
A Framework For Efficient
Modular Heap Analysis

Ravichandhran Madhavan
EPFL, Switzerland

ravi.kandhadai@epfl.ch

G. Ramalingam
Microsoft Research, India

grama@microsoft.com

Kapil Vaswani
Microsoft Research, India

kapilv@microsoft.com

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2500000020

Foundations and Trends R© in
Programming Languages
Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

R. Madhavan, G. Ramalingam, and K. Vaswani. A Framework For Efficient
Modular Heap Analysis. Foundations and TrendsR© in Programming Languages,
vol. 1, no. 4, pp. 269–381, 2014.

This Foundations and TrendsR© issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-003-3
c© 2015 R. Madhavan, G. Ramalingam, and K. Vaswani

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2500000020

Foundations and Trends R© in
Programming Languages
Volume 1, Issue 4, 2014

Editorial Board

Editor-in-Chief

Mooly Sagiv
Tel Aviv University
Israel

Editors

Martín Abadi
Microsoft Research &
UC Santa Cruz
Anindya Banerjee
IMDEA
Patrick Cousot
ENS Paris & NYU
Oege De Moor
University of Oxford
Matthias Felleisen
Northeastern University
John Field
Google
Cormac Flanagan
UC Santa Cruz
Philippa Gardner
Imperial College
Andrew Gordon
Microsoft Research &
University of Edinburgh
Dan Grossman
University of Washington

Robert Harper
CMU
Tim Harris
Oracle
Fritz Henglein
University of Copenhagen
Rupak Majumdar
MPI-SWS & UCLA
Kenneth McMillan
Microsoft Research
J. Eliot B. Moss
UMass, Amherst
Andrew C. Myers
Cornell University
Hanne Riis Nielson
TU Denmark
Peter O’Hearn
UCL
Benjamin C. Pierce
UPenn
Andrew Pitts
University of Cambridge

Ganesan Ramalingam
Microsoft Research
Mooly Sagiv
Tel Aviv University
Davide Sangiorgi
University of Bologna
David Schmidt
Kansas State University
Peter Sewell
University of Cambridge
Scott Stoller
Stony Brook University
Peter Stuckey
University of Melbourne
Jan Vitek
Purdue University
Philip Wadler
University of Edinburgh
David Walker
Princeton University
Stephanie Weirich
UPenn

Full text available at: http://dx.doi.org/10.1561/2500000020

Editorial Scope

Topics

Foundations and Trends R© in Programming Languages publishes survey
and tutorial articles in the following topics:

• Abstract interpretation

• Compilation and
interpretation techniques

• Domain specific languages

• Formal semantics, including
lambda calculi, process calculi,
and process algebra

• Language paradigms

• Mechanical proof checking

• Memory management

• Partial evaluation

• Program logic

• Programming language
implementation

• Programming language
security

• Programming languages for
concurrency

• Programming languages for
parallelism

• Program synthesis

• Program transformations and
optimizations

• Program verification

• Runtime techniques for
programming languages

• Software model checking

• Static and dynamic program
analysis

• Type theory and type systems

Information for Librarians

Foundations and Trends R© in Programming Languages, 2014, Volume 1, 4
issues. ISSN paper version 2325-1107. ISSN online version 2325-1131. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2500000020

Foundations and TrendsR© in Programming Languages
Vol. 1, No. 4 (2014) 269–381
c© 2015 R. Madhavan, G. Ramalingam, and K.

Vaswani
DOI: 10.1561/2500000020

A Framework For Efficient Modular Heap
Analysis

Ravichandhran Madhavan
EPFL, Switzerland

ravi.kandhadai@epfl.ch

G. Ramalingam
Microsoft Research, India
grama@microsoft.com

Kapil Vaswani
Microsoft Research, India
kapilv@microsoft.com

Full text available at: http://dx.doi.org/10.1561/2500000020

Contents

1 Introduction 2

2 An Informal Overview 8

3 The Language and Concrete Semantics 13

4 The Analysis Framework 19
4.1 The Abstract Functional Domain 20
4.2 Concretization function 22

5 Parametric Abstract Semantics 27
5.1 Abstract Semantics of Primitive Statements 30
5.2 Abstract Semantics of Procedure Call 32
5.3 Simplifying the Transformer Graphs 39
5.4 Correctness and Termination of the Framework 43

6 Specializations of the Framework 52
6.1 Instantiations . 53
6.2 Restrictions . 56
6.3 Abstractions . 58

7 Instances of the Framework 62

2

Full text available at: http://dx.doi.org/10.1561/2500000020

3

7.1 Overview of the Instances 62
7.2 Formal Definitions of the Instances 72

8 Experimental Results 78
8.1 Implementation, Benchmarks and Metrics 78
8.2 Evaluation of the Configurations of the Framework 82

9 Related Work and Conclusion 94

Appendices 98

A Simplified Transformer Graphs 99

B The Node Merging Abstraction 104

References 110

Full text available at: http://dx.doi.org/10.1561/2500000020

Abstract

Modular heap analysis techniques analyze a program by computing
summaries for every procedure in the program that describes its effects
on an input heap, using pre-computed summaries for the called proce-
dures. In this article, we focus on a family of modular heap analyses
that summarize a procedure’s heap effects using a context-independent,
shape-graph-like summary that is agnostic to the aliasing in the input
heap. The analyses proposed by Whaley, Salcianu and Rinard, Buss et
al., Lattner et al. and Cheng et al. belong to this family. These analyses
are very efficient. But their complexity and the absence of a theoretical
formalization and correctness proofs makes it hard to produce correct
extensions and modifications of these algorithms (whether to improve
precision or scalability or to compute more information). We present a
modular heap analysis framework that generalizes these four analyses.
We formalize our framework as an abstract interpretation and estab-
lish the correctness and termination guarantees. We formalize the four
analyses as instances of the framework. The formalization explains the
basic principle behind such modular analyses and simplifies the task of
producing extensions and variations of such analyses.

We empirically evaluate our framework using several real-world C]
applications, under six different configurations for the parameters, and
using three client analyses. The results show that the framework offers
a wide range of analyses having different precision and scalability.

R. Madhavan, G. Ramalingam, and K. Vaswani. A Framework For Efficient
Modular Heap Analysis. Foundations and TrendsR© in Programming Languages,
vol. 1, no. 4, pp. 269–381, 2014.
DOI: 10.1561/2500000020.

Full text available at: http://dx.doi.org/10.1561/2500000020

1
Introduction

Compositional or modular analysis [Cousot and Cousot, 2002] is a key
technique for scaling static analysis to large programs. Our interest is
in techniques that analyze a procedure in isolation, using pre-computed
summaries for called procedures, computing a summary for the ana-
lyzed procedure. Such analyses are widely used and have been found
to scale well. However, computing such summaries for a heap analysis
(or points-to analysis) is challenging because of the aliasing in the in-
put heap. For example, consider the procedure P shown in Fig. 1.2(a).
Its behaviour on two different input heaps is shown in Fig. 1.2(b) and
Fig. 1.2(c). (The heaps are depicted as shape graphs. The input heap
is shown at the top and the corresponding output heap at the bottom).
It can be seen that the behaviour of P varies significantly depending on
the aliasing between the variables x and y in the input heap. A sound
summary for P should be able to approximate the behaviour of P in
both these scenarios.

Existing modular heap analyses can be broadly classified into the
following categories. (The following classification is not exhaustive.
There are modular analyses such as [Nystrom et al., 2004] that cannot
be easily classified into any of the categories mentioned. It is also pos-

2

Full text available at: http://dx.doi.org/10.1561/2500000020

3

P (x, y) {
[1] t = new ();
[2] x.next = t;
[3] t.next = y;
[4] retval = y.next;

}

Figure 1.1: A procedure P whose behaviour depends on the aliasing in the input
heap.

Input1 Input2

Output1 Output2

(a) (b)

Figure 1.2: (a) Output of P when x and y are not aliases in the input heap. (b)
Output of P when x and y are aliases in the input heap.

Full text available at: http://dx.doi.org/10.1561/2500000020

4 Introduction

sible to design analyses that belong to more than one of the categories
though we aren’t aware of any.) (a) Analyses such as [Calcagno et al.,
2009] compute conditional summaries that are applicable only in the
contexts that satisfy certain conditions (e.g., aliasing or non-aliasing
conditions). (b) Some analyses such as [Chatterjee et al., 1999], [Dillig
et al., 2011], [Jeannet et al., 2010] enumerate all relevant configurations
of the input heap belonging to a fixed abstract domain and generate
summaries for each configuration. A major challenge with this approach
is reducing the number of configurations that are enumerated, which
can quickly become intractable, and finding efficient ways of repre-
senting them. (c) A few analyses, namely, [Whaley and Rinard, 1999],
[Cheng and Hwu, 2000], [Liang and Harrold, 2001], [Lattner et al.,
2007], [Buss et al., 2008] compute context-independent summaries that
are agnostic to the aliasing in the input heap without enumerating the
possible configurations of the input heap. To our knowledge, these are
the only existing analyses having this property.

The analysis proposed by Whaley and Rinard [Whaley and Rinard,
1999] was later on refined and improved by Salcianu and Rinard [Sal-
cianu and Rinard, 2005]. We will refer to this analysis as the WSR
analysis. Adopting the terminology of [Lattner et al., 2007], we will re-
fer to the analysis proposed by Lattner et al. as Data Structure Analysis
(DSA).

In this article, we consider analyses belonging to the final category.
They are interesting for several reasons. (a) They have a number of ap-
plications, discussed shortly. (b) The analyses are very efficient. DSA
scales to the entire Linux kernel comprising 3 million lines of code in
3 seconds. An optimized version of WSR analysis discussed in [Mad-
havan et al., 2011] scales to C] libraries with 250 thousand lines of
code. (c) Being modular, they can analyze open programs, libraries,
and, in fact, any arbitrary chunk of code without requiring any knowl-
edge of the environment. Moreover, the summaries computed are such
that they be refined incrementally when more knowledge about the
environment becomes available.

These analyses have been used in a number of applications. Salcianu
and Rinard present an application of their analysis to compute the

Full text available at: http://dx.doi.org/10.1561/2500000020

5

side-effects of a procedure, which are the effects of the procedure on
the pre-existing state, and use it to classify procedures as pure (having
no side-effects) or impure [Salcianu and Rinard, 2005]. This analysis,
referred to as purity analysis, itself has a number of applications.

Whaley and Rinard applied their analysis to identify objects that
can be safely allocated in the stack instead of the heap [Whaley and Ri-
nard, 1999]. We use an extension of the WSR analysis to statically ver-
ify the correctness of the use of speculative parallelism [Prabhu et al.,
2010]. Lattner et al. use their analysis to perform pool allocation in
which different instances of data structures are allocated to distinct
memory pools, which enables certain compiler optimizations [Lattner
and Adve, 2005b].

However, the complexity of the analyses makes the task of extending
and modifying these analyses challenging and time consuming. Ques-
tions such as the following often arise while designing new applications
based on the analyses and there is no easy way of answering them. Can
the scalability of the WSR analysis be improved at the expense of pre-
cision? Can DSA be extended to yield more precise results when more
time and resources are available? Is it possible to integrate a modular
static analysis that requires heap information (such as an information
flow analysis) with these analyses as typically done in top-down whole
program analyses? A sound theoretical formulation of the analyses will
greatly aid in answering such questions.

Upon investigating the theoretical basis of these analyses, we real-
ized that, in spite of the apparent dissimilarity between the analyses
and the differences in the precision, scalability, and functionality, there
are some fundamental ideas common to all of these analyses. This mo-
tivated us to develop a parametric framework for designing efficient
modular heap analyses. The analyses listed earlier become specific in-
stances of our framework.

We formulate our framework as a parametric abstract interpreta-
tion and establish the correctness and termination of the semantics. We
present several transformations and optimizations (collectively called
as specializations) of our framework and establish their correctness us-
ing the standard theory of abstraction interpretation. Our framework

Full text available at: http://dx.doi.org/10.1561/2500000020

6 Introduction

with its parametric domains, parametric semantics and several correct-
ness preserving transformations provides a convenient mechanism for
obtaining modular heap analyses with different levels of precision and
scalability.

We formally establish that the four analyses: [Whaley and Rinard,
1999], [Cheng and Hwu, 2000] [Lattner et al., 2007] (except for the
handling of indirect calls), [Buss et al., 2008] are specific instances of our
framework. We exclude the analysis proposed in [Liang and Harrold,
2001] (called as MoPPA) as it is very similar to [Lattner et al., 2007].
Nevertheless, it can also be expressed as an instance of our framework.

Formulating the analyses as instances of the framework has sev-
eral advantages. It provides an immediate proof of correctness and ter-
mination for the analyses. It also helps understand the abstractions
performed by the analyses and identify opportunities for making them
more precise or scalable. In fact, we were able to identify several corner
cases that were not handled by some of the algorithms and were able to
fix them. Since we were unable to find complete formalization of some
of the analyses, it is not clear to us if the problems we identified are
bugs in the algorithm or gaps in the informal descriptions.

We implemented the framework in our open source heap analy-
sis tool Seal (seal.codeplex.com). Seal is a fairly robust tool which
has been used in several program analysis applications. We empirically
studied the different configurations of the framework using Seal. We
present a summary of the results in Chapter 8. The results throw light
on the importance of the parameters of the framework by measuring
their impact on the precision and scalability of three client analyses.

The framework presented in this article has some limitations. Most
importantly, it does not support strong updates on heap locations and
path-sensitivity. To our knowledge, all existing modular heap analysis
approaches (such as [Dillig et al., 2011], [Jeannet et al., 2010]) that
perform strong updates on heap locations enumerate the possible con-
figurations of the input heap. Nevertheless, we believe that both these
challenges can be addressed without resorting to enumeration of the
input heap configurations. We briefly outline a potential approach in
the Future Works section (see Chapter 9).

Full text available at: http://dx.doi.org/10.1561/2500000020

seal.codeplex.com

7

The following are the main contributions of this article:

• We propose a modular heap analysis framework that is a gener-
alization of a family of existing modular heap analyses. To our
knowledge, this is the first attempt to connect and develop a com-
mon theory for the different modular heap analyses proposed in
the past.

• We formulate our framework as an abstract interpretation and
prove the correctness and termination properties.

• We present several correctness preserving transformations that
are applicable to all instances of the framework.

• We formalize four existing modular heap analyses as abstractions
of instances of our framework, thereby provide a proof of correct-
ness and termination for the analyses. The formalization exposes
the relationships between the analyses and provides ways of im-
proving and modifying them.

• We present an empirical evaluation of the framework by analyzing
ten open source C] applications with six different configurations
of the framework. We used three client analyses, namely, Purity
and Side Effects Analysis, Escape Analysis and Call-graph Anal-
ysis to measure the precision and scalability of each of the six
configurations.

Full text available at: http://dx.doi.org/10.1561/2500000020

References

Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification
of sophisticated points-to analyses. In OOPSLA, pages 243–262, 2009.

Marcio Buss, Daniel Brand, Vugranam C. Sreedhar, and Stephen A. Edwards.
Flexible pointer analysis using assign-fetch graphs. In SAC, pages 234–239,
2008.

Marcio Buss, Daniel Brand, Vugranam C. Sreedhar, and Stephen A. Edwards.
A novel analysis space for pointer analysis and its application for bug find-
ing. Sci. Comput. Program., 75(11):921–942, 2010.

Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang.
Compositional shape analysis by means of bi-abduction. In POPL, pages
289–300, 2009.

Ramkrishna Chatterjee, Barbara G. Ryder, and William A. Landi. Relevant
context inference. In POPL, pages 133–146, 1999.

Ben-Chung Cheng and Wen-Mei W. Hwu. Modular interprocedural pointer
analysis using access paths: design, implementation, and evaluation. In
PLDI, pages 57–69, 2000.

Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. J.
Log. Comput., 2(4):511–547, 1992.

Patrick Cousot and Radhia Cousot. Modular static program analysis. In CC,
pages 159–178, 2002.

Manuvir Das. Unification-based pointer analysis with directional assignments.
In PLDI, pages 35–46, 2000.

110

Full text available at: http://dx.doi.org/10.1561/2500000020

References 111

Arnab De and Deepak D’Souza. Scalable flow-sensitive pointer analysis for
java with strong updates. In ECOOP, pages 665–687, 2012.

Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. Precise and compact
modular procedure summaries for heap manipulating programs. In PLDI,
pages 567–577, 2011.

Bhargav S. Gulavani, Supratik Chakraborty, Ganesan Ramalingam, and
Aditya V. Nori. Bottom-up shape analysis. In SAS, pages 188–204, 2009.

Ben Hardekopf and Calvin Lin. Flow-sensitive pointer analysis for millions of
lines of code. In CGO, pages 289–298, 2011.

Bertrand Jeannet, Alexey Loginov, Thomas Reps, and Mooly Sagiv. A rela-
tional approach to interprocedural shape analysis. ACM Trans. Program.
Lang. Syst., 32:5:1–5:52, 2010.

Etienne Kneuss, Viktor Kuncak, and Philippe Suter. Effect analysis for pro-
grams with callbacks. In VSTTE, pages 48–67, 2013.

Jens Knoop and Bernhard Steffen. The interprocedural coincidence theorem.
In CC, pages 125–140, 1992.

Chris Lattner and Vikram Adve. Macroscopic Data Structure Analysis and
Operations. PhD thesis, University of Illinois at Urbana-Champaign, 2005a.

Chris Lattner and Vikram S. Adve. Automatic pool allocation: improving
performance by controlling data structure layout in the heap. In PLDI,
pages 129–142, 2005b.

Chris Lattner, Andrew Lenharth, and Vikram S. Adve. Making context-
sensitive points-to analysis with heap cloning practical for the real world.
In PLDI, pages 278–289, 2007.

Ondrej Lhoták. Program Analysis Using Binary Decision Diagrams. PhD
thesis, 2006.

Ondrej Lhoták and Kwok-Chiang Andrew Chung. Points-to analysis with
efficient strong updates. In POPL, pages 3–16, 2011.

Donglin Liang and Mary Jean Harrold. Efficient computation of parame-
terized pointer information for interprocedural analyses. In SAS, pages
279–298, 2001.

Percy Liang and Mayur Naik. Scaling abstraction refinement via pruning. In
PLDI, pages 590–601, 2011.

Ravichandhran Madhavan, Ganesan Ramalingam, and Kapil Vaswani. Purity
analysis: An abstract interpretation formulation. In SAS, pages 7–24, 2011.

Full text available at: http://dx.doi.org/10.1561/2500000020

112 References

Ravichandhran Madhavan, G. Ramalingam, and Kapil Vaswani. Modular
heap analysis for higher-order programs. In SAS, pages 370–387, 2012.

Ravi Mangal, Mayur Naik, and Hongseok Yang. A correspondence between
two approaches to interprocedural analysis in the presence of join. In ESOP,
pages 513–533, 2014.

Mark Marron, Ondrej Lhoták, and Anindya Banerjee. Programming paradigm
driven heap analysis. In CC, pages 41–60, 2012.

Erik M. Nystrom, Hong-Seok Kim, and Wen mei W. Hwu. Bottom-up and
top-down context-sensitive summary-based pointer analysis. In SAS, pages
165–180, 2004.

Prakash Prabhu, Ganesan Ramalingam, and Kapil Vaswani. Safe pro-
grammable speculative parallelism. In PLDI, pages 50–61, 2010.

Noam Rinetzky, Mooly Sagiv, and Eran Yahav. Interprocedural shape analysis
for cutpoint-free programs. In SAS, pages 284–302, 2005.

Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape
analysis via 3-valued logic. In POPL, pages 105–118, 1999.

Alexandru D. Salcianu. Pointer analysis and its applications for java pro-
grams. Master’s thesis, Massachusetts institute of technology, 2001.

Alexandru D. Salcianu and Martin C. Rinard. Purity and side effect analysis
for java programs. In VMCAI, pages 199–215, 2005.

Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow
analysis. In Program Flow Analysis: Theory and Applications, pages 189–
234, 1981.

Yannis Smaragdakis and Martin Bravenboer. Using datalog for fast and easy
program analysis. In Datalog, pages 245–251, 2010.

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your con-
texts well: understanding object-sensitivity. In POPL, pages 17–30, 2011.

Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspective
analysis: context-sensitivity, across the board. In PLDI, page 50, 2014.

Bjarne Steensgaard. Points-to analysis in almost linear time. In POPL, pages
32–41, 1996.

WALA. T. J. Watson libraries for program analysis. URL https://github.
com/wala/WALA.

John Whaley and Martin C. Rinard. Compositional pointer and escape anal-
ysis for java programs. In OOPSLA, pages 187–206, 1999.

Full text available at: http://dx.doi.org/10.1561/2500000020

https://github.com/wala/WALA
https://github.com/wala/WALA

References 113

Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. On
abstraction refinement for program analyses in datalog. In PLDI, page 27,
2014.

Full text available at: http://dx.doi.org/10.1561/2500000020

	Introduction
	An Informal Overview
	The Language and Concrete Semantics
	The Analysis Framework
	The Abstract Functional Domain
	Concretization function

	Parametric Abstract Semantics
	Abstract Semantics of Primitive Statements
	Abstract Semantics of Procedure Call
	Simplifying the Transformer Graphs
	Correctness and Termination of the Framework

	Specializations of the Framework
	Instantiations
	Restrictions
	Abstractions

	Instances of the Framework
	Overview of the Instances
	Formal Definitions of the Instances

	Experimental Results
	Implementation, Benchmarks and Metrics
	Evaluation of the Configurations of the Framework

	Related Work and Conclusion
	Appendices
	Simplified Transformer Graphs
	The Node Merging Abstraction
	References

