Full text available at: http://dx.doi.org/10.1561/2500000014

Pointer Analysis

Yannis Smaragdakis
University of Athens
smaragd@di.uoa.gr

George Balatsouras
University of Athens
gbalats@di.uoa.gr

now

the essence of knowledge

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2500000014

Foundations and Trends® in
Programming Languages

Published, sold and distributed by:
now Publishers Inc.

PO Box 1024

Hanover, MA 02339

United States

Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.

PO Box 179

2600 AD Delft

The Netherlands

Tel. +31-6-51115274

The preferred citation for this publication is

Y. Smaragdakis and G. Balatsouras. Pointer Analysis. Foundations and Trends®
in Programming Languages, vol. 2, no. 1, pp. 1-69, 2015.

This Foundations and Trends® issue was typeset in BTEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-020-0
(© 2015 Y. Smaragdakis and G. Balatsouras

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2500000014

Foundations and Trends® in
Programming Languages
Volume 2, Issue 1, 2015

Editor-in-Chief

Mooly Sagiv
Tel Aviv University
Israel

Editors

Martin Abadi
Microsoft Research &
UC Santa Cruz
Anindya Banerjee
IMDEA

Patrick Cousot

ENS Paris & NYU
Oege De Moor
University of Oxford
Matthias Felleisen
Northeastern University
John Field

Google

Cormac Flanagan

UC Santa Cruz
Philippa Gardner
Imperial College
Andrew Gordon
Microsoft Research &
University of Edinburgh
Dan Grossman
University of Washington

Editorial Board

Robert Harper
CMU

Tim Harris
Oracle

Fritz Henglein
University of Copenhagen

Rupak Majumdar
MPI-SWS & UCLA

Kenneth McMillan
Microsoft Research

J. Eliot B. Moss
UMass, Amherst

Andrew C. Myers
Cornell University

Hanne Riis Nielson
TU Denmark

Peter O’Hearn
UCL

Benjamin C. Pierce
UPenn

Andrew Pitts
University of Cambridge

Ganesan Ramalingam
Microsoft Research
Mooly Sagiv

Tel Aviv University
Davide Sangiorgi
University of Bologna
David Schmidt

Kansas State University
Peter Sewell

University of Cambridge
Scott Stoller

Stony Brook University
Peter Stuckey
University of Melbourne
Jan Vitek

Purdue University
Philip Wadler
University of Edinburgh
David Walker
Princeton University

Stephanie Weirich
UPenn

Full text available at: http://dx.doi.org/10.1561/2500000014

Editorial Scope

Topics

Foundations and Trends® in Programming Languages publishes survey
and tutorial articles in the following topics:

Abstract interpretation

Compilation and
interpretation techniques

Domain specific languages

Formal semantics, including
lambda calculi, process calculi,
and process algebra

Language paradigms
Mechanical proof checking
Memory management
Partial evaluation
Program logic

Programming language
implementation

Programming language
security

Programming languages for
concurrency

Programming languages for
parallelism

Program synthesis

Program transformations and
optimizations

Program verification

Runtime techniques for
programming languages

Software model checking

Static and dynamic program
analysis

Type theory and type systems

Information for Librarians

Foundations and Trends® in Programming Languages, 2015, Volume 2, 4
issues. ISSN paper version 2325-1107. ISSN online version 2325-1131. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2500000014

Foundations and Trends® in Programming Languages

Vol. 2, No. 1 (2015) 1-69 n.w

© 2015 Y. Smaragdakis and G. Balatsouras
DOI: 10.1561/2500000014 the essence of knowledge

Pointer Analysis

Yannis Smaragdakis George Balatsouras
University of Athens University of Athens
smaragd@di.uoa.gr gbalats@di.uoa.gr

Full text available at: http://dx.doi.org/10.1561/2500000014

Contents
(1__Introductionl 2
|2 Core Pointer Analysis| 5
2.1 Andersen-Style Points-To Analysis, Declaratively|. 7
2.2 Other Approaches| 14
[3 Analysis of Realistic Languages| 18
[3.1 Arrays and Other Language Features| 18
[3.2 Exception Analysis|.o 20
[3.3 Reflection Analysis|. 23
|4 Context Sensitivity| 29
|4.1 Context-Sensitive Analysis Model| 30
[4.2 Call-Site Sensitivity] 34
[4.3 Object Sensitivity] 36
44 Discussionl 39
9 Flow Sensitivity, Must-Analysis, and ... Pointers| 43
5.1 Flow Sensitivity] 43
5.2 Must-Analysis|o 45
6.3 Other Directions| 52

Full text available at: http://dx.doi.org/10.1561/2500000014

[6__Conclusions|

|Acknowledgments|

[References|

59

61

62

Full text available at: http://dx.doi.org/10.1561/2500000014

Abstract

Pointer analysis is a fundamental static program analysis, with a rich
literature and wide applications. The goal of pointer analysis is to com-
pute an approximation of the set of program objects that a pointer
variable or expression can refer to.

We present an introduction and survey of pointer analysis tech-
niques, with an emphasis on distilling the essence of common analysis
algorithms. To this end, we focus on a declarative presentation of a com-
mon core of pointer analyses: algorithms are modeled as configurable,
yet easy-to-follow, logical specifications. The specifications serve as a
starting point for a broader discussion of the literature, as independent
threads spun from the declarative model.

Y. Smaragdakis and G. Balatsouras. Pointer Analysis. Foundations and Trends®
in Programming Languages, vol. 2, no. 1, pp. 1-69, 2015.

DOI: 10.1561/2500000014.

Full text available at: http://dx.doi.org/10.1561/2500000014

1

Introduction

Pointer analysis or points-to analysis is a static program analysis that
determines information on the values of pointer variables or expres-
sions. Such information offers a static model of a program’s heap. Since
the heap is the primary structure for global program data, pointer anal-
ysis forms the substrate of most inter-procedural static analyses. Vir-
tually all interesting questions one may want to ask of a program will
eventually need to query the possible values of a pointer expression, or
its relationship to other pointer expressions. The exact representation
of such information, i.e., the static abstraction used to model the heap,
often serves as a classifier of the analysis algorithm. Although the litera-
ture is not entirely consistent on high-level terminology, pointer analysis
is a near-synonym of alias analysis. Whereas, however, pointer /points-
to analysis typically tries to model heap objects and asks “what objects
can a variable point to?”, alias analysis algorithms focus on the closely
related question of “can a pair of variables or expressions be aliases,
i.e., point to the same object?” [Landi and Ryder, [1992, Emami et al.,
1994)

In this monograph, we attempt to survey the most common modern
approaches to pointer analysis, with an eye towards ease of exposition

Full text available at: http://dx.doi.org/10.1561/2500000014

and concreteness. Qur presentation aspires to be rather more tutorial
and hands-on than other surveys of the pointer analysis area. For a
thorough view of the literature, with an emphasis on coverage, readers
can consult Hind| [2001], Ryder| [2003], [Sridharan et al. [2013], and
Kanvar and Khedker [2014].

Our tutorial will develop, in significant detail, a modular, config-
urable model of a standard points-to analysis. This analysis model is
a skeleton on which we progressively add more flesh, to reflect several
realistic features and analysis enhancements from the recent literature.
The analysis model will also serve as a firm basis for high-level tangen-
tial discussions on topics that deviate from the model: alias analysis,
complexity theory results, algorithms not captured well by the formal
model, and more.

Importantly, our analysis model is executable: The specification of
our algorithms is given in Datalog, which is simultaneously a logic
and a realistic programming language. The use of Datalog allows us to
express the precision aspects of pointer analyses concisely, at almost
the same high level as a mathematical formalism, yet with no need to
separately treat the topic of how to implement the algorithms so that
they perform efficiently.

The axes of precision and performance/efficiency characterize every
approach to program reasoning. All interesting questions about uni-
versal (i.e., all-inputs) program behavior are undecidable—see Landi
[1992], Ramalingam [1994], Reps [2000] specifically for pointer analysis
problems. Thus, every technique is evaluated both on its precision, i.e.,
the degree to which the result approximates the uncomputable mathe-
matical ideal, and on its performance, i.e., the asymptotic complexity
or practical speed of computation.

We can use these axes to guide a more general overview of the
landscape of techniques for reasoning about program memory, of which
pointer analysis is only one part. Further along the precision axis lie
several approaches such as shape analysis [Sagiv et al., 2002] and sep-
aration logic [Reynolds, 2002, (O’Hearn et al. |2001]. Separation logic
is a full-fledged logic, typically deep in the forests of undecidability,
where reasoning requires close human guidance. Shape analysis is a

Full text available at: http://dx.doi.org/10.1561/2500000014

4 Introduction

computable, automated program analysis, yet with performance com-
plexity in the territory of intractability: complexity bounds for the best-
known shape analyses are super-exponential.

In contrast, the term “pointer analysis” is typically reserved for
techniques of modest performance cost, scaling to realistic, automated
whole-program analysis efforts. This bias in favor of automation and
scalability to full realistic programs is also reflected throughout our dis-
cussion and analysis formulations. Datalog (with the standard enhance-
ment of an order relation) is a language that captures the PTZME
complexity class [Immerman,|1999, Ch.14]: every Datalog program runs
in polynomial time, and every polynomial algorithm can be written in
Datalog.

Although a polynomial complexity bound is hardly a guarantee of
practical scalability, in broad mathematical strokes it is a reliable dis-
tingushing feature. Indeed, it is tempting to consider “pointer analysis”
to refer precisely to heap analysis algorithms of polynomial complexity.
In our formulation of analyses, we strive to maintain this complexity
boundary. This is reflected in our effort to stay within standard Datalog
(with stratified negation) and only use extensions as syntactic sugar.

We begin with essential background and an illustration of the best
known pointer analysis algorithms.

Full text available at: http://dx.doi.org/10.1561/2500000014

References

Ole Agesen. The cartesian product algorithm: Simple and precise type in-
ference of parametric polymorphism. In Proc. of the 9th European Conf.
on Object-Oriented Programming, ECOOP 95, pages 2-26. Springer, 1995.
ISBN 3-540-60160-0.

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2006. ISBN 0321486811.

Lars O. Andersen. Program Analysis and Specialization for the C Program-
ming Language. PhD thesis, DIKU, University of Copenhagen, May 1994.

David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual
function calls. In Proc. of the 11th Annual ACM SIGPLAN Conf. on Object
Oriented Programming, Systems, Languages, and Applications, OOPSLA
'96, pages 324-341, New York, NY, USA, 1996. ACM. ISBN 0-89791-788-X.

Gogul Balakrishnan and Thomas W. Reps. Recency-abstraction for heap-
allocated storage. In Proc. of the 14th International Symp. on Static Anal-
ysis, SAS 06, pages 221-239. Springer, 2006.

Marc Berndl, Ondrej Lhotak, Feng Qian, Laurie J. Hendren, and Navindra
Umanee. Points-to analysis using BDDs. In Proc. of the 2003 ACM SIG-
PLAN Conf. on Programming Language Design and Implementation, PLDI
'03, pages 103-114, New York, NY, USA, 2003. ACM. ISBN 1-58113-662-5.

62

Full text available at: http://dx.doi.org/10.1561/2500000014

References 63

Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specifica-
tion of sophisticated points-to analyses. In Proc. of the 2/th Annual ACM
SIGPLAN Conf. on Object Oriented Programming, Systems, Languages,
and Applications, OOPSLA ’09, New York, NY, USA, 2009a. ACM. ISBN
978-1-60558-766-0.

Martin Bravenboer and Yannis Smaragdakis. Exception analysis and points-
to analysis: Better together. In Proc. of the 18th International Symp. on
Software Testing and Analysis, ISSTA ’09, pages 1-12, New York, NY,
USA, 2009b. ACM. ISBN 978-1-60558-338-9.

Ramkrishna Chatterjee, Barbara G. Ryder, and William A. Landi. Relevant
context inference. In Proc. of the 26th ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages, POPL 99, pages 133-146. ACM,
1999. ISBN 1-58113-095-3.

Ben-Chung Cheng and Wen-Mei W. Hwu. Modular interprocedural pointer
analysis using access paths: Design, implementation, and evaluation. In
Proc. of the 2000 ACM SIGPLAN Conf. on Programming Language Design
and Implementation, PLDI *00, pages 57-69, New York, NY, USA, 2000.
ACM. ISBN 1-58113-199-2.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Conference Record of the Fourth ACM Symposium on Princi-
ples of Programming Languages, pages 238-252, 1977.

Patrick Cousot and Radhia Cousot. Systematic design of program analysis
frameworks. In POPL ’79: Proceedings of the 6th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages 269-282, 1979.

Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-
oriented programs using static class hierarchy analysis. In Proc. of the
9th European Conf. on Object-Oriented Programming, ECOOP ’95, pages
77-101. Springer, 1995. ISBN 3-540-60160-0.

Isil Dillig, Thomas Dillig, and Alex Aiken. Sound, complete and scalable
path-sensitive analysis. In Proc. of the 2008 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, PLDI ’08, pages 270—
280, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-860-2.

Michael Eichberg, Sven Kloppenburg, Karl Klose, and Mira Mezini. Defining
and continuous checking of structural program dependencies. In Proc. of
the 30th International Conf. on Software Engineering, ICSE ’08, pages 391
400, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-079-1.

Full text available at: http://dx.doi.org/10.1561/2500000014

64 References

Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function pointers. In
Proc. of the 1994 ACM SIGPLAN Conf. on Programming Language Design
and Implementation, PLDI '94, pages 242-256, New York, NY, USA, 1994.
ACM. ISBN 0-89791-662-X.

Manuel Féhndrich, Jeffrey S. Foster, Zhendong Su, and Alexander Aiken.
Partial online cycle elimination in inclusion constraint graphs. In Proc.
of the 1998 ACM SIGPLAN Conf. on Programming Language Design and
Implementation, PLDI ’98, pages 85-96, New York, NY, USA, 1998. ACM.
ISBN 0-89791-987-4.

Chen Fu and Barbara G. Ryder. Exception-chain analysis: Revealing ex-
ception handling architecture in Java server applications. In Proc. of the
29th International Conf. on Software Engineering, ICSE ’07, pages 230-239,
Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2828-
7.

Samuel Z. Guyer and Calvin Lin. Client-driven pointer analysis. In Proc. of
the 10th International Symp. on Static Analysis, SAS ’03, pages 214-236.
Springer, 2003. ISBN 3-540-40325-6.

Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. CodeQuest: Scalable
source code queries with Datalog. In Proc. of the 20th European Conf.
on Object-Oriented Programming, ECOOP ’06, pages 2—27. Springer, 2006.
ISBN 978-3-540-35726-2.

Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast and ac-
curate pointer analysis for millions of lines of code. In Proc. of the 2007
ACM SIGPLAN Conf. on Programming Language Design and Implemen-
tation, PLDI 07, pages 290-299, New York, NY, USA, 2007a. ACM. ISBN
978-1-59593-633-2.

Ben Hardekopf and Calvin Lin. Exploiting pointer and location equivalence
to optimize pointer analysis. In Proc. of the 14th International Symp. on
Static Analysis, SAS '07, pages 265-280. Springer, 2007b. ISBN 978-3-540-
74060-5.

Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using CLA: A
million lines of C code in a second. In Proc. of the 2001 ACM SIGPLAN
Conf. on Programming Language Design and Implementation, PLDI 01,
pages 254-263, New York, NY, USA, 2001a. ACM. ISBN 1-58113-414-2.

Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis. In Proc.
of the 2001 ACM SIGPLAN Conf. on Programming Language Design and
Implementation, PLDI ’01, pages 24-34, New York, NY, USA, 2001b. ACM.
ISBN 1-58113-414-2.

Full text available at: http://dx.doi.org/10.1561/2500000014

References 65

Michael Hind. Pointer analysis: haven’t we solved this problem yet? In Proc.
of the 8rd ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, PASTE ’01, pages 5461, New York, NY,
USA, 2001. ACM. ISBN 1-58113-413-4.

Susan Horwitz. Precise flow-insensitive may-alias analysis is NP-hard. ACM
Trans. Program. Lang. Syst., 19(1):1-6, January 1997. ISSN 0164-0925.

Neil Immerman. Descriptive Complezity. Graduate texts in computer science.
Springer, 1999. ISBN 978-1-4612-6809-3.

Vini Kanvar and Uday P. Khedker. Heap abstractions for static analysis.
CoRR, abs/1403.4910, 2014. URL http://arxiv.org/abs/1403.4910.

George Kastrinis and Yannis Smaragdakis. Efficient and effective handling of
exceptions in Java points-to analysis. In Proc. of the 22nd International
Conf. on Compiler Construction, CC ’13, pages 41-60. Springer, 2013a.
ISBN 978-3-642-37050-2.

George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for
points-to analysis. In Proc. of the 2013 ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation, PLDI ’13, New York, NY,
USA, 2013b. ACM. ISBN 978-1-4503-2014-6.

Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, Dz-
intars Avots, Michael Carbin, and Christopher Unkel. Context-sensitive
program analysis as database queries. In Proc. of the 24th Symp. on Prin-
ciples of Database Systems, PODS ’05, pages 1-12, New York, NY, USA,
2005. ACM. ISBN 1-59593-062-0.

William Landi. Undecidability of static analysis. LOPLAS, 1(4):323-337,
1992.

William Landi and Barbara G. Ryder. A safe approximate algorithm for
interprocedural aliasing. In Proc. of the 1992 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, PLDI '92, pages 235—
248, New York, NY, USA, 1992. ACM. ISBN 0-89791-475-9.

Ondrej Lhotdk. Program Analysis using Binary Decision Diagrams. PhD
thesis, McGill University, January 2006.

Ondrej Lhotdk and Laurie J. Hendren. Evaluating the benefits of context-
sensitive points-to analysis using a BDD-based implementation. ACM
Trans. Softw. Eng. Methodol., 18(1):1-53, 2008. ISSN 1049-331X.

Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. Self-inferencing reflection
resolution for Java. In Proc. of the 28th FEuropean Conf. on Object-Oriented
Programming, ECOOP 14, pages 27-53. Springer, 2014. ISBN 978-3-662-
44201-2.

http://arxiv.org/abs/1403.4910

Full text available at: http://dx.doi.org/10.1561/2500000014

66 References

Percy Liang and Mayur Naik. Scaling abstraction refinement via pruning. In
Proc. of the 2011 ACM SIGPLAN Conf. on Programming Language Design
and Implementation, PLDI "11, pages 590-601, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0663-8.

Benjamin Livshits. Improving Software Security with Precise Static and Run-
time Analysis. PhD thesis, Stanford University, December 2006.

Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection analysis for
Java. In Proc. of the 3rd Asian Symp. on Programming Languages and
Systems, APLAS 05, pages 139-160. Springer, 2005. ISBN 3-540-29735-9.

Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoték,
J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khed-
ker, Anders Mgller, and Dimitrios Vardoulakis. In defense of soundiness: A
manifesto. Commun. ACM, 58(2):44-46, January 2015. ISSN 0001-0782. .
URL http://doi.acm.org/10.1145/2644805.

Magnus Madsen, Benjamin Livshits, and Michael Fanning. Practical static
analysis of JavaScript applications in the presence of frameworks and li-
braries. In Proc. of the ACM SIGSOFT International Symp. on the Foun-
dations of Software Engineering, FSE ’13, pages 499-509. ACM, 2013. ISBN
978-1-4503-2237-9.

Matthew Might, Yannis Smaragdakis, and David Van Horn. Resolving and
exploiting the k-CFA paradox: Illuminating functional vs. object-oriented
program analysis. In Proc. of the 2010 ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation, PLDI 10, pages 305-315, New
York, NY, USA, 2010. ACM. ISBN 978-1-4503-0019-3.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object
sensitivity for points-to and side-effect analyses for Java. In Proc. of the
2002 International Symp. on Software Testing and Analysis, ISSTA 02,
pages 1-11, New York, NY, USA, 2002. ACM. ISBN 1-58113-562-9.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized ob-
ject sensitivity for points-to analysis for Java. ACM Trans. Softw. Eng.
Methodol., 14(1):1-41, 2005. ISSN 1049-331X.

Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection
for Java. In Proc. of the 2006 ACM SIGPLAN Conf. on Programming
Language Design and Implementation, PLDI ’06, pages 308-319, New York,
NY, USA, 2006. ACM. ISBN 1-59593-320-4.

Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. Effective static
deadlock detection. In Proc. of the 81st International Conf. on Software
Engineering, ICSE ’09, pages 386-396, New York, NY, USA, 2009. ACM.
ISBN 978-1-4244-3452-7.

http://doi.acm.org/10.1145/2644805

Full text available at: http://dx.doi.org/10.1561/2500000014

References 67

Rupesh Nasre. Exploiting the structure of the constraint graph for efficient
points-to analysis. In Proc. of the 2012 International Symp. on Memory
Management, ISMM ’12, pages 121-132. ACM, 2012. ISBN 978-1-4503-
1350-6.

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In Proc. of the 15th Inter-
national Workshop on Computer Science Logic, volume 2142 of CSL 01,
pages 1-19. Springer, 2001. ISBN 3-540-42554-3.

Ganesan Ramalingam. The undecidability of aliasing. ACM Trans. Program.
Lang. Syst., 16(5):1467-1471, 1994.

Thomas W. Reps. Demand interprocedural program analysis using logic
databases. In R. Ramakrishnan, editor, Applications of Logic Databases,
pages 163-196. Kluwer Academic Publishers, 1994.

Thomas W. Reps. Program analysis via graph reachability. Information &
Software Technology, 40:701-726, 1998.

Thomas W. Reps. Undecidability of context-sensitive data-independence anal-
ysis. ACM Trans. Program. Lang. Syst., 22(1):162-186, 2000.

Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interpro-
cedural dataflow analysis via graph reachability. In Proc. of the 22nd
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages,
POPL 95, pages 4961, New York, NY, USA, 1995. ACM. ISBN 0-89791-
692-1.

John C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In Proc. of the 17th IEEE Symp. on Logic in Computer Science, LICS
02, pages 55—74. IEEE Computer Society, 2002. ISBN 0-7695-1483-9.

Noam Rinetzky, Ganesan Ramalingam, Shmuel Sagiv, and Eran Yahav. On
the complexity of partially-flow-sensitive alias analysis. ACM Trans. Pro-
gram. Lang. Syst., 30(3), 2008. .

Atanas Rountev and Satish Chandra. Off-line variable substitution for scaling
points-to analysis. In Proc. of the 2000 ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation, PLDI ’00, pages 47-56, New
York, NY, USA, 2000. ACM. ISBN 1-58113-199-2.

Barbara G. Ryder. Dimensions of precision in reference analysis of object-
oriented programming languages. In Proc. of the 12th International Conf.
on Compiler Construction, CC ’03, pages 126-137. Springer, 2003. ISBN
3-540-00904-3.

Full text available at: http://dx.doi.org/10.1561/2500000014

68 References

Mooly Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape
analysis via 3-valued logic. ACM Trans. Program. Lang. Syst., 24(3):217—
298, May 2002. ISSN 0164-0925.

Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow
analysis. In Steven S. Muchnick and Neil D. Jones, editors, Program flow
analysis: theory and applications, chapter 7, pages 189-233. Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1981. ISBN 0137296819.

Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University, may 1991.

Yannis Smaragdakis, Martin Bravenboer, and Ondfej Lhotédk. Pick your
contexts well: Understanding object-sensitivity. In Proc. of the 38th
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages,
POPL 11, pages 17-30, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-0490-0.

Yannis Smaragdakis, George Balatsouras, and George Kastrinis. Set-based
pre-processing for points-to analysis. In Proc. of the 28th Annual ACM
SIGPLAN Conf. on Object Oriented Programming, Systems, Languages,
and Applications, OOPSLA ’13, pages 253-270, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2374-1.

Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspective
analysis: Context-sensitivity, across the board. In Proc. of the 2014 ACM
SIGPLAN Conf. on Programming Language Design and Implementation,
PLDI ’14, pages 485-495, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2784-8.

Manu Sridharan and Rastislav Bodik. Refinement-based context-sensitive
points-to analysis for Java. In Proc. of the 2006 ACM SIGPLAN Conf.
on Programming Language Design and Implementation, PLDI ’06, pages
387-400, New York, NY, USA, 2006. ACM. ISBN 1-59593-320-4.

Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodik. Demand-
driven points-to analysis for Java. In Proc. of the 20th Annual ACM SIG-
PLAN Conf. on Object Oriented Programming, Systems, Languages, and
Applications, OOPSLA 05, pages 59-76, New York, NY, USA, 2005. ACM.
ISBN 1-59593-031-0.

Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran
Yahav. Alias analysis for object-oriented programs. In Dave Clarke, James
Noble, and Tobias Wrigstad, editors, Aliasing in Object-Oriented Program-
ming. Types, Analysis and Verification, volume 7850 of Lecture Notes in
Computer Science, pages 196—232. Springer Berlin Heidelberg, 2013. ISBN
978-3-642-36945-2.

Full text available at: http://dx.doi.org/10.1561/2500000014

References 69

Bjarne Steensgaard. Points-to analysis in almost linear time. In Proc. of
the 28rd ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, POPL ’96, pages 32—41, New York, NY, USA, 1996. ACM.
ISBN 0-89791-769-3.

Frank Tip and Jens Palsberg. Scalable propagation-based call graph con-
struction algorithms. In Proc. of the 15th Annual ACM SIGPLAN Conf.
on Object Oriented Programming, Systems, Languages, and Applications,
OOPSLA ’00, pages 281-293, New York, NY, USA, 2000. ACM. ISBN
1-58113-200-X.

David Van Horn and Harry G. Mairson. Deciding kCFA is complete for
EXPTIME. In Proc. of the 13th ACM SIGPLAN International Conference
on Functional programming, ICFP 08, pages 275-282. ACM, 2008. ISBN
978-1-59593-919-7.

John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. In Proc. of the 2004 ACM
SIGPLAN Conf. on Programming Language Design and Implementation,
PLDI 04, pages 131-144, New York, NY, USA, 2004. ACM. ISBN 1-58113-
807-5.

John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using
Datalog with binary decision diagrams for program analysis. In Proc. of
the 3rd Asian Symp. on Programming Languages and Systems, APLAS *05,
pages 97-118. Springer, 2005. ISBN 3-540-29735-9.

Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer
analysis for C programs. In Proc. of the 1995 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, PLDI ’95, pages 1-12,
New York, NY, USA, 1995. ACM. ISBN 0-8989791-697-2.

Qirun Zhang, Michael R. Lyu, Hao Yuan, and Zhendong Su. Fast algorithms
for Dyck-CFL-reachability with applications to alias analysis. In Proc. of
the 2018 ACM SIGPLAN Conf. on Programming Language Design and Im-
plementation, PLDI ’13, pages 435-446, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2014-6.

Xin Zheng and Radu Rugina. Demand-driven alias analysis for C. In Proc.
of the 85th ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, POPL ’08, pages 197-208, New York, NY, USA, 2008. ACM.
ISBN 978-1-59593-689-9.

	Introduction
	Core Pointer Analysis
	Andersen-Style Points-To Analysis, Declaratively
	Other Approaches

	Analysis of Realistic Languages
	Arrays and Other Language Features
	Exception Analysis
	Reflection Analysis

	Context Sensitivity
	Context-Sensitive Analysis Model
	Call-Site Sensitivity
	Object Sensitivity
	Discussion

	Flow Sensitivity, Must-Analysis, and ... Pointers
	Flow Sensitivity
	Must-Analysis
	Other Directions

	Conclusions
	Acknowledgments
	References

