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Abstract

Pointer analysis is a fundamental static program analysis, with a rich
literature and wide applications. The goal of pointer analysis is to com-
pute an approximation of the set of program objects that a pointer
variable or expression can refer to.

We present an introduction and survey of pointer analysis tech-
niques, with an emphasis on distilling the essence of common analysis
algorithms. To this end, we focus on a declarative presentation of a com-
mon core of pointer analyses: algorithms are modeled as configurable,
yet easy-to-follow, logical specifications. The specifications serve as a
starting point for a broader discussion of the literature, as independent
threads spun from the declarative model.

Y. Smaragdakis and G. Balatsouras. Pointer Analysis. Foundations and Trends®
in Programming Languages, vol. 2, no. 1, pp. 1-69, 2015.

DOI: 10.1561/2500000014.
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1

Introduction

Pointer analysis or points-to analysis is a static program analysis that
determines information on the values of pointer variables or expres-
sions. Such information offers a static model of a program’s heap. Since
the heap is the primary structure for global program data, pointer anal-
ysis forms the substrate of most inter-procedural static analyses. Vir-
tually all interesting questions one may want to ask of a program will
eventually need to query the possible values of a pointer expression, or
its relationship to other pointer expressions. The exact representation
of such information, i.e., the static abstraction used to model the heap,
often serves as a classifier of the analysis algorithm. Although the litera-
ture is not entirely consistent on high-level terminology, pointer analysis
is a near-synonym of alias analysis. Whereas, however, pointer /points-
to analysis typically tries to model heap objects and asks “what objects
can a variable point to?”, alias analysis algorithms focus on the closely
related question of “can a pair of variables or expressions be aliases,
i.e., point to the same object?” [Landi and Ryder, [1992, Emami et al.,
1994)

In this monograph, we attempt to survey the most common modern
approaches to pointer analysis, with an eye towards ease of exposition
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and concreteness. Qur presentation aspires to be rather more tutorial
and hands-on than other surveys of the pointer analysis area. For a
thorough view of the literature, with an emphasis on coverage, readers
can consult Hind| [2001], Ryder| [2003], [Sridharan et al. [2013], and
Kanvar and Khedker [2014].

Our tutorial will develop, in significant detail, a modular, config-
urable model of a standard points-to analysis. This analysis model is
a skeleton on which we progressively add more flesh, to reflect several
realistic features and analysis enhancements from the recent literature.
The analysis model will also serve as a firm basis for high-level tangen-
tial discussions on topics that deviate from the model: alias analysis,
complexity theory results, algorithms not captured well by the formal
model, and more.

Importantly, our analysis model is executable: The specification of
our algorithms is given in Datalog, which is simultaneously a logic
and a realistic programming language. The use of Datalog allows us to
express the precision aspects of pointer analyses concisely, at almost
the same high level as a mathematical formalism, yet with no need to
separately treat the topic of how to implement the algorithms so that
they perform efficiently.

The axes of precision and performance/efficiency characterize every
approach to program reasoning. All interesting questions about uni-
versal (i.e., all-inputs) program behavior are undecidable—see Landi
[1992], Ramalingam [1994], Reps [2000] specifically for pointer analysis
problems. Thus, every technique is evaluated both on its precision, i.e.,
the degree to which the result approximates the uncomputable mathe-
matical ideal, and on its performance, i.e., the asymptotic complexity
or practical speed of computation.

We can use these axes to guide a more general overview of the
landscape of techniques for reasoning about program memory, of which
pointer analysis is only one part. Further along the precision axis lie
several approaches such as shape analysis [Sagiv et al., 2002] and sep-
aration logic [Reynolds, 2002, (O’Hearn et al. |2001]. Separation logic
is a full-fledged logic, typically deep in the forests of undecidability,
where reasoning requires close human guidance. Shape analysis is a
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4 Introduction

computable, automated program analysis, yet with performance com-
plexity in the territory of intractability: complexity bounds for the best-
known shape analyses are super-exponential.

In contrast, the term “pointer analysis” is typically reserved for
techniques of modest performance cost, scaling to realistic, automated
whole-program analysis efforts. This bias in favor of automation and
scalability to full realistic programs is also reflected throughout our dis-
cussion and analysis formulations. Datalog (with the standard enhance-
ment of an order relation) is a language that captures the PTZME
complexity class [Immerman,|1999, Ch.14]: every Datalog program runs
in polynomial time, and every polynomial algorithm can be written in
Datalog.

Although a polynomial complexity bound is hardly a guarantee of
practical scalability, in broad mathematical strokes it is a reliable dis-
tingushing feature. Indeed, it is tempting to consider “pointer analysis”
to refer precisely to heap analysis algorithms of polynomial complexity.
In our formulation of analyses, we strive to maintain this complexity
boundary. This is reflected in our effort to stay within standard Datalog
(with stratified negation) and only use extensions as syntactic sugar.

We begin with essential background and an illustration of the best
known pointer analysis algorithms.
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