
Computer-Assisted Query
Formulation

Alvin Cheung
University of Washington

akcheung@cs.washington.edu

Armando Solar-Lezama
MIT CSAIL

asolar@csail.mit.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2500000018

Foundations and Trends® in
Programming Languages
Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

A. Cheung and A. Solar-Lezama. Computer-Assisted Query Formulation.
Foundations and Trends® in Programming Languages, vol. 3, no. 1, pp. 1–94, 2016.

This Foundations and Trends® issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-037-8
© 2016 A. Cheung and A. Solar-Lezama

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2500000018

Foundations and Trends® in
Programming Languages

Volume 3, Issue 1, 2016
Editorial Board

Editor-in-Chief

Mooly Sagiv
Tel Aviv University
Israel

Editors

Martín Abadi
Microsoft Research &
UC Santa Cruz
Anindya Banerjee
IMDEA
Patrick Cousot
ENS Paris & NYU
Oege De Moor
University of Oxford
Matthias Felleisen
Northeastern University
John Field
Google
Cormac Flanagan
UC Santa Cruz
Philippa Gardner
Imperial College
Andrew Gordon
Microsoft Research &
University of Edinburgh
Dan Grossman
University of Washington

Robert Harper
CMU
Tim Harris
Oracle
Fritz Henglein
University of Copenhagen
Rupak Majumdar
MPI-SWS & UCLA
Kenneth McMillan
Microsoft Research
J. Eliot B. Moss
UMass, Amherst
Andrew C. Myers
Cornell University
Hanne Riis Nielson
TU Denmark
Peter O’Hearn
UCL
Benjamin C. Pierce
UPenn
Andrew Pitts
University of Cambridge

Ganesan Ramalingam
Microsoft Research
Mooly Sagiv
Tel Aviv University
Davide Sangiorgi
University of Bologna
David Schmidt
Kansas State University
Peter Sewell
University of Cambridge
Scott Stoller
Stony Brook University
Peter Stuckey
University of Melbourne
Jan Vitek
Purdue University
Philip Wadler
University of Edinburgh
David Walker
Princeton University
Stephanie Weirich
UPenn

Full text available at: http://dx.doi.org/10.1561/2500000018

Editorial Scope

Topics

Foundations and Trends® in Programming Languages publishes survey
and tutorial articles in the following topics:

• Abstract interpretation

• Compilation and
interpretation techniques

• Domain specific languages

• Formal semantics, including
lambda calculi, process calculi,
and process algebra

• Language paradigms

• Mechanical proof checking

• Memory management

• Partial evaluation

• Program logic

• Programming language
implementation

• Programming language
security

• Programming languages for
concurrency

• Programming languages for
parallelism

• Program synthesis

• Program transformations and
optimizations

• Program verification

• Runtime techniques for
programming languages

• Software model checking

• Static and dynamic program
analysis

• Type theory and type systems

Information for Librarians

Foundations and Trends® in Programming Languages, 2016, Volume 3, 4 is-
sues. ISSN paper version 2325-1107. ISSN online version 2325-1131. Also avail-
able as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2500000018

Foundations and Trends® in Programming Languages
Vol. 3, No. 1 (2016) 1–94
© 2016 A. Cheung and A. Solar-Lezama
DOI: 10.1561/2500000018

Computer-Assisted Query Formulation

Alvin Cheung
University of Washington

akcheung@cs.washington.edu

Armando Solar-Lezama
MIT CSAIL

asolar@csail.mit.edu

Full text available at: http://dx.doi.org/10.1561/2500000018

Contents

1 Introduction 2

2 Query Processing 5
2.1 Relational DBMS and Query Languages 5
2.2 DBMS as a library . 6
2.3 The ORM approach . 7
2.4 Query Execution . 8

3 Program Synthesis 13
3.1 The Problem . 13
3.2 Deductive Synthesis . 14
3.3 Inductive Synthesis . 15

4 Using Verified Lifting to Rewrite Code into SQL 19
4.1 Interacting with the DBMS 20
4.2 QBS Overview . 22
4.3 Theory of Finite Ordered Relations 29
4.4 Synthesis of Invariants and Postconditions 39
4.5 Formal Validation and Source Transformation 44
4.6 Preprocessing of Input Programs 46
4.7 Experiments . 49
4.8 Summary . 59

ii

Full text available at: http://dx.doi.org/10.1561/2500000018

iii

5 Assisting Users Specify Database Queries 61
5.1 Intended Users . 61
5.2 Usage Model . 64
5.3 Search Algorithms . 68
5.4 Query Refinement . 79

6 Conclusion and Future Work 83
6.1 Beyond Input-Output Examples 83
6.2 Extending System Capabilities 84
6.3 Refinement Techniques 84
6.4 Combining Different Inference Algorithms 85

References 87

Full text available at: http://dx.doi.org/10.1561/2500000018

Abstract

Database management systems (DBMS) typically provide an appli-
cation programming interface for users to issue queries using query
languages such as SQL. Many such languages were originally designed
for business data processing applications. While these applications are
still relevant, two other classes of applications have become important
users of data management systems: (a) web applications that issue
queries programmatically to the DBMS, and (b) data analytics involv-
ing complex queries that allow data scientists to better understand their
datasets. Unfortunately, existing query languages provided by database
management systems are often far from ideal for these application do-
mains.

In this tutorial, we describe a set of technologies that assist users in
specifying database queries for different application domains. The goal
of such systems is to bridge the gap between current query interfaces
provided by database management systems and the needs of different
usage scenarios that are not well served by existing query languages.
We discuss the different interaction modes that such systems provide
and the algorithms used to infer user queries. In particular, we focus
on a new class of systems built using program synthesis techniques,
and furthermore discuss opportunities in combining synthesis and other
methods used in prior systems to infer user queries.

A. Cheung and A. Solar-Lezama. Computer-Assisted Query Formulation.
Foundations and Trends® in Programming Languages, vol. 3, no. 1, pp. 1–94, 2016.
DOI: 10.1561/2500000018.

Full text available at: http://dx.doi.org/10.1561/2500000018

1
Introduction

From financial transactions to online shopping, we interact with
database management systems (DBMSs) on a daily basis. Since the
initial development of relational database systems, various query lan-
guages such as SQL have been developed for users to interact with the
DBMS. Many of these languages proved very effective for what was
originally their primary application: business data processing (e.g., gen-
erating transaction reports at a financial institution). Unfortunately,
many important applications of DBMSs that have emerged in recent
decades have proven to be a less than ideal fit for the interaction models
supported by traditional DBMSs.

One particularly important extension to the business data process-
ing application space corresponds to applications with complex business
logic, such as social network websites, online shopping applications,
etc. Unfortunately, traditional query interfaces often make develop-
ing such applications difficult. First, the general-purpose languages in
which these applications are usually written (e.g., Java or Python) are
quite different from the query languages supported by the DBMS. This
forces developers to learn a new language—and often a new program-
ming paradigm altogether. For example, an application developer who

2

Full text available at: http://dx.doi.org/10.1561/2500000018

3

is used to thinking about computation over objects stored in the pro-
gram heap will need to recast her computation in terms of structured
relations stored on disks when interacting with a DBMS. Moreover, in
addition to being concerned about efficient memory layout for retriev-
ing in-memory objects, she will also need to understand the costs associ-
ated with bringing objects into memory from the disk. This “impedance
mismatch” [Copeland and Maier, 1984] problem has plagued applica-
tion developers for decades. Today, this mismatch is often addressed by
application frameworks known as Object Relational Mapping (ORM)
Frameworks that eliminate the need to think in terms of two distinct
programming models. Unfortunately, the use of ORMs often imposes
significant performance costs [Subramanian].

There are many reasons for the performance cost of ORMs, but
one that is especially significant is that they encourage a programming
style where computation that could have been implemented with a sin-
gle query and a single round trip to the database is instead implemented
with several simpler queries connected together with imperative code
that manipulates their results. This is problematic because in addi-
tion to increasing the number of round trips and the amount of data
that needs to be transferred between the application and the DBMS,
doing so also increases the cost of the computation, since the DBMS
is in much better position to optimize queries compared to a general-
purpose code compiler trying to optimize a block of imperative code
that happens to implement a relational operation.

As an example, while a relational join between relations R and S
can be implemented using a nested loop, with each loop processing
tuples from the two respective relations fetched from the DBMS, it is
much more efficient to implement the join as a single SQL query, as
the DBMS can choose the best way to implement the join during query
optimization.

In this tutorial we focus on a new approach based on verified lift-
ing [Cheung et al., 2015] to reduce the performance cost of these ap-
plication frameworks, allowing programmers to enjoy the benefits of
the reduced impedance mismatch. The first step in this technique is to
identify places in the application code where the programmer is using

Full text available at: http://dx.doi.org/10.1561/2500000018

4 Introduction

imperative code to implement functionality that could be implemented
as part of a query. The second and most important step is to use pro-
gram synthesis technology to derive a query that is provably equivalent
to the imperative code. Once that is done, the third step involves gen-
erating a new version of the code that uses the query in place of the
original code.

The technology behind this work was originally published ear-
lier [Cheung et al., 2013]. In this paper, we expand on the content
of that original paper in order to make the technology more accessi-
ble to researchers without a strong background in program synthesis
or verification, as well as to researchers who may not be as familiar
with database concepts. In Section 2, we provide a quick primer on
query execution and query processing, focusing on key concepts that
will help the reader understand the reasons for the performance prob-
lems introduced by ORMs. Section 3 provides a comprehensive primer
on program synthesis technology, focusing in particular on the tech-
niques that are leveraged by QBS, and putting them in context of
other synthesis technologies. Section 4 describes the details of the QBS
approach, and finally Section 5 describes the state of the art in terms of
applications of synthesis to interact with DBMS systems and promising
directions for future work.

Full text available at: http://dx.doi.org/10.1561/2500000018

References

Azza Abouzied, Joseph M. Hellerstein, and Avi Silberschatz. Playful query
specification with DataPlay. VLDB Endowment, 5(12):1938–1941, 2012.

Azza Abouzied, Dana Angluin, Christos H. Papadimitriou, Joseph M. Heller-
stein, and Avi Silberschatz. Learning and verifying quantified boolean
queries by example. In ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 49–60, 2013.

John R. Allen and Ken Kennedy. Automatic loop interchange. In Interna-
tional Conference on Compiler Construction, pages 233–246, 1984.

Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama,
Emina Torlak, and Abhishek Udupa. Syntax-guided synthesis. In Formal
Methods in Computer-Aided Design, pages 1–17, 2013.

Ion Androutsopoulos, Graeme D. Ritchie, and Peter Thanisch. Natural lan-
guage interfaces to databases - an introduction. Natural Language Engi-
neering, 1(1):29–81, 1995.

Dana Angluin, Michael Frazier, and Leonard Pitt. Learning conjunctions of
horn clauses. Machine Learning, 9:147–164, 1992.

Mark Bickford, Christoph Kreitz, Robbert Van Renesse, and Robert Consta-
ble. An experiment in formal design using meta-properties. In DISCEX-
II: The 2nd DARPA Information Survivability Conference and Exposition.
IEEE, 2001.

Andreas Blass and Yuri Gurevich. Inadequacy of computable loop invariants.
2(1):1–11, 2001.

Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth, 1984.

87

Full text available at: http://dx.doi.org/10.1561/2500000018

88 References

Mark Burstein, Drew Mcdermott, Douglas R. Smith, and Stephen J. Westfold.
Derivation of glue code for agent interoperation. In 4th Intl. Conf. on
Autonomous Agents, pages 277–284, 2000.

Ugur Çetintemel, Mitch Cherniack, Justin DeBrabant, Yanlei Diao, Kyri-
aki Dimitriadou, Alexander Kalinin, Olga Papaemmanouil, and Stanley B.
Zdonik. Query steering for interactive data exploration. In Biennial Con-
ference on Innovative Data Systems Research, 2013.

Gloria Chatzopoulou, Magdalini Eirinaki, and Neoklis Polyzotis. Query rec-
ommendations for interactive database exploration. In International Con-
ference on Scientific and Statistical Database Management, pages 3–18,
2009.

Alvin Cheung, Arvind Thiagarajan, and Samuel Madden. Automatically gen-
erating interesting events with LifeJoin. In International Conference on
Embedded Networked Sensor Systems, pages 411–412, 2011.

Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Using program
synthesis for social recommendations. In International Conference on In-
formation and Knowledge Management, pages 1732–1736, 2012.

Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Optimizing
database-backed applications with query synthesis. In ACM SIGPLAN
Conf. on Programming Language Design and Implementation, pages 3–14,
2013.

Alvin Cheung, Samuel Madden, and Armando Solar-Lezama. Sloth: being lazy
is a virtue (when issuing database queries). In ACM SIGMOD International
Conference on Management of Data, pages 931–942, 2014.

Alvin Cheung, Shoaib Kamil, and Armando Solar-Lezama. Bridging the gap
between general-purpose and domain-specific compilers with synthesis. In
1st Summit on Advances in Programming Languages, pages 51–62, 2015.

David A. Cieslak and Nitesh V. Chawla. Learning decision trees for unbal-
anced data. In European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 241–256, 2008.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In Computer Aided
Verification, pages 154–169, 2000.

E. F. Codd. A relational model of data for large shared data banks. Commu-
nications of the ACM, 13(6):377–387, 1970.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web
programming without tiers. In International Conference on Formal Meth-
ods for Components and Objects, pages 266–296, 2007.

George Copeland and David Maier. Making smalltalk a database system. In
ACM SIGMOD International Conference on Management of Data, pages
316–325, 1984.

Full text available at: http://dx.doi.org/10.1561/2500000018

References 89

Chris J. Date. An introduction to database systems (7th ed.). Addison-Wesley-
Longman, 2000.

David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Pa-
leo. Exploiting symmetry in SMT problems. In International Conference
on Automated Deduction, pages 222–236, 2011.

Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal deriva-
tion of programs. Communications of the ACM, 18(8):453–457, 1975.

Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. Explore-by-
example: an automatic query steering framework for interactive data ex-
ploration. In ACM SIGMOD International Conference on Management of
Data, pages 517–528, 2014.

Django. http://www.djangoproject.com. Accessed: 2014-11-22.
Robert Floyd. Assigning meanings to programs. American Mathematical

Society Symposia on Applied Mathematics, 19:19–31, 1967.
Eibe Frank and Ian H. Witten. Generating accurate rule sets without global

optimization. In International Conference on Machine Learning, pages 144–
151, 1998.

David Gries. The Science of Programming. Springer, 1987.
Sumit Gulwani and Mark Marron. NLyze: interactive programming by nat-

ural language for spreadsheet data analysis and manipulation. In ACM
SIGMOD International Conference on Management of Data, pages 803–
814, 2014.

Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan.
Synthesis of loop-free programs. In ACM SIGPLAN Conf. on Programming
Language Design and Implementation, pages 62–73, 2011.

Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data
manipulation using examples. Communications of the ACM, 55(8):97–105,
August 2012.

Isabelle Guyon and André Elisseeff. An introduction to variable and feature
selection. Journal of Machine Learning Research, 3:1157–1182, 2003.

C. A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576–580, 1969.

International Organization for Standardization. Information technology –
Database languages – SQL – Part 3: Call-Level Interface (SQL/CLI). ISO
ISO/IEC 9075-3:2008, Geneva, Switzerland, 2008.

International Organization for Standardization. Information technology
– Database languages – SQL – Part 4: Persistent Stored Modules
(SQL/PSM). ISO ISO/IEC 9075-4:2011, Geneva, Switzerland, 2011.

itracker Issue Management System. http://itracker.sourceforge.net/
index.html. Accessed: Apr 5, 2016.

Full text available at: http://dx.doi.org/10.1561/2500000018

http://www.djangoproject.com
http://itracker.sourceforge.net/index.html
http://itracker.sourceforge.net/index.html

90 References

Ming-Yee Iu and Willy Zwaenepoel. HadoopToSQL: a mapReduce query
optimizer. In European Conference on Computer systems, pages 251–264,
2010.

Ming-Yee Iu, Emmanuel Cecchet, and Willy Zwaenepoel. JReq: Database
queries in imperative languages. In International Conference on Compiler
Construction, pages 84–103, 2010.

Java Persistence 2.0 Expert Group. Java Persistence API. http://jcp.org/
aboutJava/communityprocess/final/jsr317, 2009.

JBoss. Hibernate documentation. http://www.hibernate.org. Accessed:
2014-11-22.

JDBC 4.2 Expert Group. JDBC 4.2 API. http://jcp.org/aboutJava/
communityprocess/mrel/jsr221, 2014.

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-
guided component-based program synthesis. In International Conference
on Software Engineering, pages 215–224, 2010.

Lilong Jiang, Michael Mandel, and Arnab Nandi. GestureQuery: A multi-
touch database query interface. VLDB Endowment, 6(12):1342–1345, Au-
gust 2013.

jOOQ. http://www.jooq.org. Accessed: 2014-11-22.
Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama.

Verified lifting of stencil computations. In ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation, 2016.

Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wran-
gler: Interactive visual specification of data transformation scripts. In
SIGCHI Conference on Human Factors in Computing Systems, pages 3363–
3372, 2011.

Nodira Khoussainova, Magdalena Balazinska, Wolfgang Gatterbauer,
YongChul Kwon, and Dan Suciu. A case for a collaborative query manage-
ment system. In Biennial Conference on Innovative Data Systems Research,
2009.

Nodira Khoussainova, YongChul Kwon, Magdalena Balazinska, and Dan Su-
ciu. SnipSuggest: Context-aware autocompletion for SQL. VLDB Endow-
ment, 4(1):22–33, October 2010.

Bongshin Lee, Rubaiat Habib Kazi, and Greg Smith. SketchStory: Telling
more engaging stories with data through freeform sketching. IEEE Trans-
actions on Visualization and Computer Graphics, 19(12):2416–2425, 2013.

Fei Li and H. V. Jagadish. Constructing an interactive natural language
interface for relational databases. VLDB Endowment, 8(1):73–84, 2014a.

Fei Li and Hosagrahar V. Jagadish. NaLIR: an interactive natural language
interface for querying relational databases. In ACM SIGMOD International
Conference on Management of Data, pages 709–712, 2014b.

Full text available at: http://dx.doi.org/10.1561/2500000018

http://jcp.org/aboutJava/communityprocess/final/jsr317
http://jcp.org/aboutJava/communityprocess/final/jsr317
http://www.hibernate.org
http://jcp.org/aboutJava/communityprocess/mrel/jsr221
http://jcp.org/aboutJava/communityprocess/mrel/jsr221
http://www.jooq.org

References 91

Yunyao Li, Huahai Yang, and H. V. Jagadish. NaLIX: A generic natural lan-
guage search environment for XML data. ACM Transactions on Database
Systems, 32(4), 2007.

Guy Lohman. Is Query Optimization a “Solved” Problem? http://wp.
sigmod.org/?author=20, 2014. Accessed: 2014-11-22.

Edward Lu and Rastislav Bodík. Quicksilver: Automatic synthesis of rela-
tional queries. Technical Report UCB/EECS-2013-68, Department of Elec-
trical Engineering and Computer Sciences, University of California, Berke-
ley, May 2013.

Zohar Manna and Richard Waldinger. Fundamentals of deductive program
synthesis. IEEE Transactions on Software Engineering, 18(8):674–704, Au-
gust 1992.

Zohar Manna and Richard J. Waldinger. Deductive synthesis of the unification
algorithm. Science of Computer Programming, 1(1-2):5–48, 1981.

Microsoft. Entity Framework. http://msdn.microsoft.com/en-us/data/ef.
aspx, a. Accessed: 2014-11-22.

Microsoft. Language-integrated query. http://msdn.microsoft.com/en-us/
library/bb397926.aspx, b. Accessed: 2014-11-22.

Microsoft. z3 Theorem Prover. http://research.microsoft.com/en-us/um/
redmond/projects/z3. Accessed: Apr 5, 2016.

Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot:
An extensible compiler framework for Java. In International Conference on
Compiler Construction, pages 138–152, 2003.

Object Management Group. Common Object Request Broker Architecture
(CORBA) Specification, Version 3.3. http://www.omg.org/spec/CORBA/3.
3, 2012.

Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost. Test-
driven synthesis. In ACM SIGPLAN Conf. on Programming Language
Design and Implementation, pages 408–418, 2014.

Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant
Totla, Sarah Chasins, and Rastislav Bodik. Chlorophyll: Synthesis-aided
compiler for low-power spatial architectures. In ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pages 396–407, 2014.

Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. Extensible/rule
based query rewrite optimization in Starburst. In ACM SIGMOD Interna-
tional Conference on Management of Data, pages 39–48, 1992.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. Towards a theory of
natural language interfaces to databases. In International Conference on
Intelligent User Interfaces, pages 149–157, 2003.

Full text available at: http://dx.doi.org/10.1561/2500000018

http://wp.sigmod.org/?author=20
http://wp.sigmod.org/?author=20
http://msdn.microsoft.com/en-us/data/ef.aspx
http://msdn.microsoft.com/en-us/data/ef.aspx
http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://research.microsoft.com/en-us/um/redmond/projects/z3
http://research.microsoft.com/en-us/um/redmond/projects/z3
http://www.omg.org/spec/CORBA/3.3
http://www.omg.org/spec/CORBA/3.3

92 References

Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko, and Alexan-
der Yates. Modern natural language interfaces to databases: Composing
statistical parsing with semantic tractability. In International Conference
on Computational Linguistics, 2004.

Xiaolei Qian. The deductive synthesis of database transactions. ACM Trans-
actions on Database Systems, 18(4):626–677, December 1993.

Lawrence A. Rowe and Kurt A. Shoens. Data abstraction, views and updates
in RIGEL. In ACM SIGMOD International Conference on Management of
Data, pages 71–81, 1979.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape anal-
ysis via 3-valued logic. In ACM Symposium on Principles of Programming
Languages, pages 105–118, 1999.

Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. Discovery-driven
exploration of olap data cubes. In International Conference on Extending
Database Technology, pages 168–182, 1998.

Anish Das Sarma, Aditya G. Parameswaran, Hector Garcia-Molina, and Jen-
nifer Widom. Synthesizing view definitions from data. In International
Conference on Database Theory, pages 89–103, 2010.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization.
In International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 305–316, 2013.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic optimization of
floating-point programs with tunable precision. In ACM SIGPLAN Conf.
on Programming Language Design and Implementation, page 9, 2014.

Joachim W. Schmidt. Some high level language constructs for data of type
relation. ACM Transactions Database Systems, 2(3):247–261, September
1977.

Praveen Seshadri, Hamid Pirahesh, and T. Y. Cliff Leung. Complex query
decorrelation. In International Conference on Data Engineering, pages 450–
458, 1996.

Burr Settles. Active learning literature survey. Technical Report 1648, De-
partment of Computer Sciences, University of Wisconsin, Madison, 2010.

Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feed-
back generation for introductory programming assignments. In ACM SIG-
PLAN Conf. on Programming Language Design and Implementation, pages
15–26, 2013.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and
Vijay A. Saraswat. Combinatorial sketching for finite programs. In Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems, pages 404–415, 2006.

Squeryl. Squeryl: A Scala ORM for SQL Databases. http://squeryl.org.
Accessed: 2014-11-22.

Full text available at: http://dx.doi.org/10.1561/2500000018

http://squeryl.org

References 93

Saurabh Srivastava and Sumit Gulwani. Program verification using templates
over predicate abstraction. In ACM SIGPLAN Conf. on Programming
Language Design and Implementation, pages 223–234, 2009.

Michael Stonebraker, Daniel Bruckner, Ihab F. Ilyas, George Beskales, Mitch
Cherniack, Stanley B. Zdonik, Alexander Pagan, and Shan Xu. Data cura-
tion at scale: The data tamer system. In Biennial Conference on Innovative
Data Systems Research, 2013.

Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Eliz-
abeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-store:
A column-oriented DBMS. In International Conference on Very Large Data
Bases, pages 553–564, 2005.

Singaram Subramanian. How to Identify and Resolve Hibernate
N+1 SELECT’s Problems. http://architects.dzone.com/articles/
how-identify-and-resilve-n1. Accessed: 2015-01-12.

Tableau Software. http://www.tableausoftware.com. Accessed: 2014-11-22.
Emina Torlak and Daniel Jackson. Kodkod: a relational model finder. In

International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 632–647, 2007.

Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. Query
by output. In ACM SIGMOD International Conference on Management of
Data, pages 535–548, 2009.

Jonathan Traugott. Deductive synthesis of sorting programs. Journal of
Symbolic Computation, 7(6):533–572, June 1989.

Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri
Weisman. TAJ: effective taint analysis of web applications. In ACM SIG-
PLAN Conf. on Programming Language Design and Implementation, pages
87–97, 2009.

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-
Haim, Milo M. K. Martin, and Rajeev Alur. TRANSIT: specifying pro-
tocols with concolic snippets. In ACM SIGPLAN Conf. on Programming
Language Design and Implementation, pages 287–296, 2013.

John Whaley and Martin Rinard. Compositional pointer and escape analy-
sis for java programs. In ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications, pages 187–206, 1999.

Ben Wiedermann and William R. Cook. Extracting queries by static analysis
of transparent persistence. In ACM Symposium on Principles of Program-
ming Languages, pages 199–210, 2007.

Ben Wiedermann, Ali Ibrahim, and William R. Cook. Interprocedural query
extraction for transparent persistence. In ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages and Applications, pages
19–36, 2008.

Full text available at: http://dx.doi.org/10.1561/2500000018

http://architects.dzone.com/articles/how-identify-and-resilve-n1
http://architects.dzone.com/articles/how-identify-and-resilve-n1
http://www.tableausoftware.com

94 References

Wilos Orchestration Software. http://www.ohloh.net/p/6390. Accessed: Apr
5, 2016.

Yichen Xie and Alex Aiken. Scalable error detection using boolean satisfiabil-
ity. In ACM Symposium on Principles of Programming Languages, pages
351–363, 2005.

Sai Zhang and Yuyin Sun. Automatically synthesizing SQL queries from
input-output examples. In IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 224–234, 2013.

Moshé M. Zloof. Query-by-example: The invocation and definition of tables
and forms. In International Conference on Very Large Data Bases, pages
1–24, 1975.

Full text available at: http://dx.doi.org/10.1561/2500000018

http://www.ohloh.net/p/6390

	Introduction
	Query Processing
	Relational DBMS and Query Languages
	DBMS as a library
	The ORM approach
	Query Execution

	Program Synthesis
	The Problem
	Deductive Synthesis
	Inductive Synthesis

	Using Verified Lifting to Rewrite Code into SQL
	Interacting with the DBMS
	QBS Overview
	Theory of Finite Ordered Relations
	Synthesis of Invariants and Postconditions
	Formal Validation and Source Transformation
	Preprocessing of Input Programs
	Experiments
	Summary

	Assisting Users Specify Database Queries
	Intended Users
	Usage Model
	Search Algorithms
	Query Refinement

	Conclusion and Future Work
	Beyond Input-Output Examples
	Extending System Capabilities
	Refinement Techniques
	Combining Different Inference Algorithms

	References

