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Abstract

These tutorial notes present nominal game semantics, a denotational

technique for modelling higher-order programs.

A. S. Murawski and N. Tzevelekos. Nominal Game Semantics. Foundations and
Trends R© in Programming Languages, vol. 2, no. 4, pp. 191–269, 2015.
DOI: 10.1561/2500000017.
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1

Introduction

Game semantics is a branch of denotational semantics that uses the

metaphor of game playing to model computation. The game models of

PCF [5, 21, 35] constructed in the 1990s have led to an unprecedented

series of full abstraction results for a range of functional/imperative

programming languages. A result of this kind characterises contextual

equivalence between terms semantically, i.e. equality of denotations co-

incides with the fact that terms can be used interchangeably in any

context. As such, full abstraction results can be said to capture the

computational essence of programs.

The fully abstract game models from the 1990s covered a plethora

of computational effects, contributing to a general picture referred to

as Abramsky’s cube [8]: by selectively weakening the combinatorial con-

ditions on plays of the games, one was able to increase the expressivity

of the games and capture desired computational effects.

Although those works successfully constructed models of state [7,

6, 4, 9], the techniques used to interpret reference types did not make

them fully compatible with what constitutes the norm in languages

such as ML or Java. In particular, references were modelled through

a form of indirection originating in the work of Reynolds [39], namely

2
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3

by assuming that ref θ = (θ → unit) × (unit → θ). The approach led to

identification of references with pairs of arbitrary reading (unit → θ)

and writing (θ → unit) functions. While this view is elegant and cer-

tainly comprises the range of behaviours corresponding to references,

it does not enforce a relationship between reading and writing, as wit-

nessed by the presence of the product type. This causes a significant

strengthening of the semantic universe used for modelling references

and, consequently, many desirable equivalences are not satisfied in the

model. For example, the interpretation of (x := 0; x := 1) is different

from that of x := 1 and, similarly, for x := !x and (). We list the inter-

pretations below using the terminology of [6].

x := 0; x := 1 run write(0) ok write(1) ok done

x := 1 run write(1) ok done

x := !x run read i write(i) ok done

() run done

Thus, for the first term, the semantic translation treats both updates as

observable events and therefore both are recorded in the game play.1

This immediately distinguishes semantically the first term from the

second one, for which only a single update is recorded. On the other

hand, the translation of the third term is more verbose, registering calls

to both the read and write methods of x, even though the computa-

tional content of the term is in fact that of the skip command () in the

modelled language.

To prove full abstraction in this setting, it is then necessary to enrich

the syntax with terms that will populate the whole semantic space of

references. Such terms are often referred to as bad variables, because

they are objects of reference type equipped with potentially unrelated

reading and writing methods. These terms, if used by the context, can

distinguish the pairs of terms discussed above. For instance, a context

that instantiates x to a bad variable with divergent reading and writing

capabilities will be able to distinguish x := !x from (). Nonetheless, that

solution is not entirely satisfactory as the bad-variable construct breaks

standard expectations for references. Moreover, one would hope to be

1In effect, write(0) and write(1) represent calls to the write method of reference
x, while ok’s correspond to returns of that method.
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4 Introduction

able to carve the model in such a way that it matches the modelled

language, instead of extending the language to match the model.

The bad-variable problem can be seen as the result of modelling

a generative effect (the creation and use of references) by equating it

with the product of its observable handling methods.2 Nominal game

semantics is a recent branch of game semantics that makes it possible

to model generative effects in a more direct manner, by incorporating

names (drawn from an infinite set) as atomic objects in its construc-

tions. In particular, it can model reference types without bad variables

by using names to interpret references. The names are embedded in

moves and also feature in stores that are carried by moves in the game.

Intuitively, the stores correspond to the observable part of program

memory. For example, the two pairs of terms discussed above can be

modelled by the following two nominal plays respectively.

a{(a,i)} ⋆{(a,1)} a{(a,i)} ⋆{(a,i)}

Here a stands for an arbitrary name, i.e. the collection of plays is sta-

ble with respect to name permutations. Formally, the objects studied

in nominal game semantics (moves, plays, strategies) live in nominal

sets [12].

Since 2004, the nominal approach has led to a series of new full

abstraction results. The languages covered are the ν-calculus [3] (purely

functional language with names), λν [25] (a higher-order language with

storage of untyped names), Reduced ML [31] (a higher-order language

with integer-valued storage), RefML [32] (higher-order references) and

Middleweight Java [34]. Nominal game semantics has also been used to

model Concurrent ML [26] and exceptions [34].

Structure of the tutorial

Our tutorial is meant to complement existing introductory literature to

game semantics [1, 8, 19, 16], which highlighted the then new structural

components necessary to model higher-order computation, e.g. arenas,

2Similar issues arise when modelling exceptions in this way, i.e. as products of
raise/handle functions [24].
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5

justification pointers, innocence. In contrast, we shall particularly focus

on explaining the nominal content of our games. We hope the material

has been written in a way that will make it accessible to readers familiar

with standard denotational semantics and types, e.g. [10, 17, 40].

We begin our exposition with Chapter 2 covering the basics of nomi-

nal sets. In Chapter 3 we introduce the programming language of study,

called GroundML. GroundML is a higher-order language with references

capable of storing integers, reference to integers, references to refer-

ences to integers and so on. In Chapter 5 we shall present the game

model of GroundML in full detail. Before that, in Chapter 4, we focus

on a fragment of GroundML that, for the sake of simplicity, features

only integer-valued references and restricted higher-order types. Be-

cause ToyML is simpler, we can give a more direct and elementary

presentation of its game semantics, which we hope will help the reader

to make a transition to the full-blown model of the following section.
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