
Nominal Game Semantics

Andrzej S. Murawski
University of Warwick

Nikos Tzevelekos
Queen Mary University of London

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2500000017

Foundations and Trends R© in
Programming Languages

Published, sold and distributed by:

now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:

now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

A. S. Murawski and N. Tzevelekos. Nominal Game Semantics. Foundations and
Trends R© in Programming Languages, vol. 2, no. 4, pp. 191–269, 2015.

This Foundations and Trends R© issue was typeset in LATEX using a class file designed

by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-107-8
c© 2016 A. S. Murawski and N. Tzevelekos

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2500000017

Foundations and Trends R© in

Programming Languages

Volume 2, Issue 4, 2015

Editorial Board

Editor-in-Chief

Mooly Sagiv

Tel Aviv University
Israel

Editors

Martín Abadi
Google &
UC Santa Cruz

Anindya Banerjee
IMDEA

Patrick Cousot
ENS Paris & NYU

Oege De Moor
University of Oxford

Matthias Felleisen
Northeastern University

John Field
Google

Cormac Flanagan
UC Santa Cruz

Philippa Gardner
Imperial College

Andrew Gordon
Microsoft Research &
University of Edinburgh

Dan Grossman
University of Washington

Robert Harper
CMU

Tim Harris
Oracle

Fritz Henglein
University of Copenhagen

Rupak Majumdar
MPI-SWS & UCLA

Kenneth McMillan
Microsoft Research

J. Eliot B. Moss
UMass, Amherst

Andrew C. Myers
Cornell University

Hanne Riis Nielson
TU Denmark

Peter O’Hearn
UCL

Benjamin C. Pierce
UPenn

Andrew Pitts
University of Cambridge

Ganesan Ramalingam
Microsoft Research

Mooly Sagiv
Tel Aviv University

Davide Sangiorgi
University of Bologna

David Schmidt
Kansas State University

Peter Sewell
University of Cambridge

Scott Stoller
Stony Brook University

Peter Stuckey
University of Melbourne

Jan Vitek
Purdue University

Philip Wadler
University of Edinburgh

David Walker
Princeton University

Stephanie Weirich
UPenn

Full text available at: http://dx.doi.org/10.1561/2500000017

Editorial Scope

Topics

Foundations and Trends R© in Programming Languages publishes survey

and tutorial articles in the following topics:

• Abstract interpretation

• Compilation and

interpretation techniques

• Domain specific languages

• Formal semantics, including

lambda calculi, process calculi,

and process algebra

• Language paradigms

• Mechanical proof checking

• Memory management

• Partial evaluation

• Program logic

• Programming language

implementation

• Programming language

security

• Programming languages for

concurrency

• Programming languages for

parallelism

• Program synthesis

• Program transformations and

optimizations

• Program verification

• Runtime techniques for

programming languages

• Software model checking

• Static and dynamic program

analysis

• Type theory and type systems

Information for Librarians

Foundations and Trends R© in Programming Languages, 2015, Volume 2, 4

issues. ISSN paper version 2325-1107. ISSN online version 2325-1131. Also

available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2500000017

Foundations and Trends R© in Programming Languages
Vol. 2, No. 4 (2015) 191–269
c© 2016 A. S. Murawski and N. Tzevelekos

DOI: 10.1561/2500000017

Nominal Game Semantics

Andrzej S. Murawski
University of Warwick

Nikos Tzevelekos
Queen Mary University of London

Full text available at: http://dx.doi.org/10.1561/2500000017

Contents

1 Introduction 2

2 Elements of Nominal Set Theory 6

3 GroundML 10

3.1 Syntax . 10

3.2 Operational semantics . 12

4 ToyML: A First-Order Language with Integer References 18

4.1 Types and terms . 18

4.2 Concrete games . 19

4.3 Interpretation of ToyML terms 22

5 Game Model 32

5.1 Moves, arenas, plays, strategies 32

5.2 Full abstraction . 58

5.3 Chapter Appendix: deferred proofs 68

6 Conclusions 71

6.1 Other paradigms: higher-order references 71

6.2 From references to Java objects 73

6.3 Algorithmic game semantics 74

ii

Full text available at: http://dx.doi.org/10.1561/2500000017

iii

6.4 Operational game semantics 75

References 76

Full text available at: http://dx.doi.org/10.1561/2500000017

Abstract

These tutorial notes present nominal game semantics, a denotational

technique for modelling higher-order programs.

A. S. Murawski and N. Tzevelekos. Nominal Game Semantics. Foundations and
Trends R© in Programming Languages, vol. 2, no. 4, pp. 191–269, 2015.
DOI: 10.1561/2500000017.

Full text available at: http://dx.doi.org/10.1561/2500000017

1

Introduction

Game semantics is a branch of denotational semantics that uses the

metaphor of game playing to model computation. The game models of

PCF [5, 21, 35] constructed in the 1990s have led to an unprecedented

series of full abstraction results for a range of functional/imperative

programming languages. A result of this kind characterises contextual

equivalence between terms semantically, i.e. equality of denotations co-

incides with the fact that terms can be used interchangeably in any

context. As such, full abstraction results can be said to capture the

computational essence of programs.

The fully abstract game models from the 1990s covered a plethora

of computational effects, contributing to a general picture referred to

as Abramsky’s cube [8]: by selectively weakening the combinatorial con-

ditions on plays of the games, one was able to increase the expressivity

of the games and capture desired computational effects.

Although those works successfully constructed models of state [7,

6, 4, 9], the techniques used to interpret reference types did not make

them fully compatible with what constitutes the norm in languages

such as ML or Java. In particular, references were modelled through

a form of indirection originating in the work of Reynolds [39], namely

2

Full text available at: http://dx.doi.org/10.1561/2500000017

3

by assuming that ref θ = (θ → unit) × (unit → θ). The approach led to

identification of references with pairs of arbitrary reading (unit → θ)

and writing (θ → unit) functions. While this view is elegant and cer-

tainly comprises the range of behaviours corresponding to references,

it does not enforce a relationship between reading and writing, as wit-

nessed by the presence of the product type. This causes a significant

strengthening of the semantic universe used for modelling references

and, consequently, many desirable equivalences are not satisfied in the

model. For example, the interpretation of (x := 0; x := 1) is different

from that of x := 1 and, similarly, for x := !x and (). We list the inter-

pretations below using the terminology of [6].

x := 0; x := 1 run write(0) ok write(1) ok done

x := 1 run write(1) ok done

x := !x run read i write(i) ok done

() run done

Thus, for the first term, the semantic translation treats both updates as

observable events and therefore both are recorded in the game play.1

This immediately distinguishes semantically the first term from the

second one, for which only a single update is recorded. On the other

hand, the translation of the third term is more verbose, registering calls

to both the read and write methods of x, even though the computa-

tional content of the term is in fact that of the skip command () in the

modelled language.

To prove full abstraction in this setting, it is then necessary to enrich

the syntax with terms that will populate the whole semantic space of

references. Such terms are often referred to as bad variables, because

they are objects of reference type equipped with potentially unrelated

reading and writing methods. These terms, if used by the context, can

distinguish the pairs of terms discussed above. For instance, a context

that instantiates x to a bad variable with divergent reading and writing

capabilities will be able to distinguish x := !x from (). Nonetheless, that

solution is not entirely satisfactory as the bad-variable construct breaks

standard expectations for references. Moreover, one would hope to be

1In effect, write(0) and write(1) represent calls to the write method of reference
x, while ok’s correspond to returns of that method.

Full text available at: http://dx.doi.org/10.1561/2500000017

4 Introduction

able to carve the model in such a way that it matches the modelled

language, instead of extending the language to match the model.

The bad-variable problem can be seen as the result of modelling

a generative effect (the creation and use of references) by equating it

with the product of its observable handling methods.2 Nominal game

semantics is a recent branch of game semantics that makes it possible

to model generative effects in a more direct manner, by incorporating

names (drawn from an infinite set) as atomic objects in its construc-

tions. In particular, it can model reference types without bad variables

by using names to interpret references. The names are embedded in

moves and also feature in stores that are carried by moves in the game.

Intuitively, the stores correspond to the observable part of program

memory. For example, the two pairs of terms discussed above can be

modelled by the following two nominal plays respectively.

a{(a,i)} ⋆{(a,1)} a{(a,i)} ⋆{(a,i)}

Here a stands for an arbitrary name, i.e. the collection of plays is sta-

ble with respect to name permutations. Formally, the objects studied

in nominal game semantics (moves, plays, strategies) live in nominal

sets [12].

Since 2004, the nominal approach has led to a series of new full

abstraction results. The languages covered are the ν-calculus [3] (purely

functional language with names), λν [25] (a higher-order language with

storage of untyped names), Reduced ML [31] (a higher-order language

with integer-valued storage), RefML [32] (higher-order references) and

Middleweight Java [34]. Nominal game semantics has also been used to

model Concurrent ML [26] and exceptions [34].

Structure of the tutorial

Our tutorial is meant to complement existing introductory literature to

game semantics [1, 8, 19, 16], which highlighted the then new structural

components necessary to model higher-order computation, e.g. arenas,

2Similar issues arise when modelling exceptions in this way, i.e. as products of
raise/handle functions [24].

Full text available at: http://dx.doi.org/10.1561/2500000017

5

justification pointers, innocence. In contrast, we shall particularly focus

on explaining the nominal content of our games. We hope the material

has been written in a way that will make it accessible to readers familiar

with standard denotational semantics and types, e.g. [10, 17, 40].

We begin our exposition with Chapter 2 covering the basics of nomi-

nal sets. In Chapter 3 we introduce the programming language of study,

called GroundML. GroundML is a higher-order language with references

capable of storing integers, reference to integers, references to refer-

ences to integers and so on. In Chapter 5 we shall present the game

model of GroundML in full detail. Before that, in Chapter 4, we focus

on a fragment of GroundML that, for the sake of simplicity, features

only integer-valued references and restricted higher-order types. Be-

cause ToyML is simpler, we can give a more direct and elementary

presentation of its game semantics, which we hope will help the reader

to make a transition to the full-blown model of the following section.

Full text available at: http://dx.doi.org/10.1561/2500000017

References

[1] S. Abramsky. Semantics of interaction. In A. Pitts and P. Dybjer, editors,
Semantics and Logics of Computation, pages 1–32. Cambridge University
Press, Cambridge, 1997.

[2] S. Abramsky, D. R. Ghica, A. S. Murawski, and C.-H. L. Ong. Algorith-
mic game semantics and component-based verification. In Proceedings of
SAVBCS: Specification and Verification of Component-Based Systems,
Workshop at ESEC/FASE, Technical Report 03-11, pages 66–74. De-
partment of Computer Science, Iowa State University, 2003.

[3] S. Abramsky, D. R. Ghica, A. S. Murawski, C.-H. L. Ong, and I. D. B.
Stark. Nominal games and full abstraction for the nu-calculus. In Pro-
ceedings of LICS, pages 150–159. IEEE Computer Society Press, 2004.

[4] S. Abramsky, K. Honda, and G. McCusker. Fully abstract game seman-
tics for general references. In Proceedings of IEEE Symposium on Logic
in Computer Science, pages 334–344. Computer Society Press, 1998.

[5] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF.
Information and Computation, 163:409–470, 2000.

[6] S. Abramsky and G. McCusker. Call-by-value games. In Proceedings of
CSL, volume 1414 of Lecture Notes in Computer Science, pages 1–17.
Springer-Verlag, 1997.

[7] S. Abramsky and G. McCusker. Linearity, sharing and state: a fully
abstract game semantics for Idealized Algol with active expressions. In
P. W. O’Hearn and R. D. Tennent, editors, Algol-like languages, pages
297–329. Birkhaüser, 1997.

76

Full text available at: http://dx.doi.org/10.1561/2500000017

References 77

[8] S. Abramsky and G. McCusker. Game semantics. In H. Schwichtenberg
and U. Berger, editors, Logic and Computation. Springer-Verlag, 1998.
Proceedings of the 1997 Marktoberdorf Summer School.

[9] S. Abramsky and G. McCusker. Full abstraction for Idealized Algol with
passive expressions. Theoretical Computer Science, 227:3–42, 1999.

[10] R. L. Crole. Categories for Types. Cambridge University Press, 1993.

[11] M. Gabbay and D. R. Ghica. Game semantics in the nominal model.
Electr. Notes Theor. Comput. Sci., 286:173–189, 2012.

[12] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding. Formal Aspects of Computing, 13:341–363, 2002.

[13] Murdoch James Gabbay. A Theory of Inductive Definitions with Alpha-
Equivalence. PhD thesis, University of Cambridge, 2001.

[14] D. R. Ghica and G. McCusker. Reasoning about Idealized Algol using
regular expressions. In Proceedings of ICALP, volume 1853 of Lecture
Notes in Computer Science, pages 103–115. Springer-Verlag, 2000.

[15] D. R. Ghica and N. Tzevelekos. A system-level game semantics. Electr.
Notes Theor. Comput. Sci., 286:191–211, 2012.

[16] Dan R. Ghica. Applications of game semantics: From program analy-
sis to hardware synthesis. In Proceedings of LICS, pages 17–26. IEEE
Computer Society, 2009.

[17] C. A. Gunter. Semantics of Programming Languages: Structures and
Techniques. MIT Press, 1992.

[18] K. Honda and N. Yoshida. Game-theoretic analysis of call-by-value com-
putation. Theoretical Computer Science, 221(1–2):393–456, 1999.

[19] J. M. E. Hyland. Game semantics. In A. Pitts and P. Dybjer, edi-
tors, Semantics and Logics of Computation, pages 131–182. Cambridge
Univ. Press, 1997.

[20] J. M. E. Hyland and C.-H. L. Ong. Pi-calculus, dialogue games and PCF.
In Proc. 7th acm Conf. Functional Prog. Lang. Comp. Architecture, pages
96 – 107. acm Press, 1995.

[21] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF: I.
Models, observables and the full abstraction problem, II. Dialogue games
and innocent strategies, III. A fully abstract and universal game model.
Information and Computation, 163(2):285–408, 2000.

[22] Guilhem Jaber. Operational nominal game semantics. In Proceedings of
FOSSACS, pages 264–278. Springer, 2015.

Full text available at: http://dx.doi.org/10.1561/2500000017

78 References

[23] A. Jeffrey and J. Rathke. Java Jr: Fully abstract trace semantics for
a core Java language. In Proceedings of ESOP, volume 3444 of Lecture
Notes in Computer Science, pages 423–438. Springer, 2003.

[24] J. Laird. A fully abstract games semantics of local exceptions. In Pro-
ceedings of 16th IEEE Symposium on Logic in Computer Science. IEEE
Computer Society Press, 2001.

[25] J. Laird. A game semantics of local names and good variables. In Proceed-
ings of FOSSACS, volume 2987 of Lecture Notes in Computer Science,
pages 289–303. Springer-Verlag, 2004.

[26] J. Laird. Game semantics for higher-order concurrency. In FSTTCS,
volume 4337 of Lecture Notes in Computer Science, pages 417–428, 2006.

[27] J. Laird. A fully abstract trace semantics for general references. In Pro-
ceedings of ICALP, volume 4596 of Lecture Notes in Computer Science,
pages 667–679. Springer, 2007.

[28] J. Laird. A game semantics of names and pointers. Annals of Pure and
Applied Logic, 151:151–169, 2008.

[29] E. Moggi. Computational lambda-calculus and monads. In Proceedings of
IEEE Symposium on Logic in Computer Science, pages 14–23. Computer
Society Press, 1989.

[30] A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. Game semantic anal-
ysis of equivalence in IMJ. submitted, 2015.

[31] A. S. Murawski and N. Tzevelekos. Full abstraction for Reduced ML.
In Proceedings of FOSSACS, volume 5504 of Lecture Notes in Computer
Science, pages 32–47. Springer-Verlag, 2009.

[32] A. S. Murawski and N. Tzevelekos. Algorithmic nominal game seman-
tics. In Proceedings of ESOP, volume 6602 of Lecture Notes in Computer
Science, pages 419–438. Springer-Verlag, 2011.

[33] A. S. Murawski and N. Tzevelekos. Algorithmic games for full ground
references. In Proceedings of ICALP, volume 7392 of Lecture Notes in
Computer Science, pages 312–324. Springer, 2012.

[34] A. S. Murawski and N. Tzevelekos. Game semantics for interface mid-
dleweight java. In POPL, pages 517–528, 2014.

[35] H. Nickau. Hereditarily Sequential Functionals: A Game-Theoretic Ap-
proach to Sequentiality. PhD thesis, Universität-Gesamthochschule-
Siegen, 1996.

[36] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer
Science. Cambridge University Press, New York, NY, USA, 2013.

Full text available at: http://dx.doi.org/10.1561/2500000017

References 79

[37] J. Power and E. Robinson. Premonoidal categories and notions of com-
putation. Mathematical Structures in Computer Science, 7:453–468, 10
1997.

[38] John Power and Hayo Thielecke. Closed Freyd- and kappa-categories.
In Proceedings of ICALP, pages 625–634. Springer, 1999.

[39] J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J.C.
van Vliet, editors, Algorithmic Languages, pages 345–372. North Holland,
1981.

[40] J. C. Reynolds. Theories of Programming Languages. Cambridge Uni-
versity Press, 1998.

[41] Ulrich Schöpp. Names and Binding in Type Theory. PhD thesis, Univer-
sity of Edinburgh, 2006.

[42] N. Tzevelekos. Full abstraction for nominal general references. Logical
Methods in Computer Science, 5(3), 2009.

Full text available at: http://dx.doi.org/10.1561/2500000017

	Introduction
	Elements of Nominal Set Theory
	GroundML
	Syntax
	Operational semantics

	ToyML: A First-Order Language with Integer References
	Types and terms
	Concrete games
	Interpretation of ToyML terms

	Game Model
	Moves, arenas, plays, strategies
	Full abstraction
	Chapter Appendix: deferred proofs

	Conclusions
	Other paradigms: higher-order references
	From references to Java objects
	Algorithmic game semantics
	Operational game semantics

	References

