
Program Synthesis

Sumit Gulwani
Microsoft Research

sumitg@microsoft.com

Oleksandr Polozov
University of Washington

polozov@cs.washington.edu

Rishabh Singh
Microsoft Research

risin@microsoft.com

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2500000010

sumitg@microsoft.com
polozov@cs.washington.edu
risin@microsoft.com


Foundations and Trends® in
Programming Languages

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

S. Gulwani, O. Polozov and R. Singh. Program Synthesis. Foundations and Trends®

in Programming Languages, vol. 4, no. 1-2, pp. 1–119, 2017.

This Foundations and Trends® issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-292-1
© 2017 S. Gulwani, O. Polozov and R. Singh

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for in-
ternal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2500000010



Foundations and Trends® in
Programming Languages
Volume 4, Issue 1-2, 2017

Editorial Board

Editor-in-Chief

Mooly Sagiv
Tel Aviv University
Israel

Editors

Martín Abadi
Google &
UC Santa Cruz
Anindya Banerjee
IMDEA
Patrick Cousot
ENS Paris & NYU
Oege De Moor
University of Oxford
Matthias Felleisen
Northeastern University
John Field
Google
Cormac Flanagan
UC Santa Cruz
Philippa Gardner
Imperial College
Andrew Gordon
Microsoft Research &
University of Edinburgh
Dan Grossman
University of Washington

Robert Harper
CMU
Tim Harris
Oracle
Fritz Henglein
University of Copenhagen
Rupak Majumdar
MPI-SWS & UCLA
Kenneth McMillan
Microsoft Research
J. Eliot B. Moss
UMass, Amherst
Andrew C. Myers
Cornell University
Hanne Riis Nielson
TU Denmark
Peter O’Hearn
UCL
Benjamin C. Pierce
UPenn
Andrew Pitts
University of Cambridge

Ganesan Ramalingam
Microsoft Research
Mooly Sagiv
Tel Aviv University
Davide Sangiorgi
University of Bologna
David Schmidt
Kansas State University
Peter Sewell
University of Cambridge
Scott Stoller
Stony Brook University
Peter Stuckey
University of Melbourne
Jan Vitek
Purdue University
Philip Wadler
University of Edinburgh
David Walker
Princeton University
Stephanie Weirich
UPenn

Full text available at: http://dx.doi.org/10.1561/2500000010



Editorial Scope

Topics

Foundations and Trends® in Programming Languages publishes survey
and tutorial articles in the following topics:

• Abstract interpretation

• Compilation and interpretation
techniques

• Domain specific languages

• Formal semantics, including
lambda calculi, process calculi,
and process algebra

• Language paradigms

• Mechanical proof checking

• Memory management

• Partial evaluation

• Program logic

• Programming language
implementation

• Programming language security

• Programming languages for
concurrency

• Programming languages for
parallelism

• Program synthesis

• Program transformations and
optimizations

• Program verification

• Runtime techniques for
programming languages

• Software model checking

• Static and dynamic program
analysis

• Type theory and type systems

Information for Librarians

Foundations and Trends® in Programming Languages, 2017, Volume 4, 4 issues.
ISSN paper version 2325-1107. ISSN online version 2325-1131. Also available
as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2500000010



Foundations and Trends® in Programming Languages
Vol. 4, No. 1-2 (2017) 1–119
© 2017 S. Gulwani, O. Polozov and R. Singh
DOI: 10.1561/2500000010

Program Synthesis

Sumit Gulwani
Microsoft Research

sumitg@microsoft.com

Oleksandr Polozov
University of Washington

polozov@cs.washington.edu

Rishabh Singh
Microsoft Research

risin@microsoft.com

Full text available at: http://dx.doi.org/10.1561/2500000010

sumitg@microsoft.com
polozov@cs.washington.edu
risin@microsoft.com


Contents

1 Introduction 2
1.1 Program Synthesis . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Dimensions in Program Synthesis . . . . . . . . . . . . . . 6
1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Applications 13
2.1 Data Wrangling . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Code Repair . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Code Suggestions . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Superoptimization . . . . . . . . . . . . . . . . . . . . . . 30
2.7 Concurrent Programming . . . . . . . . . . . . . . . . . . 32

3 General Principles 35
3.1 Second-Order Problem Reduction . . . . . . . . . . . . . . 35
3.2 Oracle-Guided Synthesis . . . . . . . . . . . . . . . . . . . 37
3.3 Syntactic Bias . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 51

ii

Full text available at: http://dx.doi.org/10.1561/2500000010



iii

4 Enumerative Search 54
4.1 Enumerative Search . . . . . . . . . . . . . . . . . . . . . 54
4.2 Bidirectional Enumerative Search . . . . . . . . . . . . . . 59
4.3 Offline Exhaustive Enumeration and Composition . . . . . 60

5 Constraint Solving 62
5.1 Component-Based Synthesis . . . . . . . . . . . . . . . . 64
5.2 Solver-Aided Programming . . . . . . . . . . . . . . . . . 68
5.3 Inductive Logic Programming . . . . . . . . . . . . . . . . 72

6 Stochastic Search 74
6.1 Metropolis-Hastings Algorithm for Sampling Expressions . 74
6.2 Genetic Programming . . . . . . . . . . . . . . . . . . . . 77
6.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . 81
6.4 Neural Program Synthesis . . . . . . . . . . . . . . . . . . 82

7 Programming by Examples 87
7.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . 87
7.2 Version Space Algebra . . . . . . . . . . . . . . . . . . . . 89
7.3 Deduction-Based Techniques . . . . . . . . . . . . . . . . 91
7.4 Ambiguity Resolution . . . . . . . . . . . . . . . . . . . . 96

8 Future Work 102

Acknowledgements 105

References 106

Full text available at: http://dx.doi.org/10.1561/2500000010



Abstract

Program synthesis is the task of automatically finding a program in the
underlying programming language that satisfies the user intent expressed
in the form of some specification. Since the inception of AI in the 1950s,
this problem has been considered the holy grail of Computer Science.
Despite inherent challenges in the problem such as ambiguity of user
intent and a typically enormous search space of programs, the field of
program synthesis has developed many different techniques that enable
program synthesis in different real-life application domains. It is now
used successfully in software engineering, biological discovery, computer-
aided education, end-user programming, and data cleaning. In the last
decade, several applications of synthesis in the field of programming by
examples have been deployed in mass-market industrial products.

This survey is a general overview of the state-of-the-art approaches
to program synthesis, its applications, and subfields. We discuss the
general principles common to all modern synthesis approaches such as
syntactic bias, oracle-guided inductive search, and optimization tech-
niques. We then present a literature review covering the four most
common state-of-the-art techniques in program synthesis: enumerative
search, constraint solving, stochastic search, and deduction-based pro-
gramming by examples. We conclude with a brief list of future horizons
for the field.

S. Gulwani, O. Polozov and R. Singh. Program Synthesis. Foundations and Trends®

in Programming Languages, vol. 4, no. 1-2, pp. 1–119, 2017.
DOI: 10.1561/2500000010.

Full text available at: http://dx.doi.org/10.1561/2500000010



1
Introduction

1.1 Program Synthesis

Program Synthesis is the task of automatically finding programs from
the underlying programming language that satisfy user intent expressed
in some form of constraints. Unlike typical compilers that translate
a fully specified high-level code to low-level machine representation
using a syntax-directed translation, program synthesizers typically per-
form some form of search over the space of programs to generate a
program that is consistent with a variety of constraints (e.g. input-
output examples, demonstrations, natural language, partial programs,
and assertions).

The problem of program synthesis has long been considered the holy
grail of Computer Science. Pnueli considered program synthesis to be
one of the most central problems in the theory of programming [110].
There has been a lot of progress made in this field in many different
communities including programming languages, machine learning, and
artificial intelligence. The idea of constructing interpretable solutions
(algorithms) with proofs by composing solutions of smaller sub-problems
was considered as early as in 1932 in the early work on constructive
Mathematics [70]. After the development of first automated theorem

2

Full text available at: http://dx.doi.org/10.1561/2500000010



1.1. Program Synthesis 3

provers, there was a lot of pioneering work on deductive synthesis
approaches [41, 85, 144]. The main idea behind these approaches was to
use the theorem provers to first construct a proof of the user-provided
specification, and then use the proof to extract the corresponding logical
program. Another approach that became popular shortly afterwards was
that of transformation-based synthesis [86], where a high-level complete
specification was transformed repeatedly until achieving the desired
low-level program.

The deductive synthesis approaches assumed a complete formal
specification of the desired user intent was provided, which in many
cases proved to be as complicated as writing the program itself. This
lead to new inductive synthesis approaches that were based on induc-
tive specifications such as input-output examples, demonstrations etc.
Shaw et al. [125] developed a framework for learning restricted Lisp
programs from a single input-output example. Summers [137] and Bier-
mann [13] developed techniques to learn a rich class of LISP programs
from multiple input-output examples. Pygmalion [131] was one of the
first successful programming by demonstration systems that inferred
recursive programs from a set of concrete executions of a program. There
has also been a lot of pioneering work on using genetic programming
approaches to automatically evolve programs that are consistent with a
specification [73]. These approaches are inspired from Darwin’s theory
of evolution, and evolve a random population of programs continuously
into new generations until generating the desired programs.

The more recent program synthesis approaches allow a user to
additionally provide a skeleton (grammar) of the space of possible
programs in addition to the specification [3]. This results in two benefits.
First, the grammar provides structure to the hypothesis space, which can
result in a more efficient search procedure. Second, the learnt programs
are also more interpretable since they are derived from the grammar.
The Sketch [132] system pioneered this idea to allow programmers to
write partial program sketches (programs with holes), which are then
automatically completed given some specification. FlashFill [43, 49] is
perhaps one of the most visible Programming By Examples system that
is shipping in Microsoft Excel. FlashFill defines the hypothesis space of

Full text available at: http://dx.doi.org/10.1561/2500000010



4 Introduction

programs using a domain-specific language of regular expression based
string transformations, and uses version-space algebra based synthesis
techniques to efficiently synthesize string transformation programs from
few input-output examples.

Many modern program synthesis applications are built on top of
some meta-synthesis framework. Such frameworks allow a user to sepa-
rately define a program space (a grammar or a program skeleton) and
describe some insights for the synthesis algorithm (e.g. encoding of the
synthesis problem into SAT/SMT constraints or inverse semantics of the
program’s operators). The framework then automatically converts these
definitions into an efficient synthesizer for the given application domain.
Most popular synthesis frameworks include the aforementioned Sketch
system [132], the PROSE framework for FlashFill-like programming
by examples [113], and the Rosette virtual machine for solver-aided
programming [139].

1.2 Challenges

Program synthesis is a notoriously challenging problem. Its inherent
challenge lies in two main components of the problem: intractability of
the program space and diversity of user intent.

Program Space In its most general formulation (for a Turing-complete
programming language and an arbitrary constraint) program synthesis
is undecidable, thus almost all successful synthesis approaches perform
some kind of search over the program space. This search itself is a hard
combinatorial problem. The number of programs in any non-trivial
programming language quickly grows exponentially with program size,
and this vast number of possible candidates for a long time has rendered
the task intractable.

Early approaches to program synthesis focused on deductive and
transformational methods [85, 86]. Such methods are based on a ex-
ponentially growing tree of theorem-proving deductive inferences or
correctness-preserving code rewrite rules, respectively. Both approaches
guarantee that the produced program satisfies the provided constraint

Full text available at: http://dx.doi.org/10.1561/2500000010



1.2. Challenges 5

by construction but the non-deterministic nature of a theorem-proving
or code-rewriting loop cannot guarantee efficiency or even termination
of the synthesis process. Modern successful applications of similar tech-
niques employ clever domain-specific heuristics for cutting down the
derivation tree (see, for example, [63, 104]).

The last two decades brought a resurgence of program synthesis
research with a number of technological and algorithmic breakthroughs.
First, Moore’s law and advances in constraint solving allowed exploring
larger program spaces in reasonable time. This led to many success-
ful constraint-based synthesis applications tracing their roots back to
Sketch and the invention of counterexample-guided inductive synthe-
sis [132]. Second, novel approaches to program space enumeration such as
stochastic techniques [105, 123] and deductive top-down search [43, 113]
enabled synthesis applications in new domains that were difficult to
formalize through theorems and rewrite rules.

However, even though modern-day synthesis techniques produce
sizable real-life code snippets, they are still rarely applicable to industrial-
size projects. For instance, at the time of this writing, the state-of-the-art
superoptimization technique (i.e., synthesizer of shorter implementations
of a given function; see §2.6) by Phothilimthana et al. [109] is able to
explore a program space of size 1079. In contrast, discovering an expert
implementation of the MD5 hash function requires exploring a space of
105943 programs!1 New algorithmic advances and clever exploitation of
domain-specific knowledge to facilitate large program space exploration
is an active research area in program synthesis.

User Intent Even armed with an efficient search technique, program
synthesizers may not immediately reach the dream of automatic pro-
gramming. The second challenge in synthesis is accurately expressing
and interpreting user intent—the specification on the desired program.

Different methods for expressing user intent range from formal
logical specifications to informal natural-language descriptions or input-
output examples. Specifications on the formal end of this spectrum

1See Rastislav Bodik’s ICFP-2015 keynote talk “Program Synthesis: Opportunities
for the Next Decade” for a detailed comparison: https://youtu.be/PI99A08Y83E.

Full text available at: http://dx.doi.org/10.1561/2500000010

https://youtu.be/PI99A08Y83E


6 Introduction

(traditionally required by deductive synthesis techniques) often appear
to the user as complex as writing the program itself. Specifications on
the informal end, on the other hand, are highly ambiguous. For instance,
for a given input-output example (“John Smith” → “Smith, J.”) the
program space of FlashFill [43] may contains millions of programs
consistent with it. Most of these programs simply overfit the example
and do not satisfy the spirit of user intent. However, FlashFill has no
way to discover this without additional communication from the user.

Many real-life application domains for program synthesis are too com-
plex to be described completely with formal or informal specifications.
First, such a description would likely contain so many implementation
details and special cases that it would be comparable in size to the
produced program. Second, and most importantly, the users themselves
often do not imagine the full scope of their intent until they begin an
interaction with a programmer or a program synthesis system. Both
of these observations imply that applying program synthesis to larger
industrial applications is much a human-computer interaction (HCI)
problem as it is an algorithmic one. This survey mostly focuses on
algorithmic approaches to program synthesis but we also briefly discuss
some HCI-related research in §3.2, 3.3 and 7.4.

1.3 Dimensions in Program Synthesis

A synthesizer is typically characterized by three key dimensions: the
kind of constraints that it accepts as expression of user intent, the
space of programs over which it searches, and the search technique it
employs [42]. The synthesized program may be explicitly presented to
the user for debugging, re-use, or for being incorporated as part of a
larger workflow. However, in some cases, the synthesized program may
be implicit and is simply used to automate the intended one-off task
for the user, as in case of spreadsheet string transformations [43].

1.3.1 User Intent

The user intent can be expressed in various forms including logical
specification, examples [44], traces, natural language [28, 46, 79], partial

Full text available at: http://dx.doi.org/10.1561/2500000010



1.3. Dimensions in Program Synthesis 7

programs [132], or even related programs. A particular choice may be
more suited in a given scenario depending on the underlying task as
well as on the technical background of the user.

A logical specification is a logical relation between inputs and out-
puts of a program. It can act as a precise and succinct form of functional
specification of the desired program. However, complete logical specifi-
cations are often quite tricky to write.

End users, who are not programming experts, may find providing
examples as more approachable and natural. Example-based specifi-
cations more generally include asserting properties of the output (as
opposed to specifying the full output) on a given input state [113]. A
key challenge in this environment is that of resolving ambiguity that
is inherent in the example-based specification. Such an ambiguity is
often resolved in an interactive loop with the user, where the user may
iteratively provide more examples dependant on the behavior of the
program synthesized in the last step.

A trace is a detailed step-by-step description of how the program
should behave on a given input. A trace is a more detailed description
than an input-output example since it also illustrates how a specific input
should be transformed into the corresponding output as opposed to just
describing what the output should be. Traces are an appropriate model
for programming by demonstration systems [25], where the intermediate
states resulting from the user’s successive actions on a user interface
constitute a valid trace. From the perspective of the synthesizer, traces
are preferable to input-output examples since the former contains more
information. From the user’s perspective, providing demonstrations in
may be more taxing in general than providing input-output examples.

In some cases, a program itself might act as the best means of
specifying the intent. This happens trivially for certain applications
such as superoptimization [9, 109], deobfuscation [59] and synthesis of
program inverses [134], where the program to be optimized, deobfus-
cated, or inverted respectively forms the specification. However, even
for applications such as discovery of new algorithms [47], users might
find it easier to write the specification as an inefficient program rather
than a logical relation.

Full text available at: http://dx.doi.org/10.1561/2500000010



8 Introduction

1.3.2 Search Space

The search space should strike a good balance between expressiveness
and efficiency. On one hand, the space should be large/expressive enough
to include a large class of programs for the underlying domain. While on
the other hand, the space of the programs should be restrictive enough
so that it is amenable to efficient search, and it should be over a domain
of programs that are amenable to efficient reasoning.

The search space can be over imperative or functional programs
(with possible restrictions on the control structure or the operator
set), The program space can be restricted to a subset of an existing
programming language (general purpose or domain-specific) or to a
specifically designed domain-specific language. The space of programs
can be qualified by at least two attributes: (i) the operators used
in the program, and (ii) the control structure of the program. The
control structure of the program may be restricted to a user-provided
looping template [135], a partial program with holes [132], straight-line
programs [8, 47, 63, 87, 109], or a guarded statement set with control
flow at the very top [43].

The search space can even be over restricted models of computations
such as regular or context-free grammars/transducers. Regular expres-
sion synthesis can be used for constructing text editing programs [100].
Context-free grammar synthesis is useful for paser construction [81].
Succinct logical representations may also serve as a good choice for the
search space. For instance, class of first order logic together with fixed
point equals the class of PTIME algorithms over ordered structures
such as graphs, trees, and strings. Hence, this class and also some of
its useful subclasses (such as those with a fixed quantifier depth) can
serve as good target languages for synthesizing efficient graph or tree
algorithms [57].

1.3.3 Search Technique

The search technique can be based on enumerative search, deduction,
constraint solving, statistical techniques, or some combination of these.

Full text available at: http://dx.doi.org/10.1561/2500000010



1.3. Dimensions in Program Synthesis 9

Enumerative An enumerative search technique enumerates programs
in the underlying search space in some order and for each program
checks whether or not it satisfies the synthesis constraints. While this
might appear simple, it is often a very effective strategy. A naïve imple-
mentation of enumerative search often does not scale. Many practical
systems that leverage enumerative search innovate by developing various
optimizations for pruning the search space or by ordering it.

Deductive The deductive top-down search [113] follows the standard
divide-and-conquer technique, where the key idea is to recursively reduce
the problem of synthesizing a program expression e of a certain kind and
that satisfies a certain specification φ to simpler sub-problems (where
the search is either over sub-expressions of e or over sub-specifications
of φ), followed by appropriately combining those results. The reduction
logic for reducing a synthesis problem to simpler synthesis problems
depends on the nature of the involved expression e and the inductive
specification φ. In particular, if e is of the form F (e1, e2), the reduction
logic leverages the inverse semantics of F to push constraints on e down
through the grammar into constraints on e1 and e2.

While enumerative search is bottom-up (i.e., it enumerates smaller
sub-expressions before enumerating larger expressions), the deductive
search is top-down (i.e., it fixes the top-part of an expression and
then searches for its sub-expressions). Enumerative search can be seen
as finding a programmatic path (within an underlying grammar that
connects inputs and outputs) starting from the inputs to outputs.
Deduction does the same, but it searches for the programmatic path in
a backward direction starting from the outputs leveraging the operator
inverses. If the underlying grammar allows for a rich set of constants,
the bottom-up enumerative search can get lost in simply guessing the
right constants. On the other hand, the top-down deductive technique
can deduce constants based on the accumulated constraints as the last
step in the search process.

Constraint Solving The constraint solving based techniques [132, 135]
involve two main steps: constraint generation, and constraint resolution.

Full text available at: http://dx.doi.org/10.1561/2500000010



10 Introduction

Constraint generation refers to the process of generating a logical
constraint whose solution will yield the intended program. Generating
such a logical constraint typically requires making some assumption
about the control flow of the unknown program and encoding that
control flow in some manner. Three different kinds of methods have been
used in the past for constraint generation: invariant-based, path-based,
and input-based. On one extreme, we have invariant-based methods
that generate constraints that faithfully assert that the program satisfies
the given specification [133].

Such methods also end up synthesizing an inductive proof of correct-
ness in addition to the program itself. A disadvantage of such methods
is that the generated constraints may be very sophisticated since the
inductive invariants are often much more complicated and over a richer
logic than the program itself. On the other extreme, we have input-
based methods that generate constraints that assert that the program
satisfies the given specification on a certain collection of inputs [132].
Such constraints are usually much simpler in nature than the ones
generated by the invariant-bases method. Unless paired with a sound
counterexample guided inductive synthesis strategy (CEGIS), described
in §3.2, this method trades off soundness for efficiency. A middle ground
is achieved by path-based methods that generate constraints that assert
that the program satisfies the given specification on all inputs that
execute a certain set of paths [134]. Compared to input-based methods,
these methods may achieve a faster convergence, if paired up with an
outer CEGIS loop.

Constraint solving involves solving the constraints outputted by the
constraint generation phase. These constraints often involve second-
order unknowns and universal quantifiers. A general strategy is to first
reduce the second-order unknowns to first-order unknowns and then
eliminate universal quantifiers, and then solve the resulting first-order
quantifier-free constraints using an off-the-shelf SAT/SMT solver. The
second-order unknowns are reduced to first-order unknowns by use of
templates. The universal quantifiers can be eliminated using a variety
of strategies including Farkas lemma, cover algorithms, and sampling.

Full text available at: http://dx.doi.org/10.1561/2500000010



1.3. Dimensions in Program Synthesis 11

Statistical Various kinds of statistical techniques have been proposed
including machine learning of probabilistic grammars, genetic program-
ming, MCMC sampling, and probabilistic inference.

Machine learning techniques can be used to augment other search
methodologies based on enumerative search or deduction by providing
likelihood of various choices at any choice point. One such choice point
is selection of a production for a non-terminal in a grammar that
specifies the underlying program space. The likelihood probabilities can
be function of certain cues found in the input-ouput examples provided
by the user or the additionally available inputs [89]. These functions
are learned in an offline phase from training data.

Genetic programming is a program synthesis method inspired by
biological evolution [72]. It involves maintaining a population of in-
dividual programs, and using that to produce program variants by
leveraging computational analogs of biological mutation and crossover.
Mutation introduces random changes, while crossover facilitates sharing
of useful pieces of code between programs being evolved. Each vari-
ant’s suitability is evaluated using a user-defined fitness function, and
successful variants are selected for continued evolution. The success
of a genetic programming based system crucially depends on the fit-
ness function. Genetic programming has been used to discover mutual
exclusion algorithms [68] and to fix bugs in imperative programs [146]

MCMC sampling has been used to search for a desired program
starting from a given candidate. The success crucially depends on
defining a smooth cost metric for Boolean constraints. STOKE [124], a
superoptimization tool, uses Hamming distance to measure closeness
of generated bit-values to the target on a representative test input set,
and rewards generation of (almost) correct values in incorrect locations.

Probabilistic inference has been used to evolve a given program by
making local changes, one at a time. This relies on modeling a program
as a graph of instructions and states, connected by constraint nodes.
Each constraint node establishes the semantics of some instruction by
relating the instruction with the state immediately before the instruction
and the state immediately after the instruction [45]. Belief propagation

Full text available at: http://dx.doi.org/10.1561/2500000010



12 Introduction

has been used to synthesize imperative program fragments that execute
polynomial computations and list manipulations [62].

1.4 Roadmap

This survey is organized as follows. We start out by discussing some
prominent applications of program synthesis in Chapter 2. We then
discuss some general principles used across many synthesis techniques in
Chapter 3. We then describe the four key search techniques: enumerative
(Chapter 4), constraint-solving based (Chapter 5), stochastic (Chap-
ter 6), and deduction-based programming by examples (Chapter 7).
Chapter 8 concludes with some discussion on future work.

Full text available at: http://dx.doi.org/10.1561/2500000010



References

[1] Takuya Akiba, Kentaro Imajo, Hiroaki Iwami, Yoichi Iwata, Toshiki
Kataoka, Naohiro Takahashi, Michał Moskal, and Nikhil Swamy. Cali-
brating research in program synthesis using 72,000 hours of programmer
time. Microsoft Research, Redmond, WA, USA, Technical Report, 2013.

[2] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sut-
ton. Learning natural coding conventions. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 281–293. ACM, 2014.

[3] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin,
Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided
synthesis. In Formal Methods in Computer-Aided Design, FMCAD,
pages 1–8, 2013.

[4] Rajeev Alur, Pavol Cerný, and Arjun Radhakrishna. Synthesis through
unification. In Proceedings of the 27th International Conference on
Computer-Aided Verification (CAV), pages 163–179, 2015.

[5] Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama.
Results and analysis of SyGuS-Comp’15. In Proceedings Fourth Workshop
on Synthesis, SYNT, pages 3–26, 2015.

[6] Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama.
SyGuS-Comp 2016: Results and analysis. In Proceedings of the Fifth
Workshop on Synthesis, SYNT@CAV 2016, Toronto, Canada, July 17-18,
2016., pages 178–202, 2016.

106

Full text available at: http://dx.doi.org/10.1561/2500000010



References 107

[7] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian
Nowozin, and Daniel Tarlow. DeepCoder: Learning to write programs.
CoRR, abs/1611.01989, 2016.

[8] Sorav Bansal and Alex Aiken. Automatic generation of peephole su-
peroptimizers. In Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006, pages
394–403, 2006.

[9] Sorav Bansal and Alex Aiken. Binary translation using peephole super-
optimizers. In 8th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2008, December 8-10, 2008, San Diego, Cal-
ifornia, USA, Proceedings, pages 177–192, 2008.

[10] Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Benjamin G. Zorn.
FlashRelate: extracting relational data from semi-structured spreadsheets
using examples. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015, pages 218–228, 2015.

[11] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB
Standard Version 2.6, 2010.

[12] Gilles Barthe, Juan Manuel Crespo, Sumit Gulwani, César Kunz, and
Mark Marron. From relational verification to SIMD loop synthesis.
In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’13, Shenzhen, China, February 23-27, 2013,
pages 123–134, 2013.

[13] Alan W Biermann. The inference of regular LISP programs from ex-
amples. IEEE transactions on Systems, Man, and Cybernetics, 8(8):
585–600, 1978.

[14] James Bornholt and Emina Torlak. Synthesizing memory models from
framework sketches and litmus tests. In Programming Languages Design
and Implementation, 2017.

[15] James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. Optimiz-
ing synthesis with metasketches. In ACM SIGPLAN Notices, volume 51,
pages 775–788. ACM, 2016.

[16] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning
to rank: from pairwise approach to listwise approach. In ICML, 2007.

Full text available at: http://dx.doi.org/10.1561/2500000010



108 References

[17] Pavol Cerný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun
Radhakrishna, and Rohit Singh. Quantitative synthesis for concurrent
programs. In Computer Aided Verification - 23rd International Confer-
ence, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings,
pages 243–259, 2011.

[18] Krishnendu Chatterjee, Thomas A. Henzinger, Barbara Jobstmann,
and Rohit Singh. Measuring and synthesizing systems in probabilistic
environments. J. ACM, 62(1):9:1–9:34, March 2015. ISSN 0004-5411.

[19] Swarat Chaudhuri, Martin Clochard, and Armando Solar-Lezama. Bridg-
ing boolean and quantitative synthesis using smoothed proof search.
SIGPLAN Not., 49(1):207–220, January 2014. ISSN 0362-1340.

[20] Yves Chauvin and David E. Rumelhart. Backpropagation: theory, archi-
tectures, and applications. Psychology Press, 1995.

[21] Salman Cheema, Sarah Buchanan, Sumit Gulwani, and Joseph J. LaViola
Jr. A practical framework for constructing structured drawings. In
IUI’14 19th International Conference on Intelligent User Interfaces,
IUI’14, Haifa, Israel, February 24-27, 2014, pages 311–316, 2014.

[22] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Opti-
mizing database-backed applications with query synthesis. In ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 3–14,
2013.

[23] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. Pro-
grammatic and direct manipulation, together at last. In Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016, pages 341–354, 2016.

[24] David Cossock and Tong Zhang. Subset ranking using regression. Learn-
ing Theory, 4005:605–619, 2006.

[25] Allen Cypher, editor. Watch What I Do – Programming by Demonstra-
tion. MIT Press, Cambridge, MA, USA, 1993.

[26] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. Qlose: Program
Repair with Quantitative Objectives. In Computer Aided Verification
(CAV). Springer-Verlag, 2016.

[27] Luc De Raedt. Logical and Relational Learning. Springer Publishing
Company, Incorporated, 1st edition, 2010.

Full text available at: http://dx.doi.org/10.1561/2500000010



References 109

[28] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey
Karkare, Mark Marron, Sailesh R., and Subhajit Roy. Program syn-
thesis using natural language. In Proceedings of the 38th International
Conference on Software Engineering (ICSE), pages 345–356, 2016.

[29] Joshua Dunfield. A unified system of type refinements. PhD thesis, Air
Force Research Laboratory, 2007.

[30] Kevin Ellis and Sumit Gulwani. Learning to learn programs from exam-
ples: Going beyond program structure. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2017.

[31] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W.
Reps. Component-based synthesis for complex APIs. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, 2017.

[32] Cormac Flanagan. Hybrid type checking. In ACM Sigplan Notices,
volume 41, pages 245–256. ACM, 2006.

[33] Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve
Zdancewic. Example-directed synthesis: a type-theoretic interpreta-
tion. In ACM SIGPLAN Notices, volume 51, pages 802–815. ACM,
2016.

[34] Tim Freeman and Frank Pfenning. Refinement types for ML. In Proceed-
ings of the ACM SIGPLAN 1991 Conference on Programming Language
Design and Implementation, PLDI ’91, pages 268–277, New York, NY,
USA, 1991. ACM. .

[35] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An
efficient boosting algorithm for combining preferences. The Journal of
machine learning research, 4:933–969, 2003.

[36] Alexander L. Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman,
Pushmeet Kohli, Jonathan Taylor, and Daniel Tarlow. TerpreT: A
probabilistic programming language for program induction. CoRR,
abs/1608.04428, 2016.

[37] Khaled Ghédira. Constraint Satisfaction Problems: CSP Formalisms
and Techniques. John Wiley & Sons, 2013.

[38] Patrice Godefroid and Ankur Taly. Automated synthesis of symbolic
instruction encodings from I/O samples. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 441–452. ACM, 2012.

[39] Sally A. Goldman and Michael J. Kearns. On the complexity of teaching.
Journal of Computer and System Sciences, 50:303–314, 1992.

Full text available at: http://dx.doi.org/10.1561/2500000010



110 References

[40] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing machines.
arXiv preprint arXiv:1410.5401, 2014.

[41] C. Cordell Green. Application of theorem proving to problem solving.
In IJCAI, pages 219–240, 1969.

[42] Sumit Gulwani. Dimensions in program synthesis. In Proceedings of 10th
International Conference on Formal Methods in Computer-Aided Design,
FMCAD 2010, Lugano, Switzerland, October 20-23, page 1, 2010.

[43] Sumit Gulwani. Automating string processing in spreadsheets using
input-output examples. In Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2011, Austin, TX, USA, January 26-28, 2011, pages 317–330, 2011.

[44] Sumit Gulwani. Programming by examples - and its applications in data
wrangling. In Dependable Software Systems Engineering, pages 137–158.
2016.

[45] Sumit Gulwani and Nebojsa Jojic. Program verification as probabilistic
inference. In Proceedings of the 34th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2007, Nice,
France, January 17-19, 2007, pages 277–289, 2007.

[46] Sumit Gulwani and Mark Marron. NLyze: interactive programming
by natural language for spreadsheet data analysis and manipulation.
In International Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014, pages 803–814, 2014.

[47] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-
san. Synthesis of loop-free programs. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 62–73,
2011.

[48] Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. Syn-
thesizing geometry constructions. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 50–61,
2011.

[49] Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet
data manipulation using examples. Commun. ACM, 55(8):97–105, 2012.

[50] Sumit Gulwani, Mikaël Mayer, Filip Niksic, and Ruzica Piskac. StriSynth:
Synthesis for live programming. In 37th IEEE/ACM International
Conference on Software Engineering, ICSE, pages 701–704, 2015.

Full text available at: http://dx.doi.org/10.1561/2500000010



References 111

[51] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Com-
plete completion using types and weights. In ACM SIGPLAN Notices,
volume 48, pages 27–38. ACM, 2013.

[52] William R. Harris and Sumit Gulwani. Spreadsheet table transformations
from examples. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011, San
Jose, CA, USA, June 4-8, 2011, pages 317–328, 2011.

[53] Brian Hempel and Ravi Chugh. Semi-automated SVG programming
via direct manipulation. In Proceedings of the 29th Annual Symposium
on User Interface Software and Technology, UIST 2016, Tokyo, Japan,
October 16-19, 2016, pages 379–390, 2016.

[54] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin
rank boundaries for ordinal regression. Advances in Neural Information
Processing Systems, pages 115–132, 1999.

[55] Ralf Herbrich, Tom Minka, and Thore Graepel. TrueSkill™: A Bayesian
skill rating system. In Advances in neural information processing systems,
pages 569–576, 2006.

[56] John H. Holland. Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial
intelligence. U Michigan Press, 1975.

[57] Shachar Itzhaky, Sumit Gulwani, Neil Immerman, and Mooly Sagiv.
A simple inductive synthesis methodology and its applications. In
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA, pages 36–46,
2010.

[58] Susmit Jha and Sanjit A. Seshia. A Theory of Formal Synthesis via
Inductive Learning. ArXiv e-prints, May 2015.

[59] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-
guided component-based program synthesis. In 2010 ACM/IEEE 32nd
International Conference on Software Engineering (ICSE), volume 1,
pages 215–224. IEEE, 2010.

[60] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. Program
repair as a game. In Computer Aided Verification (CAV), pages 226–238.
Springer-Verlag, 2005.

[61] Colin G. Johnson. Genetic programming with fitness based on model
checking. In European Conference on Genetic Programming, pages
114–124. Springer, 2007.

Full text available at: http://dx.doi.org/10.1561/2500000010



112 References

[62] Vladimir Jojic, Sumit Gulwani, and Nebojsa Jojic. Probabilistic inference
of programs from input/output examples. Technical Report MSR-TR-
2006-103, Microsoft Research, 2006.

[63] Rajeev Joshi, Greg Nelson, and Keith H. Randall. Denali: A goal-directed
superoptimizer. In Proceedings of the 2002 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), Berlin,
Germany, June 17-19, 2002, pages 304–314, 2002.

[64] Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with
stack-augmented recurrent nets. In NIPS, pages 190–198, 2015.

[65] Garvit Juniwal, Alexandre Donzé, Jeff C. Jensen, and Sanjit A. Seshia.
CPSGrader: Synthesizing temporal logic testers for auto-grading an
embedded systems laboratory. In EMSOFT, pages 24:1–24:10, 2014.

[66] Łukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. arXiv
preprint arXiv:1511.08228, 2015.

[67] Susumu Katayama. MagicHaskeller on the Web: Automated program-
ming as a service. In Haskell Symposium, 2013.

[68] Gal Katz and Doron A. Peled. Genetic programming and model checking:
Synthesizing new mutual exclusion algorithms. In Automated Technology
for Verification and Analysis, 6th International Symposium, ATVA 2008,
Seoul, Korea, October 20-23, 2008. Proceedings, pages 33–47, 2008.

[69] Ross D. King, Stephen Muggleton, Ashwin Srinivasan, and M.J. Stern-
berg. Structure-activity relationships derived by machine learning: The
use of atoms and their bond connectivities to predict mutagenicity by
inductive logic programming. Proceedings of the National Academy of
Sciences, 93(1):438–442, 1996.

[70] A. N. Kolmogorov. Zur deutung der intuitionistischen logik. Math.
Zeitschr, 35:58–365, 1932.

[71] John R. Koza. Hierarchical genetic algorithms operating on populations
of computer programs. In Proceedings of the 11th International Joint
Conference on Artificial Intelligence (IJCAI), pages 768–774. Morgan
Kaufmann Publishers Inc., 1989.

[72] John R. Koza. Genetic programming - on the programming of computers
by means of natural selection. Complex adaptive systems. MIT Press,
1993.

[73] John R Koza. Genetic programming as a means for programming
computers by natural selection. Statistics and Computing, 4(2):87–112,
1994.

Full text available at: http://dx.doi.org/10.1561/2500000010



References 113

[74] Shriram Krishnamurthi. Educational pearl: Automata via macros. Jour-
nal of Functional Programming, 16(03):253–267, 2006.

[75] Michael Kuperstein, Martin T. Vechev, and Eran Yahav. Automatic
inference of memory fences. In Proceedings of 10th International Con-
ference on Formal Methods in Computer-Aided Design, FMCAD 2010,
Lugano, Switzerland, October 20-23, pages 111–119, 2010.

[76] Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-
access machines. arXiv preprint arXiv:1511.06392, 2015.

[77] Tessa A. Lau, Pedro Domingos, and Daniel S. Weld. Version space algebra
and its application to programming by demonstration. In Proceedings of
the 17th International Conference on Machine Learning (ICML), pages
527–534, 2000.

[78] Vu Le and Sumit Gulwani. FlashExtract: a framework for data extraction
by examples. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -
June 09 - 11, 2014, page 55, 2014.

[79] Vu Le, Sumit Gulwani, and Zhendong Su. SmartSynth: synthesizing
smartphone automation scripts from natural language. In The 11th
Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys’13, Taipei, Taiwan, June 25-28, 2013, pages 193–206,
2013.

[80] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley
Weimer. Genprog: A generic method for automatic software repair.
IEEE Transactions on Software Engineering, 38(1):54–72, 2012.

[81] Alan Leung, John Sarracino, and Sorin Lerner. Interactive parser synthe-
sis by example. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015, pages 565–574, 2015.

[82] Percy Liang, Michael I. Jordan, and Dan Klein. Learning programs: A
hierarchical Bayesian approach. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 639–646, 2010.

[83] Francesca A. Lisi. Building rules on top of ontologies for the Semantic
Web with inductive logic programming. Theory and Practice of Logic
Programming, 8(03):271–300, 2008.

[84] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. Jungloid
mining: helping to navigate the API jungle. In PLDI, pages 48–61, 2005.

[85] Zohar Manna and Richard J. Waldinger. Toward automatic program
synthesis. Commun. ACM, 14(3):151–165, 1971.

Full text available at: http://dx.doi.org/10.1561/2500000010



114 References

[86] Zohar Manna and Richard J. Waldinger. Knowledge and reasoning in
program synthesis. Artif. Intell., 6(2):175–208, 1975.

[87] Henry Massalin. Superoptimizer - A look at the smallest program. In
Proceedings of the Second International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
II), Palo Alto, California, USA, October 5-8, 1987., pages 122–126, 1987.

[88] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron,
Oleksandr Polozov, Rishabh Singh, Ben Zorn, and Sumit Gulwani. User
interaction models for disambiguation in programming by example. In
28th ACM User Interface Software and Technology Symposium, pages
291–301. ACM, 2015.

[89] Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani, Butler W. Lamp-
son, and Adam Kalai. A machine learning framework for programming
by example. In Proceedings of the 30th International Conference on
Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013,
pages 187–195, 2013.

[90] Alon Mishne, Sharon Shoham, and Eran Yahav. Typestate-based se-
mantic code search over partial programs. In OOPSLA, pages 997–1016,
2012.

[91] Tom M. Mitchell. Generalization as search. Artificial intelligence, 18(2):
203–226, 1982.

[92] Stephen Muggleton. Inductive logic programming. New generation
computing, 8(4):295–318, 1991.

[93] Stephen Muggleton. Inverse entailment and Progol. New generation
computing, 13(3-4):245–286, 1995.

[94] Stephen Muggleton and Wray Buntine. Machine invention of first-order
predicates by inverting resolution. In Proceedings of the fifth international
conference on machine learning, pages 339–352, 1992.

[95] Stephen Muggleton, Ross D. King, and Michael J.E. Stenberg. Pro-
tein secondary structure prediction using logic-based machine learning.
Protein Engineering, 5(7):647–657, 1992.

[96] Stephen Muggleton, Dianhuan Lin, Niels Pahlavi, and Alireza
Tamaddoni-Nezhad. Meta-interpretive learning: application to grammat-
ical inference. Machine Learning, 94(1):25–49, 2014.

[97] Stephen Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad.
Meta-interpretive learning of higher-order dyadic Datalog: Predicate
invention revisited. Machine Learning, 100(1):49–73, 2015.

Full text available at: http://dx.doi.org/10.1561/2500000010



References 115

[98] Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. Neural program-
mer: Inducing latent programs with gradient descent. arXiv preprint
arXiv:1511.04834, 2015.

[99] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and
Satish Chandra. SemFix: program repair via semantic analysis. In 35th
International Conference on Software Engineering, ICSE, pages 772–781,
2013.

[100] Robert P. Nix. Editing by example. In Conference Record of the Eleventh
Annual ACM Symposium on Principles of Programming Languages, Salt
Lake City, Utah, USA, January 1984, pages 186–195, 1984.

[101] Aditya V. Nori, Sherjil Ozair, Sriram K. Rajamani, and Deepak Vijay-
keerthy. Efficient synthesis of probabilistic programs. In ACM SIGPLAN
Notices, volume 50, pages 208–217. ACM, 2015.

[102] Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed
program synthesis. In Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI),
pages 619–630. ACM, 2015.

[103] Pavel Panchekha and Emina Torlak. Automated reasoning for web
page layout. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2016, pages 181–194, 2016.

[104] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary
Tatlock. Automatically improving accuracy for floating point expressions.
ACM SIGPLAN Notices, 50(6):1–11, 2015.

[105] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li,
Dengyong Zhou, and Pushmeet Kohli. Neuro-symbolic program synthesis.
CoRR, abs/1611.01855, 2016.

[106] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman.
Type-directed completion of partial expressions. In ACM SIGPLAN
Notices, volume 47, pages 275–286. ACM, 2012.

[107] Stuart Pernsteiner, Calvin Loncaric, Emina Torlak, Zachary Tatlock,
Xi Wang, Michael D. Ernst, and Jonathan Jacky. Investigating Safety of
a Radiotherapy Machine Using System Models with Pluggable Checkers,
pages 23–41. Springer International Publishing, Cham, 2016. .

[108] Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant
Totla, Sarah Chasins, and Rastislav Bodik. Chlorophyll: Synthesis-aided
compiler for low-power spatial architectures. In ACM SIGPLAN Notices,
volume 49, pages 396–407. ACM, 2014.

Full text available at: http://dx.doi.org/10.1561/2500000010



116 References

[109] Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodík, and
Dinakar Dhurjati. Scaling up superoptimization. In Proceedings of the
21st International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 297–310, 2016.

[110] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module.
In POPL, pages 179–190. ACM, 1989.

[111] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program
synthesis from polymorphic refinement types. In Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 522–538. ACM, 2016.

[112] Nadia Polikarpova, Jean Yang, Shachar Itzhaky, and Armando Solar-
Lezama. Type-driven repair for information flow security. arXiv preprint
arXiv:1607.03445, 2016.

[113] Oleksandr Polozov and Sumit Gulwani. FlashMeta: a framework for
inductive program synthesis. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, pages 107–126, 2015.

[114] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion
with statistical language models. In ACM SIGPLAN Notices, volume 49,
pages 419–428. ACM, 2014.

[115] Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause.
Learning programs from noisy data. In ACM SIGPLAN Notices, vol-
ume 51, pages 761–774. ACM, 2016.

[116] Mohammad Raza and Sumit Gulwani. Automated data extraction using
predictive program synthesis. In AAAI, 2017.

[117] Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. Com-
positional program synthesis from natural language and examples. In
Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence (IJCAI), pages 792–800, 2015.

[118] Scott Reed and Nando de Freitas. Neural programmer-interpreters.
arXiv preprint arXiv:1511.06279, 2015.

[119] Wolfgang Reisig. Petri nets: an introduction, volume 4. Springer Science
& Business Media, 2012.

[120] Sebastian Riedel, Matko Bošnjak, and Tim Rocktäschel. Programming
with a differentiable Forth interpreter. arXiv preprint arXiv:1605.06640,
2016.

[121] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In
ACM SIGPLAN Notices, volume 43, pages 159–169. ACM, 2008.

Full text available at: http://dx.doi.org/10.1561/2500000010



References 117

[122] Jose C.A. Santos, Houssam Nassif, David Page, Stephen Muggleton,
and Michael J.E. Sternberg. Automated identification of protein-ligand
interaction features using inductive logic programming: a hexose binding
case study. BMC bioinformatics, 13(1):1, 2012.

[123] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superopti-
mization. In ACM SIGARCH Computer Architecture News, volume 41,
pages 305–316. ACM, 2013.

[124] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superopti-
mization. In Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, pages 305–316, 2013.

[125] David E. Shaw, William R. Swartout, and C. Cordell Green. Inferring
LISP programs from examples. In Proceedings of the 4th International
Joint Conference on Artificial Intelligence - Volume 1, pages 260–267.
Morgan Kaufmann Publishers Inc., 1975.

[126] Rishabh Singh and Sumit Gulwani. Synthesizing number transformations
from input-output examples. In Computer Aided Verification - 24th
International Conference, CAV 2012, pages 634–651, 2012.

[127] Rishabh Singh and Sumit Gulwani. Learning semantic string transfor-
mations from examples. Proceedings of the VLDB Endowment, 5(8):
740–751, 2012.

[128] Rishabh Singh and Sumit Gulwani. Predicting a correct program in
programming by example. In CAV, pages 398–414, 2015.

[129] Rishabh Singh and Sumit Gulwani. Transforming spreadsheet data types
using examples. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
pages 343–356, 2016.

[130] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automatic
feedback generation for introductory programming assignments. In Pro-
ceedings of Programming Language Design and Implementation (PLDI),
pages 15–26, 2013.

[131] David Canfield Smith. Pygmalion: A Creative Programming Environ-
ment. PhD thesis, Stanford University, Stanford, CA, USA, 1975.

[132] Armando Solar-Lezama. Program synthesis by sketching. ProQuest,
2008.

Full text available at: http://dx.doi.org/10.1561/2500000010



118 References

[133] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From pro-
gram verification to program synthesis. In Proceedings of the 37th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, pages
313–326, 2010.

[134] Saurabh Srivastava, Sumit Gulwani, Swarat Chaudhuri, and Jeffrey S.
Foster. Path-based inductive synthesis for program inversion. In Proceed-
ings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8,
2011, pages 492–503, 2011.

[135] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. Template-
based program verification and program synthesis. International Journal
on Software Tools for Technology Transfer (STTT), 15(5-6):497–518,
2013.

[136] Michael J.E. Sternberg, Alireza Tamaddoni-Nezhad, Victor I. Lesk, Emily
Kay, Paul G. Hitchen, Adrian Cootes, Lieke B. van Alphen, Marc P.
Lamoureux, Harold C. Jarrell, Christopher J. Rawlings, et al. Gene
function hypotheses for the campylobacter jejuni glycome generated by
a logic-based approach. Journal of molecular biology, 425(1):186–197,
2013.

[137] Phillip D. Summers. A methodology for LISP program construction
from examples. Journal of the ACM (JACM), 24(1):161–175, 1977.

[138] Alireza Tamaddoni-Nezhad, Ghazal Afroozi Milani, Alan Raybould,
Stephen Muggleton, and David A. Bohan. Construction and validation of
food webs using logic-based machine learning and text mining. Advances
in Ecological Research, 49:225–289, 2013.

[139] Emina Torlak and Rastislav Bodik. Growing solver-aided languages with
Rosette. In Proceedings of the 2013 ACM international symposium on
New ideas, new paradigms, and reflections on programming & software,
pages 135–152. ACM, 2013.

[140] Emina Torlak and Rastislav Bodik. A lightweight symbolic virtual
machine for solver-aided host languages. In ACM SIGPLAN Notices,
volume 49, pages 530–541. ACM, 2014.

[141] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-
Haim, Milo M.K. Martin, and Rajeev Alur. TRANSIT: Specifying
protocols with concolic snippets. In Proceedings of the 34th annual
ACM SIGPLAN conference on Programming Languages Design and
Implementation (PLDI), pages 287–296, 2013.

Full text available at: http://dx.doi.org/10.1561/2500000010



References 119

[142] Richard Uhler and Nirav Dave. Smten: automatic translation of high-level
symbolic computations into SMT queries. In International Conference
on Computer Aided Verification, pages 678–683. Springer, 2013.

[143] Martin T. Vechev, Eran Yahav, and Greta Yorsh. Abstraction-guided
synthesis of synchronization. In Proceedings of the 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2010, Madrid, Spain, January 17-23, 2010, pages 327–338, 2010.

[144] Richard J. Waldinger and Richard C. T. Lee. PROW: A step toward
automatic program writing. In IJCAI, pages 241–252, 1969.

[145] Henry S. Warren. Hacker’s delight. Pearson Education, 2013.
[146] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie

Forrest. Automatically finding patches using genetic programming. In
31st International Conference on Software Engineering, ICSE 2009, May
16-24, 2009, Vancouver, Canada, Proceedings, pages 364–374, 2009.

[147] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind
Krishnamurthy, and Zachary Tatlock. Scalable verification of border
gateway protocol configurations with an SMT solver. In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 765–780.
ACM, 2016.

[148] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise
approach to learning to rank: theory and algorithm. In ICML, 2008.

[149] Navid Yaghmazadeh, Christian Klinger, Isil Dillig, and Swarat Chaud-
huri. Synthesizing transformations on hierarchically structured data. In
Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, Santa Barbara, CA,
USA, June 13-17, 2016, pages 508–521, 2016.

[150] Xiaofeng Yang, Jian Su, Jun Lang, Chew Lim Tan, Ting Liu, and Sheng
Li. An entity-mention model for coreference resolution with inductive
logic programming. In ACL, pages 843–851, 2008.

[151] Hongyu Zhang, Anuj Jain, Gaurav Khandelwal, Chandrashekhar
Kaushik, Scott Ge, and Wenxiang Hu. Bing developer assistant: improv-
ing developer productivity by recommending sample code. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, pages 956–961. ACM, 2016.

Full text available at: http://dx.doi.org/10.1561/2500000010


	Introduction
	Program Synthesis
	Challenges
	Dimensions in Program Synthesis
	Roadmap

	Applications
	Data Wrangling
	Graphics
	Code Repair
	Code Suggestions
	Modeling
	Superoptimization
	Concurrent Programming

	General Principles
	Second-Order Problem Reduction
	Oracle-Guided Synthesis
	Syntactic Bias
	Optimization

	Enumerative Search
	Enumerative Search
	Bidirectional Enumerative Search
	Offline Exhaustive Enumeration and Composition

	Constraint Solving
	Component-Based Synthesis
	Solver-Aided Programming
	Inductive Logic Programming

	Stochastic Search
	Metropolis-Hastings Algorithm for Sampling Expressions
	Genetic Programming
	Machine Learning
	Neural Program Synthesis

	Programming by Examples
	Problem Definition
	Version Space Algebra
	Deduction-Based Techniques
	Ambiguity Resolution

	Future Work
	Acknowledgements
	References



