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Abstract

Database management systems (DBMS) typically provide an appli-
cation programming interface for users to issue queries using query
languages such as SQL. Many such languages were originally designed
for business data processing applications. While these applications are
still relevant, two other classes of applications have become important
users of data management systems: (a) web applications that issue
queries programmatically to the DBMS, and (b) data analytics involv-
ing complex queries that allow data scientists to better understand their
datasets. Unfortunately, existing query languages provided by database
management systems are often far from ideal for these application do-
mains.

In this tutorial, we describe a set of technologies that assist users in
specifying database queries for different application domains. The goal
of such systems is to bridge the gap between current query interfaces
provided by database management systems and the needs of different
usage scenarios that are not well served by existing query languages.
We discuss the different interaction modes that such systems provide
and the algorithms used to infer user queries. In particular, we focus
on a new class of systems built using program synthesis techniques,
and furthermore discuss opportunities in combining synthesis and other
methods used in prior systems to infer user queries.

A. Cheung and A. Solar-Lezama. Computer-Assisted Query Formulation.
Foundations and Trends® in Programming Languages, vol. 3, no. 1, pp. 1–94, 2016.
DOI: 10.1561/2500000018.
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1
Introduction

From financial transactions to online shopping, we interact with
database management systems (DBMSs) on a daily basis. Since the
initial development of relational database systems, various query lan-
guages such as SQL have been developed for users to interact with the
DBMS. Many of these languages proved very effective for what was
originally their primary application: business data processing (e.g., gen-
erating transaction reports at a financial institution). Unfortunately,
many important applications of DBMSs that have emerged in recent
decades have proven to be a less than ideal fit for the interaction models
supported by traditional DBMSs.

One particularly important extension to the business data process-
ing application space corresponds to applications with complex business
logic, such as social network websites, online shopping applications,
etc. Unfortunately, traditional query interfaces often make develop-
ing such applications difficult. First, the general-purpose languages in
which these applications are usually written (e.g., Java or Python) are
quite different from the query languages supported by the DBMS. This
forces developers to learn a new language—and often a new program-
ming paradigm altogether. For example, an application developer who

2
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3

is used to thinking about computation over objects stored in the pro-
gram heap will need to recast her computation in terms of structured
relations stored on disks when interacting with a DBMS. Moreover, in
addition to being concerned about efficient memory layout for retriev-
ing in-memory objects, she will also need to understand the costs associ-
ated with bringing objects into memory from the disk. This “impedance
mismatch” [Copeland and Maier, 1984] problem has plagued applica-
tion developers for decades. Today, this mismatch is often addressed by
application frameworks known as Object Relational Mapping (ORM)
Frameworks that eliminate the need to think in terms of two distinct
programming models. Unfortunately, the use of ORMs often imposes
significant performance costs [Subramanian].

There are many reasons for the performance cost of ORMs, but
one that is especially significant is that they encourage a programming
style where computation that could have been implemented with a sin-
gle query and a single round trip to the database is instead implemented
with several simpler queries connected together with imperative code
that manipulates their results. This is problematic because in addi-
tion to increasing the number of round trips and the amount of data
that needs to be transferred between the application and the DBMS,
doing so also increases the cost of the computation, since the DBMS
is in much better position to optimize queries compared to a general-
purpose code compiler trying to optimize a block of imperative code
that happens to implement a relational operation.

As an example, while a relational join between relations R and S
can be implemented using a nested loop, with each loop processing
tuples from the two respective relations fetched from the DBMS, it is
much more efficient to implement the join as a single SQL query, as
the DBMS can choose the best way to implement the join during query
optimization.

In this tutorial we focus on a new approach based on verified lift-
ing [Cheung et al., 2015] to reduce the performance cost of these ap-
plication frameworks, allowing programmers to enjoy the benefits of
the reduced impedance mismatch. The first step in this technique is to
identify places in the application code where the programmer is using

Full text available at: http://dx.doi.org/10.1561/2500000018



4 Introduction

imperative code to implement functionality that could be implemented
as part of a query. The second and most important step is to use pro-
gram synthesis technology to derive a query that is provably equivalent
to the imperative code. Once that is done, the third step involves gen-
erating a new version of the code that uses the query in place of the
original code.

The technology behind this work was originally published ear-
lier [Cheung et al., 2013]. In this paper, we expand on the content
of that original paper in order to make the technology more accessi-
ble to researchers without a strong background in program synthesis
or verification, as well as to researchers who may not be as familiar
with database concepts. In Section 2, we provide a quick primer on
query execution and query processing, focusing on key concepts that
will help the reader understand the reasons for the performance prob-
lems introduced by ORMs. Section 3 provides a comprehensive primer
on program synthesis technology, focusing in particular on the tech-
niques that are leveraged by QBS, and putting them in context of
other synthesis technologies. Section 4 describes the details of the QBS
approach, and finally Section 5 describes the state of the art in terms of
applications of synthesis to interact with DBMS systems and promising
directions for future work.
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