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Abstract

Program synthesis is the task of automatically finding a program in the
underlying programming language that satisfies the user intent expressed
in the form of some specification. Since the inception of AI in the 1950s,
this problem has been considered the holy grail of Computer Science.
Despite inherent challenges in the problem such as ambiguity of user
intent and a typically enormous search space of programs, the field of
program synthesis has developed many different techniques that enable
program synthesis in different real-life application domains. It is now
used successfully in software engineering, biological discovery, computer-
aided education, end-user programming, and data cleaning. In the last
decade, several applications of synthesis in the field of programming by
examples have been deployed in mass-market industrial products.

This survey is a general overview of the state-of-the-art approaches
to program synthesis, its applications, and subfields. We discuss the
general principles common to all modern synthesis approaches such as
syntactic bias, oracle-guided inductive search, and optimization tech-
niques. We then present a literature review covering the four most
common state-of-the-art techniques in program synthesis: enumerative
search, constraint solving, stochastic search, and deduction-based pro-
gramming by examples. We conclude with a brief list of future horizons
for the field.

S. Gulwani, O. Polozov and R. Singh. Program Synthesis. Foundations and Trends®

in Programming Languages, vol. 4, no. 1-2, pp. 1–119, 2017.
DOI: 10.1561/2500000010.
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1
Introduction

1.1 Program Synthesis

Program Synthesis is the task of automatically finding programs from
the underlying programming language that satisfy user intent expressed
in some form of constraints. Unlike typical compilers that translate
a fully specified high-level code to low-level machine representation
using a syntax-directed translation, program synthesizers typically per-
form some form of search over the space of programs to generate a
program that is consistent with a variety of constraints (e.g. input-
output examples, demonstrations, natural language, partial programs,
and assertions).

The problem of program synthesis has long been considered the holy
grail of Computer Science. Pnueli considered program synthesis to be
one of the most central problems in the theory of programming [110].
There has been a lot of progress made in this field in many different
communities including programming languages, machine learning, and
artificial intelligence. The idea of constructing interpretable solutions
(algorithms) with proofs by composing solutions of smaller sub-problems
was considered as early as in 1932 in the early work on constructive
Mathematics [70]. After the development of first automated theorem

2
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1.1. Program Synthesis 3

provers, there was a lot of pioneering work on deductive synthesis
approaches [41, 85, 144]. The main idea behind these approaches was to
use the theorem provers to first construct a proof of the user-provided
specification, and then use the proof to extract the corresponding logical
program. Another approach that became popular shortly afterwards was
that of transformation-based synthesis [86], where a high-level complete
specification was transformed repeatedly until achieving the desired
low-level program.

The deductive synthesis approaches assumed a complete formal
specification of the desired user intent was provided, which in many
cases proved to be as complicated as writing the program itself. This
lead to new inductive synthesis approaches that were based on induc-
tive specifications such as input-output examples, demonstrations etc.
Shaw et al. [125] developed a framework for learning restricted Lisp
programs from a single input-output example. Summers [137] and Bier-
mann [13] developed techniques to learn a rich class of LISP programs
from multiple input-output examples. Pygmalion [131] was one of the
first successful programming by demonstration systems that inferred
recursive programs from a set of concrete executions of a program. There
has also been a lot of pioneering work on using genetic programming
approaches to automatically evolve programs that are consistent with a
specification [73]. These approaches are inspired from Darwin’s theory
of evolution, and evolve a random population of programs continuously
into new generations until generating the desired programs.

The more recent program synthesis approaches allow a user to
additionally provide a skeleton (grammar) of the space of possible
programs in addition to the specification [3]. This results in two benefits.
First, the grammar provides structure to the hypothesis space, which can
result in a more efficient search procedure. Second, the learnt programs
are also more interpretable since they are derived from the grammar.
The Sketch [132] system pioneered this idea to allow programmers to
write partial program sketches (programs with holes), which are then
automatically completed given some specification. FlashFill [43, 49] is
perhaps one of the most visible Programming By Examples system that
is shipping in Microsoft Excel. FlashFill defines the hypothesis space of

Full text available at: http://dx.doi.org/10.1561/2500000010



4 Introduction

programs using a domain-specific language of regular expression based
string transformations, and uses version-space algebra based synthesis
techniques to efficiently synthesize string transformation programs from
few input-output examples.

Many modern program synthesis applications are built on top of
some meta-synthesis framework. Such frameworks allow a user to sepa-
rately define a program space (a grammar or a program skeleton) and
describe some insights for the synthesis algorithm (e.g. encoding of the
synthesis problem into SAT/SMT constraints or inverse semantics of the
program’s operators). The framework then automatically converts these
definitions into an efficient synthesizer for the given application domain.
Most popular synthesis frameworks include the aforementioned Sketch
system [132], the PROSE framework for FlashFill-like programming
by examples [113], and the Rosette virtual machine for solver-aided
programming [139].

1.2 Challenges

Program synthesis is a notoriously challenging problem. Its inherent
challenge lies in two main components of the problem: intractability of
the program space and diversity of user intent.

Program Space In its most general formulation (for a Turing-complete
programming language and an arbitrary constraint) program synthesis
is undecidable, thus almost all successful synthesis approaches perform
some kind of search over the program space. This search itself is a hard
combinatorial problem. The number of programs in any non-trivial
programming language quickly grows exponentially with program size,
and this vast number of possible candidates for a long time has rendered
the task intractable.

Early approaches to program synthesis focused on deductive and
transformational methods [85, 86]. Such methods are based on a ex-
ponentially growing tree of theorem-proving deductive inferences or
correctness-preserving code rewrite rules, respectively. Both approaches
guarantee that the produced program satisfies the provided constraint

Full text available at: http://dx.doi.org/10.1561/2500000010



1.2. Challenges 5

by construction but the non-deterministic nature of a theorem-proving
or code-rewriting loop cannot guarantee efficiency or even termination
of the synthesis process. Modern successful applications of similar tech-
niques employ clever domain-specific heuristics for cutting down the
derivation tree (see, for example, [63, 104]).

The last two decades brought a resurgence of program synthesis
research with a number of technological and algorithmic breakthroughs.
First, Moore’s law and advances in constraint solving allowed exploring
larger program spaces in reasonable time. This led to many success-
ful constraint-based synthesis applications tracing their roots back to
Sketch and the invention of counterexample-guided inductive synthe-
sis [132]. Second, novel approaches to program space enumeration such as
stochastic techniques [105, 123] and deductive top-down search [43, 113]
enabled synthesis applications in new domains that were difficult to
formalize through theorems and rewrite rules.

However, even though modern-day synthesis techniques produce
sizable real-life code snippets, they are still rarely applicable to industrial-
size projects. For instance, at the time of this writing, the state-of-the-art
superoptimization technique (i.e., synthesizer of shorter implementations
of a given function; see §2.6) by Phothilimthana et al. [109] is able to
explore a program space of size 1079. In contrast, discovering an expert
implementation of the MD5 hash function requires exploring a space of
105943 programs!1 New algorithmic advances and clever exploitation of
domain-specific knowledge to facilitate large program space exploration
is an active research area in program synthesis.

User Intent Even armed with an efficient search technique, program
synthesizers may not immediately reach the dream of automatic pro-
gramming. The second challenge in synthesis is accurately expressing
and interpreting user intent—the specification on the desired program.

Different methods for expressing user intent range from formal
logical specifications to informal natural-language descriptions or input-
output examples. Specifications on the formal end of this spectrum

1See Rastislav Bodik’s ICFP-2015 keynote talk “Program Synthesis: Opportunities
for the Next Decade” for a detailed comparison: https://youtu.be/PI99A08Y83E.
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6 Introduction

(traditionally required by deductive synthesis techniques) often appear
to the user as complex as writing the program itself. Specifications on
the informal end, on the other hand, are highly ambiguous. For instance,
for a given input-output example (“John Smith” → “Smith, J.”) the
program space of FlashFill [43] may contains millions of programs
consistent with it. Most of these programs simply overfit the example
and do not satisfy the spirit of user intent. However, FlashFill has no
way to discover this without additional communication from the user.

Many real-life application domains for program synthesis are too com-
plex to be described completely with formal or informal specifications.
First, such a description would likely contain so many implementation
details and special cases that it would be comparable in size to the
produced program. Second, and most importantly, the users themselves
often do not imagine the full scope of their intent until they begin an
interaction with a programmer or a program synthesis system. Both
of these observations imply that applying program synthesis to larger
industrial applications is much a human-computer interaction (HCI)
problem as it is an algorithmic one. This survey mostly focuses on
algorithmic approaches to program synthesis but we also briefly discuss
some HCI-related research in §3.2, 3.3 and 7.4.

1.3 Dimensions in Program Synthesis

A synthesizer is typically characterized by three key dimensions: the
kind of constraints that it accepts as expression of user intent, the
space of programs over which it searches, and the search technique it
employs [42]. The synthesized program may be explicitly presented to
the user for debugging, re-use, or for being incorporated as part of a
larger workflow. However, in some cases, the synthesized program may
be implicit and is simply used to automate the intended one-off task
for the user, as in case of spreadsheet string transformations [43].

1.3.1 User Intent

The user intent can be expressed in various forms including logical
specification, examples [44], traces, natural language [28, 46, 79], partial

Full text available at: http://dx.doi.org/10.1561/2500000010



1.3. Dimensions in Program Synthesis 7

programs [132], or even related programs. A particular choice may be
more suited in a given scenario depending on the underlying task as
well as on the technical background of the user.

A logical specification is a logical relation between inputs and out-
puts of a program. It can act as a precise and succinct form of functional
specification of the desired program. However, complete logical specifi-
cations are often quite tricky to write.

End users, who are not programming experts, may find providing
examples as more approachable and natural. Example-based specifi-
cations more generally include asserting properties of the output (as
opposed to specifying the full output) on a given input state [113]. A
key challenge in this environment is that of resolving ambiguity that
is inherent in the example-based specification. Such an ambiguity is
often resolved in an interactive loop with the user, where the user may
iteratively provide more examples dependant on the behavior of the
program synthesized in the last step.

A trace is a detailed step-by-step description of how the program
should behave on a given input. A trace is a more detailed description
than an input-output example since it also illustrates how a specific input
should be transformed into the corresponding output as opposed to just
describing what the output should be. Traces are an appropriate model
for programming by demonstration systems [25], where the intermediate
states resulting from the user’s successive actions on a user interface
constitute a valid trace. From the perspective of the synthesizer, traces
are preferable to input-output examples since the former contains more
information. From the user’s perspective, providing demonstrations in
may be more taxing in general than providing input-output examples.

In some cases, a program itself might act as the best means of
specifying the intent. This happens trivially for certain applications
such as superoptimization [9, 109], deobfuscation [59] and synthesis of
program inverses [134], where the program to be optimized, deobfus-
cated, or inverted respectively forms the specification. However, even
for applications such as discovery of new algorithms [47], users might
find it easier to write the specification as an inefficient program rather
than a logical relation.

Full text available at: http://dx.doi.org/10.1561/2500000010



8 Introduction

1.3.2 Search Space

The search space should strike a good balance between expressiveness
and efficiency. On one hand, the space should be large/expressive enough
to include a large class of programs for the underlying domain. While on
the other hand, the space of the programs should be restrictive enough
so that it is amenable to efficient search, and it should be over a domain
of programs that are amenable to efficient reasoning.

The search space can be over imperative or functional programs
(with possible restrictions on the control structure or the operator
set), The program space can be restricted to a subset of an existing
programming language (general purpose or domain-specific) or to a
specifically designed domain-specific language. The space of programs
can be qualified by at least two attributes: (i) the operators used
in the program, and (ii) the control structure of the program. The
control structure of the program may be restricted to a user-provided
looping template [135], a partial program with holes [132], straight-line
programs [8, 47, 63, 87, 109], or a guarded statement set with control
flow at the very top [43].

The search space can even be over restricted models of computations
such as regular or context-free grammars/transducers. Regular expres-
sion synthesis can be used for constructing text editing programs [100].
Context-free grammar synthesis is useful for paser construction [81].
Succinct logical representations may also serve as a good choice for the
search space. For instance, class of first order logic together with fixed
point equals the class of PTIME algorithms over ordered structures
such as graphs, trees, and strings. Hence, this class and also some of
its useful subclasses (such as those with a fixed quantifier depth) can
serve as good target languages for synthesizing efficient graph or tree
algorithms [57].

1.3.3 Search Technique

The search technique can be based on enumerative search, deduction,
constraint solving, statistical techniques, or some combination of these.

Full text available at: http://dx.doi.org/10.1561/2500000010



1.3. Dimensions in Program Synthesis 9

Enumerative An enumerative search technique enumerates programs
in the underlying search space in some order and for each program
checks whether or not it satisfies the synthesis constraints. While this
might appear simple, it is often a very effective strategy. A naïve imple-
mentation of enumerative search often does not scale. Many practical
systems that leverage enumerative search innovate by developing various
optimizations for pruning the search space or by ordering it.

Deductive The deductive top-down search [113] follows the standard
divide-and-conquer technique, where the key idea is to recursively reduce
the problem of synthesizing a program expression e of a certain kind and
that satisfies a certain specification φ to simpler sub-problems (where
the search is either over sub-expressions of e or over sub-specifications
of φ), followed by appropriately combining those results. The reduction
logic for reducing a synthesis problem to simpler synthesis problems
depends on the nature of the involved expression e and the inductive
specification φ. In particular, if e is of the form F (e1, e2), the reduction
logic leverages the inverse semantics of F to push constraints on e down
through the grammar into constraints on e1 and e2.

While enumerative search is bottom-up (i.e., it enumerates smaller
sub-expressions before enumerating larger expressions), the deductive
search is top-down (i.e., it fixes the top-part of an expression and
then searches for its sub-expressions). Enumerative search can be seen
as finding a programmatic path (within an underlying grammar that
connects inputs and outputs) starting from the inputs to outputs.
Deduction does the same, but it searches for the programmatic path in
a backward direction starting from the outputs leveraging the operator
inverses. If the underlying grammar allows for a rich set of constants,
the bottom-up enumerative search can get lost in simply guessing the
right constants. On the other hand, the top-down deductive technique
can deduce constants based on the accumulated constraints as the last
step in the search process.

Constraint Solving The constraint solving based techniques [132, 135]
involve two main steps: constraint generation, and constraint resolution.

Full text available at: http://dx.doi.org/10.1561/2500000010



10 Introduction

Constraint generation refers to the process of generating a logical
constraint whose solution will yield the intended program. Generating
such a logical constraint typically requires making some assumption
about the control flow of the unknown program and encoding that
control flow in some manner. Three different kinds of methods have been
used in the past for constraint generation: invariant-based, path-based,
and input-based. On one extreme, we have invariant-based methods
that generate constraints that faithfully assert that the program satisfies
the given specification [133].

Such methods also end up synthesizing an inductive proof of correct-
ness in addition to the program itself. A disadvantage of such methods
is that the generated constraints may be very sophisticated since the
inductive invariants are often much more complicated and over a richer
logic than the program itself. On the other extreme, we have input-
based methods that generate constraints that assert that the program
satisfies the given specification on a certain collection of inputs [132].
Such constraints are usually much simpler in nature than the ones
generated by the invariant-bases method. Unless paired with a sound
counterexample guided inductive synthesis strategy (CEGIS), described
in §3.2, this method trades off soundness for efficiency. A middle ground
is achieved by path-based methods that generate constraints that assert
that the program satisfies the given specification on all inputs that
execute a certain set of paths [134]. Compared to input-based methods,
these methods may achieve a faster convergence, if paired up with an
outer CEGIS loop.

Constraint solving involves solving the constraints outputted by the
constraint generation phase. These constraints often involve second-
order unknowns and universal quantifiers. A general strategy is to first
reduce the second-order unknowns to first-order unknowns and then
eliminate universal quantifiers, and then solve the resulting first-order
quantifier-free constraints using an off-the-shelf SAT/SMT solver. The
second-order unknowns are reduced to first-order unknowns by use of
templates. The universal quantifiers can be eliminated using a variety
of strategies including Farkas lemma, cover algorithms, and sampling.

Full text available at: http://dx.doi.org/10.1561/2500000010



1.3. Dimensions in Program Synthesis 11

Statistical Various kinds of statistical techniques have been proposed
including machine learning of probabilistic grammars, genetic program-
ming, MCMC sampling, and probabilistic inference.

Machine learning techniques can be used to augment other search
methodologies based on enumerative search or deduction by providing
likelihood of various choices at any choice point. One such choice point
is selection of a production for a non-terminal in a grammar that
specifies the underlying program space. The likelihood probabilities can
be function of certain cues found in the input-ouput examples provided
by the user or the additionally available inputs [89]. These functions
are learned in an offline phase from training data.

Genetic programming is a program synthesis method inspired by
biological evolution [72]. It involves maintaining a population of in-
dividual programs, and using that to produce program variants by
leveraging computational analogs of biological mutation and crossover.
Mutation introduces random changes, while crossover facilitates sharing
of useful pieces of code between programs being evolved. Each vari-
ant’s suitability is evaluated using a user-defined fitness function, and
successful variants are selected for continued evolution. The success
of a genetic programming based system crucially depends on the fit-
ness function. Genetic programming has been used to discover mutual
exclusion algorithms [68] and to fix bugs in imperative programs [146]

MCMC sampling has been used to search for a desired program
starting from a given candidate. The success crucially depends on
defining a smooth cost metric for Boolean constraints. STOKE [124], a
superoptimization tool, uses Hamming distance to measure closeness
of generated bit-values to the target on a representative test input set,
and rewards generation of (almost) correct values in incorrect locations.

Probabilistic inference has been used to evolve a given program by
making local changes, one at a time. This relies on modeling a program
as a graph of instructions and states, connected by constraint nodes.
Each constraint node establishes the semantics of some instruction by
relating the instruction with the state immediately before the instruction
and the state immediately after the instruction [45]. Belief propagation
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12 Introduction

has been used to synthesize imperative program fragments that execute
polynomial computations and list manipulations [62].

1.4 Roadmap

This survey is organized as follows. We start out by discussing some
prominent applications of program synthesis in Chapter 2. We then
discuss some general principles used across many synthesis techniques in
Chapter 3. We then describe the four key search techniques: enumerative
(Chapter 4), constraint-solving based (Chapter 5), stochastic (Chap-
ter 6), and deduction-based programming by examples (Chapter 7).
Chapter 8 concludes with some discussion on future work.
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