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Abstract

Modular heap analysis techniques analyze a program by computing
summaries for every procedure in the program that describes its effects
on an input heap, using pre-computed summaries for the called proce-
dures. In this article, we focus on a family of modular heap analyses
that summarize a procedure’s heap effects using a context-independent,
shape-graph-like summary that is agnostic to the aliasing in the input
heap. The analyses proposed by Whaley, Salcianu and Rinard, Buss et
al., Lattner et al. and Cheng et al. belong to this family. These analyses
are very efficient. But their complexity and the absence of a theoretical
formalization and correctness proofs makes it hard to produce correct
extensions and modifications of these algorithms (whether to improve
precision or scalability or to compute more information). We present a
modular heap analysis framework that generalizes these four analyses.
We formalize our framework as an abstract interpretation and estab-
lish the correctness and termination guarantees. We formalize the four
analyses as instances of the framework. The formalization explains the
basic principle behind such modular analyses and simplifies the task of
producing extensions and variations of such analyses.

We empirically evaluate our framework using several real-world C]
applications, under six different configurations for the parameters, and
using three client analyses. The results show that the framework offers
a wide range of analyses having different precision and scalability.

R. Madhavan, G. Ramalingam, and K. Vaswani. A Framework For Efficient
Modular Heap Analysis. Foundations and TrendsR© in Programming Languages,
vol. 1, no. 4, pp. 269–381, 2014.
DOI: 10.1561/2500000020.
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1
Introduction

Compositional or modular analysis [Cousot and Cousot, 2002] is a key
technique for scaling static analysis to large programs. Our interest is
in techniques that analyze a procedure in isolation, using pre-computed
summaries for called procedures, computing a summary for the ana-
lyzed procedure. Such analyses are widely used and have been found
to scale well. However, computing such summaries for a heap analysis
(or points-to analysis) is challenging because of the aliasing in the in-
put heap. For example, consider the procedure P shown in Fig. 1.2(a).
Its behaviour on two different input heaps is shown in Fig. 1.2(b) and
Fig. 1.2(c). (The heaps are depicted as shape graphs. The input heap
is shown at the top and the corresponding output heap at the bottom).
It can be seen that the behaviour of P varies significantly depending on
the aliasing between the variables x and y in the input heap. A sound
summary for P should be able to approximate the behaviour of P in
both these scenarios.

Existing modular heap analyses can be broadly classified into the
following categories. (The following classification is not exhaustive.
There are modular analyses such as [Nystrom et al., 2004] that cannot
be easily classified into any of the categories mentioned. It is also pos-

2
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P (x, y) {
[1] t = new ();
[2] x.next = t;
[3] t.next = y;
[4] retval = y.next;

}

Figure 1.1: A procedure P whose behaviour depends on the aliasing in the input
heap.

Input1 Input2

Output1 Output2

(a) (b)

Figure 1.2: (a) Output of P when x and y are not aliases in the input heap. (b)
Output of P when x and y are aliases in the input heap.
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4 Introduction

sible to design analyses that belong to more than one of the categories
though we aren’t aware of any.) (a) Analyses such as [Calcagno et al.,
2009] compute conditional summaries that are applicable only in the
contexts that satisfy certain conditions (e.g., aliasing or non-aliasing
conditions). (b) Some analyses such as [Chatterjee et al., 1999], [Dillig
et al., 2011], [Jeannet et al., 2010] enumerate all relevant configurations
of the input heap belonging to a fixed abstract domain and generate
summaries for each configuration. A major challenge with this approach
is reducing the number of configurations that are enumerated, which
can quickly become intractable, and finding efficient ways of repre-
senting them. (c) A few analyses, namely, [Whaley and Rinard, 1999],
[Cheng and Hwu, 2000], [Liang and Harrold, 2001], [Lattner et al.,
2007], [Buss et al., 2008] compute context-independent summaries that
are agnostic to the aliasing in the input heap without enumerating the
possible configurations of the input heap. To our knowledge, these are
the only existing analyses having this property.

The analysis proposed by Whaley and Rinard [Whaley and Rinard,
1999] was later on refined and improved by Salcianu and Rinard [Sal-
cianu and Rinard, 2005]. We will refer to this analysis as the WSR
analysis. Adopting the terminology of [Lattner et al., 2007], we will re-
fer to the analysis proposed by Lattner et al. as Data Structure Analysis
(DSA).

In this article, we consider analyses belonging to the final category.
They are interesting for several reasons. (a) They have a number of ap-
plications, discussed shortly. (b) The analyses are very efficient. DSA
scales to the entire Linux kernel comprising 3 million lines of code in
3 seconds. An optimized version of WSR analysis discussed in [Mad-
havan et al., 2011] scales to C] libraries with 250 thousand lines of
code. (c) Being modular, they can analyze open programs, libraries,
and, in fact, any arbitrary chunk of code without requiring any knowl-
edge of the environment. Moreover, the summaries computed are such
that they be refined incrementally when more knowledge about the
environment becomes available.

These analyses have been used in a number of applications. Salcianu
and Rinard present an application of their analysis to compute the

Full text available at: http://dx.doi.org/10.1561/2500000020



5

side-effects of a procedure, which are the effects of the procedure on
the pre-existing state, and use it to classify procedures as pure (having
no side-effects) or impure [Salcianu and Rinard, 2005]. This analysis,
referred to as purity analysis, itself has a number of applications.

Whaley and Rinard applied their analysis to identify objects that
can be safely allocated in the stack instead of the heap [Whaley and Ri-
nard, 1999]. We use an extension of the WSR analysis to statically ver-
ify the correctness of the use of speculative parallelism [Prabhu et al.,
2010]. Lattner et al. use their analysis to perform pool allocation in
which different instances of data structures are allocated to distinct
memory pools, which enables certain compiler optimizations [Lattner
and Adve, 2005b].

However, the complexity of the analyses makes the task of extending
and modifying these analyses challenging and time consuming. Ques-
tions such as the following often arise while designing new applications
based on the analyses and there is no easy way of answering them. Can
the scalability of the WSR analysis be improved at the expense of pre-
cision? Can DSA be extended to yield more precise results when more
time and resources are available? Is it possible to integrate a modular
static analysis that requires heap information (such as an information
flow analysis) with these analyses as typically done in top-down whole
program analyses? A sound theoretical formulation of the analyses will
greatly aid in answering such questions.

Upon investigating the theoretical basis of these analyses, we real-
ized that, in spite of the apparent dissimilarity between the analyses
and the differences in the precision, scalability, and functionality, there
are some fundamental ideas common to all of these analyses. This mo-
tivated us to develop a parametric framework for designing efficient
modular heap analyses. The analyses listed earlier become specific in-
stances of our framework.

We formulate our framework as a parametric abstract interpreta-
tion and establish the correctness and termination of the semantics. We
present several transformations and optimizations (collectively called
as specializations) of our framework and establish their correctness us-
ing the standard theory of abstraction interpretation. Our framework

Full text available at: http://dx.doi.org/10.1561/2500000020



6 Introduction

with its parametric domains, parametric semantics and several correct-
ness preserving transformations provides a convenient mechanism for
obtaining modular heap analyses with different levels of precision and
scalability.

We formally establish that the four analyses: [Whaley and Rinard,
1999], [Cheng and Hwu, 2000] [Lattner et al., 2007] (except for the
handling of indirect calls), [Buss et al., 2008] are specific instances of our
framework. We exclude the analysis proposed in [Liang and Harrold,
2001] (called as MoPPA) as it is very similar to [Lattner et al., 2007].
Nevertheless, it can also be expressed as an instance of our framework.

Formulating the analyses as instances of the framework has sev-
eral advantages. It provides an immediate proof of correctness and ter-
mination for the analyses. It also helps understand the abstractions
performed by the analyses and identify opportunities for making them
more precise or scalable. In fact, we were able to identify several corner
cases that were not handled by some of the algorithms and were able to
fix them. Since we were unable to find complete formalization of some
of the analyses, it is not clear to us if the problems we identified are
bugs in the algorithm or gaps in the informal descriptions.

We implemented the framework in our open source heap analy-
sis tool Seal (seal.codeplex.com). Seal is a fairly robust tool which
has been used in several program analysis applications. We empirically
studied the different configurations of the framework using Seal. We
present a summary of the results in Chapter 8. The results throw light
on the importance of the parameters of the framework by measuring
their impact on the precision and scalability of three client analyses.

The framework presented in this article has some limitations. Most
importantly, it does not support strong updates on heap locations and
path-sensitivity. To our knowledge, all existing modular heap analysis
approaches (such as [Dillig et al., 2011], [Jeannet et al., 2010]) that
perform strong updates on heap locations enumerate the possible con-
figurations of the input heap. Nevertheless, we believe that both these
challenges can be addressed without resorting to enumeration of the
input heap configurations. We briefly outline a potential approach in
the Future Works section (see Chapter 9).

Full text available at: http://dx.doi.org/10.1561/2500000020
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The following are the main contributions of this article:

• We propose a modular heap analysis framework that is a gener-
alization of a family of existing modular heap analyses. To our
knowledge, this is the first attempt to connect and develop a com-
mon theory for the different modular heap analyses proposed in
the past.

• We formulate our framework as an abstract interpretation and
prove the correctness and termination properties.

• We present several correctness preserving transformations that
are applicable to all instances of the framework.

• We formalize four existing modular heap analyses as abstractions
of instances of our framework, thereby provide a proof of correct-
ness and termination for the analyses. The formalization exposes
the relationships between the analyses and provides ways of im-
proving and modifying them.

• We present an empirical evaluation of the framework by analyzing
ten open source C] applications with six different configurations
of the framework. We used three client analyses, namely, Purity
and Side Effects Analysis, Escape Analysis and Call-graph Anal-
ysis to measure the precision and scalability of each of the six
configurations.
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