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Abstract

In globally distributed systems, shared state is never perfect. When
communication is neither fast nor reliable, we cannot achieve strong
consistency, low latency, and availability at the same time. Unfortu-
nately, abandoning strong consistency has wide ramifications. Eventual
consistency, though attractive from a performance viewpoint, is chal-
lenging to understand and reason about, both for system architects
and programmers. To provide robust abstractions, we need not just
systems, but also principles: we need the ability to articulate what a
consistency protocol is supposed to guarantee, and the ability to prove
or refute such claims.

In this tutorial, we carefully examine both the what and the how of
consistency in distributed systems. First, we deconstruct consistency
into individual guarantees relating the data type, the conflict reso-
lution, and the ordering, and then reassemble them into a hierarchy
of consistency models that starts with linearizability and gradually
descends into sequential, causal, eventual, and quiescent consistency.
Second, we present a collection of consistency protocols that illustrate
common techniques, and include templates for implementations of ar-
bitrary replicated data types that are fully available under partitions.
Third, we demonstrate that our formalizations serve their purpose of
enabling proofs and refutations, by proving both positive results (the
correctness of the protocols) and a negative result (a version of the
CAP theorem for sequential consistency).

S. Burckhardt. Principles of Eventual Consistency. Foundations and TrendsR© in
Programming Languages, vol. 1, no. 1-2, pp. 1–150, 2014.
DOI: 10.1561/2500000011.
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1
Introduction

As our use of computers relies more and more on a complex web of
clients, networks, and services, the challenges of programming a dis-
tributed system become relevant to an ever expanding number of pro-
grammers. Providing good latency and scalability while tolerating net-
work and node failures is often very difficult to achieve, even for expert
architects. To reduce the complexity, we need programming abstrac-
tions that help us to layer and deconstruct our solutions. Such abstrac-
tions can be integrated into a language or provided by some library,
system API, or even the hardware.

A widely used abstraction to simplify distributed algorithms is
shared state, a paradigm which has seen much success in the construc-
tion of parallel architectures and databases. Unfortunately, we know
that in distributed systems, shared state cannot be perfect: in general,
it is impossible to achieve both strong consistency and low latency. To
state it a bit more provocatively:

All implementations of mutable shared state in a geographically dis-
tributed system are either slow (require coordination when updating
data) or weird (provide weak consistency only).

2

Full text available at: http://dx.doi.org/10.1561/2500000011



3

This unfortunate fact has far-reaching consequences in practice, as
it forces programmers to make an unpleasant choice. Strong consistency
means that reads and updates behave as if there were a single copy of
the data only, even if it is internally replicated or cached. While strong
consistency is easy to understand, it creates problems with availability
and latency. And unfortunately, availability and latency are often cru-
cial for business — for example, on websites offering goods for sale, any
outage may cause an immediate, irrecoverable loss of sales [G. DeCan-
dia et al., 2007]. Where business considerations trump programming
complexity, consistency is relaxed and we settle for some form of

Eventual Consistency. The idea is simple: (1) replicate the data across
participants, (2) on each participant, perform updates tentatively lo-
cally, and (3) propagate local updates to other participants asyn-
chronously, when connections are available.

Although the idea is simple, its consequences are not. For example,
one must consider how to deal with conflicting updates. Participants
must handle conflicting updates consistently, so that they agree on the
outcome and (eventually) converge. Exactly what that should mean,
and how to understand and compare various guarantees, data types,
and system implementations is what we study in this tutorial.

Although eventual consistency is compelling from a performance
and availability perspective, it is difficult to understand the precise
guarantees of such systems. This is unfortunate: if we cannot clearly
articulate a specification, or if the specification is not strong enough to
let us write proveably correct programs, eventual consistency cannot
deliver on its promise: to serve as a robust abstraction for the program-
ming of highly-available distributed applications.

The goal of this tutorial is to provide the reader with tools for
reasoning about consistency models and the protocols that implement
them. Our emphasis is on using basic mathematical techniques (sets,
relations, and first order logic) to describe a wide variety of consistency
guarantees, and to define protocols with a precision that enables us
to prove both positive results (proving correctness of protocols) and
negative results (proving impossibility results).

Full text available at: http://dx.doi.org/10.1561/2500000011



4 Introduction

1.1 General Motivation

Geographical distribution has become inseparable from computing. Al-
most all computers in use today require a network connection to deliver
their intended functionality. Programming a distributed system has
thus become common place, and understanding both the challenges and
the available solutions becomes relevant for a large number of program-
mers. The discipline of distributed computing is at the verge of a “rel-
evance revolution” not unlike the one faced by concurrent and parallel
computing a decade ago. Like the “multicore revolution”, which forced
concurrent and parallel programming into the mainstream, the “mo-
bile+cloud revolution” means that distributed programming in general,
and the programming of devices, web applications, and cloud services
in particular, is well on its way to becoming an everyday necessity for
developers. We can expect them to discover and re-discover the many
challenges of such systems, such as slow communication, scalability bot-
tlenecks, and node and network failures.

1.1.1 Challenges

The performance of a distributed system is often highly dependent on
the latency of network connections. For technical and physical reasons
(such as the speed of light), there exists a big disparity between the
speed of local computation and of wide-area communication, usually
by orders of magnitude. This disparity forces programmers to reduce
communication to keep their programs performant and responsive.

Another important challenge is to achieve scalability of services.
Scalability bottlenecks arise when too much load is placed on a resource.
For example, using a single server node to handle all web requests does
not scale. Thus, services need to be distributed across multiple nodes
to scale. The limited resource can also be the network. In fact, it is
quite typical that the network gets saturated by communication traffic
before the nodes reach full utilization. Then, programmers need to
reduce communication to scale the service further.

And of course, there are failures. Servers, clients, and network con-
nections may all fail temporarily or permanently. Failures can be a

Full text available at: http://dx.doi.org/10.1561/2500000011



1.1. General Motivation 5

consequence of imperfect hardware, software, or human operation. The
more components that there are in a system, the more likely it will fail
from time to time, thus failures are unavoidable in large-scale systems.

Often, it makes sense to consider failures not as some rare event,
but as a predictable part of normal operation. For example, a connec-
tion between a mobile client and a server may fail because the user
is driving through a tunnel or boarding an airplane. Also, a user of a
web application may close the browser without warning, which (from
a server perspective) can be considered a “failure” of the client.

At best, failures remain completely hidden from the user, or are ex-
perienced as a minor performance loss and sluggish responses only. But
often, they render the application unusable, sometimes without indica-
tion about what went wrong and when we may expect normal operation
to resume. At worst, failures can cause permanent data corruption and
loss.

1.1.2 Role of Programming Languages

What role do programming languages have to play in this story? A
great benefit of a well-purposed programming language is that it can
provide convenient, robust, and efficient abstractions. For example, the
abstraction provided by a garbage-collected heap is convenient, since
it frees the programmer from the burden of explicit memory manage-
ment. It is also robust, since it cannot be broken inadvertently if used
incorrectly. Last but not least (and only after much research on the
topic), garbage collection is efficient enough to be practical for many
application requirements. Although conceptually simple, garbage col-
lection illustrates what we may expect from a successful combination of
programming languages and systems research: a separation of concerns.
The client programmer gets to work on a simpler abstracted machine,
while the runtime system is engineered by experts to efficiently simulate
the abstract machine on a real machine.

But what abstractions will indeed prove to be convenient, robust,
and efficient in the context of distributed systems? Ideally, we would
like to completely hide the distributed nature of the system (slow con-
nections, failures, scalability limits) from the programmer. If we could

Full text available at: http://dx.doi.org/10.1561/2500000011



6 Introduction

efficiently simulate a non-distributed system on a distributed system,
the programmer would never even need to know that the system is dis-
tributed. Unfortunately, this dream is impossible to achieve in general.
This becomes readily apparent when we consider the problem of con-
sistency of shared state. In a non-distributed system, access to shared
data is fast and atomic. However, the same is not true for a distributed
system.

1.1.3 Distributed Shared Data

Ideally, simulating shared data in a distributed system should look just
like in a non-distributed system - meaning that it should appear as if
there is only a single copy of the data being read and written.

The Problem. There is no doubt that strong consistency (also known
as single-copy consistency, or linearizability) is the best consistency
model from the perspective of application programmers. Unfortunately,
it comes at a cost: maintaining the illusion of a single copy requires
communication whenever we read or update data. This communication
requirement is problematic when connections are slow or unavailable.
Therefore, any system that guarantees strong consistency is susceptible
to the following problems:

• Availability. If the network should become partitioned, i.e. if it
is no longer possible for all nodes to communicate, then some
clients may become unusable because they can no longer update
or read the data.

• Performance. If each update requires a round-trip to some central
authority, or to some quorum of servers or peers, and if commu-
nication is slow (for example, because of geographical distance
between the client and the server, or between the replicas in a
service), then the performance and responsiveness of the client
application suffers.

These limitations of strong consistency are well known, and complicate
the design of many distributed applications, such as cloud services.

Full text available at: http://dx.doi.org/10.1561/2500000011



1.2. Applications 7

The CAP theorem, originally conjectured by Brewer [2000] and
later proved by Gilbert and Lynch [2002], is a particularly popular
formulation of this fundamental problem (as discussed in the IEEE
Computer retrospective edition 2012). It states that strong Consistency
and Availability cannot be simultaneously achieved on a Partitioned
network, while it is possible to achieve any combination of two of the
above properties.

Seat Reservation Example. We can illustrate this idea informally us-
ing an example where two users wish to make an airplane reservation
when there is only one seat left. Consider the case where the two users
reside in different network partitions, and are thus incapable of com-
municating in any way (even indirectly through some server). It is
intuitively clear that in such a situation, any system is forced to delay
at least one user’s request, or perhaps both of them (thus sacrificing
availability), or risk reserving the same seat twice (thus sacrificing con-
sistency). Achieving both availability and consistency is only possible
if the network always allows communication (thus sacrificing partition
tolerance).

This simple seat reservation example is a reasonable illustration of
the hard limits on what can be achieved. However, it may also create
an overly pessimistic and narrow view of what it means to work with
shared state in a distributed system. Airlines routinely overbook seats,
and reservations can be undone (at some cost). The real world is not al-
ways strongly consistent, for many more reasons than just technological
limitations.

1.2 Applications

Practitioners and researchers have proposed the use of eventual con-
sistency to build more reliable or more responsive systems in many
different areas.

• Cloud Storage and Georeplication. Eventual consistency can
help us to build highly-available services for cloud storage, and
to keep data that is replicated across data centers in sync. Ex-
amples include research prototypes [Li et al., 2012, Lloyd et al.,
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8 Introduction

2011, 2014, Sovran et al., 2011] and many commercially used stor-
age systems such as Voldemort, Firebase, Amazon Dynamo [G.
DeCandia et al., 2007], Riak [Klophaus, 2010], and Cassandra
[Lakshman and Malik, 2009].

• Mobile Clients. Eventual consistency helps us to write appli-
cations that provide meaningful functionality while disconnected
from the network, and remain highly responsive even if connec-
tions to the server are slow [Terry et al., 1995, Burckhardt et al.,
2012b, 2014b].

• Epidemic or Gossip Protocols. Eventual consistency can help
us to build low-overhead robust monitoring systems for cloud
services, or for loosely connected large peer-to-peer networks
[Van Renesse et al., 2003, Jelasity et al., 2005, Princehouse et al.,
2014].

• Collaborative editing. When multiple people simultaneously edit
the same document, they face consistency challenges. A common
solution is to use operational transformations (OT) [Imine et al.,
2006, Sun and Ellis, 1998, Nichols et al., 1995].

• Revision Control. Forking and merging of branches in revision
control system is another example where we can apply gen-
eral principles regarding concurrent updates, visibility, and con-
flict resolution [Burckhardt and Leijen, 2011, Burckhardt et al.,
2012a].

The examples above span a rather wide range of systems. The par-
ticipating nodes may have little computational power and storage space
(such as mobile phones) or plenty of computation power (such as servers
in data centers) and lots of storage (such as storage back-ends in data
centers). Similarly, the network connections may be slow, unreliable,
low-bandwidth and expensive (e.g. cellular connections) or fast and
high-bandwidth (e.g. intra-datacenter networks), or something in be-
tween (e.g. inter-datacenter networks). These differences are very im-
portant when considering how best to make the trade-off between reli-
ability and availability. However, at an abstract level, all of these sys-
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1.3. Warmup 9

tems share the same principles of eventual consistency: shared data is
updated at different replicas, updates are transmitted asynchronously,
and conflicts are resolved consistently.

1.3 Warmup

To keep things concrete, we start with a pair of examples. We study two
different implementations of a very simple shared data type, a register.
The first one stores a single copy on some reliable server, and requires
communication on each read or write operation. The second one prop-
agates updates lazily, and both read and write operations complete
immediately without requiring communication.

For illustration purposes, we keep the shared data very simple: just
a value that can be read and written by multiple processes. This data
type is called a register in the distributed systems literature. One can
imagine a register to be used to control some configuration setting, for
example.

1.3.1 Single-Copy Protocol

The first implementation of the register stores a single copy of the reg-
ister on some central server — it does not use any replication. When
clients wish to read or write the register, they must contact the server to
perform the operation on their behalf. This general design is very com-
mon; for example, web applications typically rely on a single database
backend that performs operations on behalf of clients running in web
browsers.

We show the protocol definition in Fig. 1.1. A protocol definition
specifies the name of the protocol, the messages, and the roles. The
SingleCopyRegister protocol defines four messages and two roles, Server
and Client.

Roles represent the various participants of the protocol, and are
typically (but not necessarily) geographically separated. Roles react to
operation calls by some user or client program, and they communi-
cate with each other by sending and receiving messages. Technically,
each role is a state machine which defines a current state and atomic
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10 Introduction

1 protocol SingleCopyRegister {
2

3 message ReadReq(cid: nat) : reliable
4 message ReadAck(cid: nat, val: Value) : reliable
5 message WriteReq(cid: nat, val: Value) : reliable
6 message WriteAck(cid: nat) : reliable
7

8 role Server {
9 var current: Value ;

10 receive(req: ReadReq) {
11 send ReadAck(req.cid, current) ;
12 }
13 receive(req: WriteReq) {
14 current := req.val ;
15 send WriteAck(req.cid) ;
16 }
17 }
18

19 role Client(cid: nat) {
20 operation read() {
21 send ReadReq(cid) ;
22 // does not return to client program yet
23 }
24 operation write(val: Value) {
25 send WriteReq(cid,val) ;
26 // does not return to client program yet
27 }
28 receive ReadAck(cid) {
29 return val ; // return to client program
30 }
31 receive WriteAck(cid) {
32 return ok ; // return to client program
33 }
34 }
35 }

Figure 1.1: A single-copy implementation of a register. Read an write operations
contact the server and wait for the response.
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1.3. Warmup 11

transitions that are executed in reaction to operation calls by client
programs, to incoming messages, or to some periodic scheduling. In
our notation, roles look a bit like objects: the role state looks like fields
of an object, and each atomic transition looks like a method of the
object.

A role definition starts with the name of the role, followed by an
argument list that clarifies the number of instances, and how they are
distinguished. Here, there is a single server role and an infinite number
of clients, each identified by a client identifier cid which is a nonegative
integer (type nat).

Messages. There are four message format specifications (lines 3 – 6).
Each one describes a message type and the contents of the message
(names and types), and specifies the expected level of reliability. For
example, the declaration message WriteReq(c: Client, val:boolean) : reliable
means that each WriteReq message carries a client identifier c (the client
writing the register), and a boolean value val (the value being written),
and that this message is always delivered to all recipients, and never
forged nor duplicated, but possibly reordered with other messages.

Server. In the Server role (lines 8 – 17), the state of the server consists of
a single variable current which is the current value of the register (line 9).
It is specified to be initially false. The only server actions are to receive
a read or a write request. When receiving a message corresponding to
a read request (line 10) or a write request (line 13), the corresponding
operation (read or write) is performed, and the result value (in the case
of read) or an acknowledgment message (in the case of write) is sent
back using a send request.

Client. The Client role (lines 19 – 34) contains definitions for read and
write operations, but has no variables (i.e. it is stateless). Supposedly,
the operations are called by the local user or client program; the latter
may call any sequence of read and write operations, but it may not call
an operation until the previous one has returned.

When the read operation is called, the corresponding atomic transi-
tion sends a WriteReq message, but it does not complete the operation
— there is no implicit return at the end of a transition (the opera-
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12 Introduction

tion cannot return because it does not know the value of the register
yet). Only when the response arrives from the server, the correspond-
ing transition contains an explicit return statement that completes the
read operation and returns the result to the client program. Thus, the
read-operation is non-atomic, i.e. executes not as a single transition,
but as two transitions. The write operation is non-atomic as well; it
blocks until an acknowledgment from the server has been received.

Message Destination. Note that the send instruction does not explic-
itly specify the destination — instead, it is the receive instruction that
specifies what messages to receive. Receive operations specify a pattern
that defines what messages can be received.1 For example, the receive
actions on lines 28 and 31 match an incoming message only if the c
field of the request matches this, which is the client id — therefore,
only the c field acts as a destination identifier and ensures the response
message is received only by the client that sent the original request to
the server.

Atomic Actions. Our semantics compiles roles like state machines with
atomic actions. Intuitively, this means that only one block of code is
executing at a time, thus there is no fine-grained concurrency and we
need no locks. Of course, there is still ample opportunity for subtle
errors caused by the coarse-grained concurrency, i.e. by unexpected
orderings of the atomic actions.

Reliability. Crashes by one client cannot impact other clients. However,
the protocol is not robust against server crashes: a crashed server makes
progress impossible for all clients. This assumption of a single reliable
server is of course the cornerstone of the single-copy protocol design.
It is, however, not a limitation of the epidemic protocol defined in the
next section.
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1 protocol EpidemicRegister {
2

3 struct Timestamp(number: nat ; pid: nat) ;
4 function lessthan(Timestamp(n1,pid1), Timestamp(n2,pid2)) {
5 return (n1 < n2) ∨ (n1 == n2 ∧ pid1 < pid2) ;
6 }
7

8 message Latest(val: Value, t: Timestamp) : dontforge, eventualindirect
9

10 role Peer(pid: { 0 .. N }) {
11

12 var current: Value := undef ;
13 var written: Timestamp := Timestamp(0,pid) ;
14

15 operation read() {
16 return current ;
17 }
18 operation write(val: Value) {
19 current := val ;
20 written := Timestamp(written.number + 1,pid) ;
21 return ok ;
22 }
23

24 periodically {
25 send Latest(current, written) ;
26 }
27

28 receive Latest(val,ts) {
29 if (written.lessthan(ts)) {
30 current := val ;
31 written := ts ;
32 }
33 }
34 }
35 }

Figure 1.2: An implementation of the register where all operations return imme-
diately, without waiting for messages.
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1.3.2 Epidemic Protocol

The single-copy implementation is easy to understand. However, the
read and write operations are likely to be quite slow in practice because
they require a round-trip to the server. The epidemic register (Fig. 1.2)
eliminates this problem by removing the server communication from the
operations: each role stores a local copy of the register, and propagates
updates asynchronously. No central server is needed: all roles are equal
(we call them peers). We call this a symmetric protocol, as opposed to
the asymmetric client-server protocol discussed in the previous section.

Timestamps.When propagating updates, we use timestamps to ensure
that later updates overwrite earlier ones and not the other way around.
Each node stores not just the currently known latest value of the reg-
ister (current), but also a timestamp (written) that indicates the time of
the write operation that originally wrote that value. When receiving
a timestamped update, we ignore it if its timestamp is older than the
timestamp of the current value.

Logical clocks. Rather than a physical clock, we use logical clocks to
create timestamps, which are a well-known, clever technique for order-
ing events in a distributed system [Lamport, 1978]. Logical timestamps
are pairs of numbers, which are totally ordered by lexicographic order2
as defined on lines 3–5. On each write operation (lines 18–22) the node
creates a new timestamp, which is larger than the current one (and thus
also larger than all timestamps previously received in update messages).

Update Propagation. Every once in a while, each role performs the
code on lines 24–26 which broadcasts the currently stored value and
its timestamp in a Latest message. This ensures that all roles become
eventually aware of all updates, and are thus eventually consistent.

1These patterns are similar to patterns in languages like OCaml, but must be
static, i.e. the pattern may not depend on the current state of the role, but must
use only constants.

2Lexicographic order means that tuples are compared based on the first compo-
nent, and then the second component if the first one is the same, and so on. It is a
generalization of alphabetic order if we consider words to be tuples of letters, thus
the name.
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Weaker Delivery Guarantees. The delivery guarantees required by this
protocol (on line 8) are dontforge (meaning no messages should be in-
vented) and eventualindirect (meaning that there must be some delivery
path, possibly indirect via other replicas). These are weaker conditions
than the reliable guarantee used by the single-copy protocol (which re-
quired that all messages be delivered to all receivers exactly once). Here,
the system is allowed to duplicate and even lose messages, as long as
there is always eventually some (possibly indirect) delivery path from
each sender to each receiver.

This type of propagation is sometimes called epidemic, since nodes
can indirectly “infect” other nodes with information. An epidemic pro-
tocol keeps functioning even if some connections are down, as long as
the topology is “eventually strongly connected”. Another name for this
type of protocol is state-based, because each message contains informa-
tion that is identical to the local state.

Consistency and Correctness

The interesting questions are: is the epidemic protocol correct? What
does correct even mean? What is the observable difference between the
two protocols, from a client perspective?

Given our discussion of eventual consistency earlier, we may rea-
sonably expect an answer along the lines of “the epidemic protocol is
eventually consistent, while the single-copy protocol is strongly consis-
tent”. However, the story is a bit more interesting than that.

• The single-copy register is linearizable, which is the strongest form
of consistency.

• The epidemic register is sequentially consistent, which is a slightly
weaker, yet still surprisingly strong consistency guarantee. We
prove this in §10.2.2.

At first glance, this appears to contradict the CAP theorem since
the epidemic register is available under partitions (all operations com-
plete immediately), thus strong consistency should not be possible? It
turns out that the original CAP is about linearizability, not sequential
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consistency; and under sequential consistency, CAP only applies to res-
onably expressive data types, not including a simple register. We prove
a properly qualified version of the CAP theorem in §9.1.2.

Since the single-copy register is linearizable, and the epidemic reg-
ister is sequentially consistent, they are observationally equivalent to
any client that does not have a side channel for communication (for
more about this, see §5.3.1).

1.4 Overview

The goal of this tutorial is to provide the reader with tools for reasoning
about consistency of protocols. Our emphasis is on using basic math-
ematical techniques (sets, relations, and first order logic) to describe
a wide variety of consistency guarantees, and to define protocols with
a level of precision that enables us to prove both positive results (cor-
rectness of protocols) and negative results (refute implementability).

We start with basic technical foundations in chapter 2, including a
review of important concepts related to partial and total orders. We also
introduce event graphs, which are mathematical objects representing
information about events in executions, and which are the technical
backbone of all our definitions.

In chapters 3–5, we lay out the specification methodology, and as-
semble consistency guarantees spanning data type semantics, ordering
guarantees, and convergence guarantees:

• In chapter 3 we introduce our approach to specifying consistency
guarantees, which is based on histories and abstract executions.

• In chapter 4, we first specify the semantics of sequential data
types, and then generalize to replicated data types that specify
the semantics in a replicated setting, in particular how to resolve
conflicts. The key insight is to think of the current state not as a
value, but as a graph of prior operations.

• In chapter 5, we define basic eventual consistency, collect vari-
ous consistency guarantees, and present a hierarchy of the most
common consistency models.
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In chapter 6, we walk through a selection of protocol implementa-
tions and optimizations, to gain a better understanding of the nature
of the trade-off between the consistency model and the speed/availabil-
ity of operations. We show implementations for simple data types, and
protocol templates that can be used to implement any replicated data
type.

In chapters 7 and 8, we establish formal models for executions
in asynchronous distributed systems (including crashes and transport
failures), and for protocol definitions (accommodating arbitrary asyn-
chronous protocols). These models are needed as a preparation for the
next two chapters, which conclude the technical development:

• In chapter 9, we prove a version of the CAP theorem that shows
that for all but the simplest data types, sequential consistency
cannot be implemented in a way such that all operations are
available under partitions.

• In chapter 10, we revisit the implementations presented earlier,
and prove that they provide the claimed consistency guarantees.
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