations leads to several well-known simultaneous perturbation-
based schemes such as the smoothed functional scheme [119] with later 
refnements in [75], [144], [151], random direction stochastic approxi-
mation (RDSA) scheme proposed by [127], and recently enhanced in 
[156], and the popular simultaneous perturbation stochastic approxi-
mation (SPSA) scheme proposed by [179]. While most estimators that 
we present require one or two function measurements in order to es-
timate the gradient, we also touch upon a recently developed class of 
generalized simultaneous perturbation gradient estimators that provide 
estimators requiring a number of function measurements that depends 
on the bias in the gradient estimator. We analyze the bias and variance 
of the aforementioned estimators in the convex as well as the non-convex 
regimes. In either case, the analysis requires the objective to be smooth. 

In Section 4, we present a detailed mathematical treatment of a 
stochastic gradient algorithm that employs simultaneous perturbation-
based gradient estimates. In particular, we cover asymptotic convergence 
of the stochastic gradient scheme using the popular ordinary di˙erential 
equation (or ODE) method. It turns out that in many of these algo-
rithms, it makes sense to hold the sensitivity parameter in the gradient 
estimation procedure fxed and not push it to zero in order that the 
estimator variance does not blow up. In such a case, we observe that 
the resulting scheme can be viewed as a stochastic recursive inclusion, 
i.e., one involving set-valued maps. Thus, we use here the theory of 
di˙erential inclusions to establish that the stochastic gradient algorithm 
converges to a chain-recurrent set of an underlying di˙erential inclusion. 

In Section 5, we present the non-asymptotic analysis for the zeroth-
order SG (ZSG) algorithm. In the case of a non-convex objective, we 
bound the expected decrease in the objective function in each iteration 
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using the bias and variance properties of the gradient estimators together 
with a standard Taylor series argument. The expected decrease is used 
to provide an overall bound, which shows that the stochastic gradient 
algorithm converges to an approximate stationary point of the objective,( )1with a rate O √ , where N is the number of iterations. In this 

N 
section, we also analyze the rate of convergence of ZSG algorithm when 
the underlying objective is either convex or else strongly-convex. In the 
former case, we bound the optimization error (di˙erence in function 
value between that of the iterate and the optimum), while in the latter 
case, we bound the parameter error, which is the norm of the distance 
between ZSG iterate and the optimum. Strong convexity allows a bound 
on the parameter error, while in the case of a non-strongly convex 
function, only a bound on the di˙erence in function value is feasible. 
This is true even in the deterministic optimization setting, though the 
rates are slower in the stochastic zeroth-order setting that we study in 
this monograph. In this section, we also present a minimax lower bound 
using information-theoretic arguments, and this bound shows that the 
upper bounds for the ZSG algorithm are optimal up to a constant factor 
for the convex/strongly-convex cases. 

In Section 6, we cover Hessian estimation using simultaneous pertur-
bation methods. In particular, we provide a theoretical introduction to 
second-order SPSA proposed in [177] as well as its later enhancements 
in [29], [32]. We also describe second-order smoothed functional [30] and 
second-order RDSA [156] schemes. We analyze the bias in these Hessian 
estimates, and establish that each of these aforementioned schemes 
results in an asymptotically unbiased Hessian estimate. In this section, 
we also analyze a stochastic Newton algorithm using gradient/Hessian 
estimates based on the simultaneous perturbation method. As men-
tioned previously, these algorithms involve two-timescale stochastic 
approximation schemes. The theoretical guarantees that we provide 
include the asymptotic almost sure convergence of the stochastic New-
ton scheme, and an asymptotic normality result that can be used to 
bound the asymptotic covariance, which in turn helps one understand 
the mean-square error of the algorithm after a suÿciently large number 
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of iterations. The latter analysis provides a convergence rate for the 
stochastic Newton algorithm, albeit in an asymptotic sense. 

In Section 7, we focus on the points of convergence of the stochastic 
approximation schemes. An important consideration of such algorithms 
is to ensure that the stochastic algorithm converges to local minima and 
not to saddle points that while being stationary points of the system, 
are in fact, unstable equilibria of the underlying ODE. Two schemes 
to escape saddle points are presented. In the frst scheme, additional 
assumptions on the richness of noise are provided in the case of a general 
zeroth order gradient estimation scheme that would ensure avoidance 
of saddle points. We review these conditions on the noise from [149] 
and provide the basic results. The second scheme deals with a cubic 
regularized Newton-based formulation from [134] with gradient and 
Hessian estimates obtained using zeroth-order estimation procedures. 
Convergence to an -second order stationary point is then shown. 

In Section 8, we provide applications of simultaneous perturbation 
methods in the reinforcement learning (RL) context. The frst applica-
tion involves a constrained discounted Markov decision process (MDP). 
In an RL setting, direct gradient measurements of the objective or value 
function are not available. Instead, one can estimate the value function 
using a Monte Carlo scheme, or the popular temporal di˙erence (TD) 
learning algorithm. We consider the stochastic shortest path setting 
here. Assuming a smooth class of parameterized policies, we describe a 
policy gradient scheme that employs SPSA-based gradient estimates in 
conjunction with value function estimation using Monte Carlo samples 
as with the REINFORCE algorithm. We present a convergence analysis 
of our algorithm, which shows that the algorithm converges almost 
surely to local optima in the asymptotic limit. The second application 
considers a risk-sensitive RL problem, where the goal is to fnd a policy 
that maximizes the value function while satisfying a constraint that is 
formed using a risk measure. As in the frst application, we describe a 
policy gradient algorithm for solving the risk-constrained MDP, and 
provide an asymptotic convergence analysis of this algorithm. 

We also provide fve appendices of useful background material. We 
outline the content of the appendices below. 
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Appendix A covers signifcant material on ODEs and di˙erential 
inclusions, specifcally from the viewpoint of stability, equilibria, at-
tractors, as well as weaker notions of recurrence. These concepts are 
required for the asymptotic analysis of stochastic gradient and Newton 
algorithms in Sections 2, 4 and 6, respectively. 

Appendix B provides an introduction to selected topics in probabil-
ity that are relevant to this monograph. In particular, we discuss various 
notions of convergence of random variables in this appendix. Next, we 
cover conditional expectation and provide a detailed introduction to 
martingales, including examples from stochastic approximation and 
asymptotic convergence results. The latter results on martingale conver-
gence are useful in the analysis of stochastic approximation algorithms 
in general (see Section 2), and zeroth-order gradient-based algorithms 
in particular (see Sections 4 and 6). To elaborate, stochastic gradient 
and Newton algorithms involve increments with a martingale di˙erence 
noise sequence and it is important to understand when this sequence 
converges, so that an ODE or di˙erential inclusions-based analysis of 
the aforementioned algorithms is feasible. 

Appendix C provides an introduction to Markov chains in discrete 
time. This background is useful in understanding stochastic approxima-
tion algorithms with a Markovian noise component (see Section 2.6). 

Appendix D provides foundational material on smooth optimization. 
In particular, frst/second-order optimality conditions, smoothness and 
convexity are discussed in detail in this appendix. 

Appendix E provides an introduction to information theoretic con-
cepts such as entropy, and KL-divergence, followed by a statement 
with proof of a simpler version of the well-known Pinsker’s inequality. 
This background is useful for understanding the minimax lower bounds 
derived for a gradient-based algorithm with zeroth-order information in 
Section 5.6. 

1.7 Bibliographic Remarks 

In [121], Kiefer and Wolfowitz presented the frst paper on stochastic gra-
dient descent with zeroth order estimators and analysed their algorithm 
using the approach in [168]. A comprehensive and detailed treatment 
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of stochastic optimization including direct methods and evolutionary 
algorithms, in addition to zeroth order methods such as SPSA is avail-
able in [178]. A detailed treatment of stochastic simulation of random 
variables and processes including those driven by stochastic di˙erential 
equations that also contains stochastic optimization is given in [11]. 
Another textbook primarily on stochastic simulation that also deals 
with Markov chain Monte Carlo and discrete event system simulation, 
in addition to stochastic optimization (specifcally, smoothed functional 
approaches) is [171]. 

The work in [54] deals primarily with the theory of stochastic 
approximation. However, this work also includes a chapter on stochastic 
zeroth order methods for gradient estimation where methods such as 
SPSA and SF are briefy surveyed. Discrete event system simulation 
and optimization has been well-studied and analysed using perturbation 
analysis based methods in [64]. The work [136] is mainly dedicated to 
optimal control and reinforcement learning, but also delves into zeroth 
order stochastic optimization. A recent text on stochastic optimization 
and reinforcement learning is [152], which covers a wide range of topics 
in these domains. 

A textbook treatment of zeroth-order stochastic optimization ap-
proaches is available in [31]. The focus of the approaches presented in 
that text was to fnd the optimum parameter of an objective which in 
itself is a certain long-run average cost over noisy cost samples. A vari-
ety of methods for both unconstrained and constrained optimization 
including reinforcement learning are presented there. The resulting 
algorithms largely have a multi-timescale structure and the asymptotic 
convergence analysis of these algorithms is presented. In our current 
text, we primarily consider single-timescale stochastic optimization al-
gorithms that estimate the gradient and (in some cases) the Hessian 
using zeroth order estimators though we also consider two-timescale 
algorithms for the latter case. We present newer and more general anal-
yses of these algorithms and provide in detail both asymptotic as well 
as non-asymptotic convergence analyses of the presented algorithms. 
The asymptotic analyses are shown using limiting arguments involving 
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underlying ordinary di˙erential equations (ODE) or di˙erential inclu-
sions (with set-valued maps) as the case may be. Our current work also 
covers many recent algorithms not contained in [31]. 
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