
Behavioral Types in
Programming Languages

Davide Ancona
Viviana Bono

Mario Bravetti
Joana Campos

Giuseppe Castagna
Pierre-Malo Deniélou

Simon J. Gay
Nils Gesbert

Elena Giachino
Raymond Hu

Einar Broch Johnsen
Francisco Martins
Viviana Mascardi
Fabrizio Montesi

Rumyana Neykova
Nicholas Ng

Luca Padovani
Vasco T. Vasconcelos

Nobuko Yoshida

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2500000031

Foundations and Trends R© in
Programming Languages

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

D. Ancona et al.. Behavioral Types in Programming Languages. Foundations and
TrendsR© in Programming Languages, vol. 3, no. 2-3, pp. 95–230, 2016.

This Foundations and TrendsR© issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-135-1
c© 2016 D. Ancona et al.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2500000031

Foundations and Trends R© in
Programming Languages
Volume 3, Issue 2-3, 2016

Editorial Board

Editor-in-Chief

Mooly Sagiv
Tel Aviv University
Israel

Editors

Martín Abadi
Google &
UC Santa Cruz
Anindya Banerjee
IMDEA
Patrick Cousot
ENS Paris & NYU
Oege De Moor
University of Oxford
Matthias Felleisen
Northeastern University
John Field
Google
Cormac Flanagan
UC Santa Cruz
Philippa Gardner
Imperial College
Andrew Gordon
Microsoft Research &
University of Edinburgh
Dan Grossman
University of Washington

Robert Harper
CMU
Tim Harris
Oracle
Fritz Henglein
University of Copenhagen
Rupak Majumdar
MPI-SWS & UCLA
Kenneth McMillan
Microsoft Research
J. Eliot B. Moss
UMass, Amherst
Andrew C. Myers
Cornell University
Hanne Riis Nielson
TU Denmark
Peter O’Hearn
UCL
Benjamin C. Pierce
UPenn
Andrew Pitts
University of Cambridge

Ganesan Ramalingam
Microsoft Research
Mooly Sagiv
Tel Aviv University
Davide Sangiorgi
University of Bologna
David Schmidt
Kansas State University
Peter Sewell
University of Cambridge
Scott Stoller
Stony Brook University
Peter Stuckey
University of Melbourne
Jan Vitek
Purdue University
Philip Wadler
University of Edinburgh
David Walker
Princeton University
Stephanie Weirich
UPenn

Full text available at: http://dx.doi.org/10.1561/2500000031

Editorial Scope

Topics

Foundations and Trends R© in Programming Languages publishes survey
and tutorial articles in the following topics:

• Abstract interpretation

• Compilation and
interpretation techniques

• Domain specific languages

• Formal semantics, including
lambda calculi, process calculi,
and process algebra

• Language paradigms

• Mechanical proof checking

• Memory management

• Partial evaluation

• Program logic

• Programming language
implementation

• Programming language
security

• Programming languages for
concurrency

• Programming languages for
parallelism

• Program synthesis

• Program transformations and
optimizations

• Program verification

• Runtime techniques for
programming languages

• Software model checking

• Static and dynamic program
analysis

• Type theory and type systems

Information for Librarians

Foundations and Trends R© in Programming Languages, 2016, Volume 3, 4
issues. ISSN paper version 2325-1107. ISSN online version 2325-1131. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2500000031

Foundations and TrendsR© in Programming Languages
Vol. 3, No. 2-3 (2016) 95–230
c© 2016 D. Ancona et al.
DOI: 10.1561/2500000031

Behavioral Types in Programming Languages

Davide Ancona, DIBRIS, Università di Genova, Italy
Viviana Bono, Dipartimento di Informatica, Università di Torino, Italy

Mario Bravetti, Università di Bologna, Italy / INRIA, France
Joana Campos, LaSIGE, Faculdade de Ciências, Univ de Lisboa, Portugal

Giuseppe Castagna, CNRS, IRIF, Univ Paris Diderot, Sorbonne Paris Cité, France
Pierre-Malo Deniélou, Royal Holloway, University of London, UK

Simon J. Gay, School of Computing Science, University of Glasgow, UK
Nils Gesbert, Université Grenoble Alpes, France

Elena Giachino, Università di Bologna, Italy / INRIA, France
Raymond Hu, Department of Computing, Imperial College London, UK

Einar Broch Johnsen, Institutt for informatikk, Universitetet i Oslo, Norway
Francisco Martins, LaSIGE, Faculdade de Ciências, Univ de Lisboa, Portugal

Viviana Mascardi, DIBRIS, Università di Genova, Italy
Fabrizio Montesi, University of Southern Denmark

Rumyana Neykova, Department of Computing, Imperial College London, UK
Nicholas Ng, Department of Computing, Imperial College London, UK
Luca Padovani, Dipartimento di Informatica, Università di Torino, Italy

Vasco T. Vasconcelos, LaSIGE, Faculdade de Ciências, Univ de Lisboa, Portugal
Nobuko Yoshida, Department of Computing, Imperial College London, UK

Full text available at: http://dx.doi.org/10.1561/2500000031

Contents

1 Introduction 2

2 Object-Oriented Languages 11
2.1 Session Types in Core Object-Oriented Languages 12
2.2 Behavioral Types in Java-like Languages 27
2.3 Typestate . 40
2.4 Related Work . 45

3 Functional Languages 46
3.1 Effects for Session Type Checking 47
3.2 Sessions and Explicit Continuations 49
3.3 Monadic Approaches to Session Type Checking 50
3.4 Related Work . 54

4 High-Performance Message-Passing Systems 55
4.1 Session C . 60
4.2 Deductive Verification of C+MPI Code 62
4.3 MPI Code Generation . 66
4.4 Related Work . 66

5 Multiagent Systems 68
5.1 Global Types for MAS Monitoring 69

ii

Full text available at: http://dx.doi.org/10.1561/2500000031

iii

5.2 Advanced Constructs for Protocol Specification 74
5.3 Related Work . 78

6 Singularity OS 80
6.1 Channel Contracts in Sing# 80
6.2 Behavioral Types for Memory Leak Prevention 85
6.3 Related Work . 87

7 Web Services 89
7.1 Behavioral Interfaces for Web Services 89
7.2 Languages for Service Composition 91
7.3 Abstract Service Descriptions and Behavioral Contracts . . 94
7.4 Related Work . 98

8 Choreographies 100
8.1 Choreography Programming Languages 101
8.2 Scribble . 107
8.3 Related Work . 117

Acknowledgments 121

References 122

Full text available at: http://dx.doi.org/10.1561/2500000031

Abstract

A recent trend in programming language research is to use behav-
ioral type theory to ensure various correctness properties of large-
scale, communication-intensive systems. Behavioral types encompass
concepts such as interfaces, communication protocols, contracts, and
choreography. The successful application of behavioral types requires
a solid understanding of several practical aspects, from their represen-
tation in a concrete programming language, to their integration with
other programming constructs such as methods and functions, to de-
sign and monitoring methodologies that take behaviors into account.
This survey provides an overview of the state of the art of these aspects,
which we summarize as the pragmatics of behavioral types.

D. Ancona et al.. Behavioral Types in Programming Languages. Foundations and
TrendsR© in Programming Languages, vol. 3, no. 2-3, pp. 95–230, 2016.
DOI: 10.1561/2500000031.

Full text available at: http://dx.doi.org/10.1561/2500000031

1
Introduction

Modern society is increasingly dependent on large-scale software sys-
tems that are distributed, collaborative and communication-centered.
Correctness and reliability of such systems depend on compatibility
between components and services that are newly developed or may al-
ready exist. The consequences of failure are severe, including security
breaches and unavailability of essential services. Current software de-
velopment technology is not well suited to producing these large-scale
systems, because of the lack of high-level structuring abstractions for
complex communication behavior.

A recent trend in current research is to use behavioral type the-
ory as the basis for new foundations, programming languages, and
software development methods for communication-intensive distributed
systems. Behavioral type theory encompasses concepts such as inter-
faces, communication protocols, contracts, and choreography. Roughly
speaking, a behavioral type describes a software entity, such as an ob-
ject, a communication channel, or a Web Service, in terms of the se-
quences of operations that allow for a correct interaction among the
involved entities. The precise notions of “operations” and of “correct
interaction” are very much context-dependent. Typical examples of op-

2

Full text available at: http://dx.doi.org/10.1561/2500000031

3

Customer Agency
s

String

Double

re
pe

at

ACCEPT

Address

Date

REJECT

ch
oi

ce

s

Figure 1.1: Graphical representation of the Customer-Agency protocol.

erations are invoking a method on an object, connecting a client with
a Web Service in a distributed system, sending a message between
cores in a parallel program. The notion of correct interaction may en-
compass both safety properties (such as the communication of valid
method arguments, the absence of communication errors, the absence
of deadlocks) as well as liveness properties (such as the eventual receipt
of a message or the eventual termination of an interaction).

To illustrate some paradigmatic aspects of behavioral type theory
more concretely, consider the diagram in Figure 1.1 depicting the in-
teraction between two entities, named Customer and Agency. In this
diagram, the horizontal lines represent interaction events between the
two entities and the vertical lines represent their temporal ordering.
The s-labeled line at the top of the diagram denotes the establishment
of a connection between the two entities and the definition of an inter-
action scope that is often called session. The identifier s distinguishes
this particular session from others (not depicted) in which Customer
and Agency may be involved. We can think of s as the name of a com-
munication channel that is known only to Customer and Agency. The
proper interaction consists of two phases: the first one, marked as “re-
peat” in the figure, is made of an unbound number of queries issued by
a Customer who is planning a trip through a travel Agency. Each query

Full text available at: http://dx.doi.org/10.1561/2500000031

4 Introduction

includes the journey details, abstracted as a message of type String, to
which the Agency answers with the price of the journey, represented
as a message of type Double. In the second phase, marked as “choice”,
Customer decides whether to book one of the journeys, which it signals
by sending either an ACCEPT message followed by the Address to which
the physical documents related to the journey should be delivered at
some Date estimated by Agency, or a REJECT message that simply ter-
minates the interaction. Arrows in the diagram denote the direction of
messages. The discontinuity in the vertical development of the protocol
suggests that the sub-protocols beginning with the ACCEPT and REJECT
messages are mutually exclusive, the decision being taken by Customer.
Eventually, the interaction between Customer and Agency terminates
and the session that connects them is closed. This is denoted by the
s-labeled line at the bottom of the diagram. In summary, the diagram
describes a communication protocol between Customer and Agency as
a set of valid sequences of interactions. Making sure that some piece
of code modeling either Customer or Agency adheres to this protocol
is among the purposes of behavioral type systems, and the technical
instrument through which this is accomplished is behavioral types.

In the setting of typed programming languages, the challenge posed
by describing a channel like s with a type is that the same entity s is
used for exchanging messages of different types (labels such as ACCEPT
and REJECT, integers, strings, floating-point numbers, dates, etc.) at dif-
ferent times and traveling in different directions (both Customer and
Agency send and receive messages on s). Therefore, it is not obvious
which unique type should be given to a channel like s or, equivalently,
to the functions/methods for using it. The solution adopted in conven-
tional (i.e., non-behavioral) type systems, and that is found in virtually
all mainstream programming languages used today, is to declare that
communication channels like s can be used for exchanging “raw” mes-
sages in the form of byte arrays or strings. It is up to the programmer
to appropriately marshal data into such raw messages before trans-
mission and correspondingly unmarshal raw messages into data when
they reach their destination. In Java, for instance, the InputStream
and OutputStream interfaces and related ones provide read and write

Full text available at: http://dx.doi.org/10.1561/2500000031

5

methods that respectively read data from a stream to a byte array
and write data from a byte array to a stream. The main shortcoming
of this approach is that it jeopardizes all the benefits and guarantees
provided by the type system: such lax typing of channels and of the op-
erations for using them provides no guarantee that the (un)marshalled
data has the expected type, nor does it guarantee that messages flow
along a channel in the direction intended by the protocol. Essentially,
the approach corresponds to using untyped channels and establishes a
border beyond which the type system of the programming language is
no longer in effect. The resulting code is declared well typed by the
compiler, but it may suffer from type-related errors (or other issues,
such as deadlocks) at runtime.

The key idea of a behavioral type theory is to enrich the expres-
siveness of types so that it becomes possible to formally describe the
sequences of messages (informally depicted in Figure 1.1) that are
expected to be exchanged along the communication channel s that
connects Customer and Agency. This type can then be used by a
type checker to verify that the programs implementing Customer and
Agency interact in accordance with the intended communication proto-
col. In fact, we can imagine two different types associated with channel
s, depending on viewpoint we take, that of the Customer or that of the
Agency. If we take the first viewpoint, we can describe s with a type T
defined as

T =
⊕ 

QUERY : !String.?Double.T
ACCEPT : !String.?Date.end
REJECT : end


where:

• The symbol
⊕

denotes a choice of possible behaviors that Cus-
tomer can attain to, each choice being represented by a symbolic
label. In this case, the possible behaviors for Customer are query-
ing the Agency (label QUERY), accepting an offer from the Agency
(label ACCEPT), or quitting the interaction (label REJECT).

• The punctuation marks ! and ? respectively prefix the type of
messages sent (String) and received (Double and Date) by Cus-

Full text available at: http://dx.doi.org/10.1561/2500000031

6 Introduction

tomer. With these annotations, we can specify the intended di-
rection of messages.

• The punctuation marks : and . represent the sequentiality of ac-
tions described by the type. In this case, a Customer that queries
an Agency must first send a message of type String and then wait
for a message of type Double. With these annotations, we can
specify how the capabilities of the channel change as the channel
is used for input/output operations.

• The occurrence of T on the right hand side of the equation in-
dicates that T is a recursive type, therefore allowing for an un-
bounded number of queries from Customer to Agency. This makes
it possible to specify recursive protocols.

• end marks the points in which the interaction between Customer
and Agency terminates and no more messages are supposed to
be exchanged.

If we take the Agency viewpoint, it is reasonable to expect that the
type of s should express complementary behaviors: the Agency offers
choices when Customer selects one, the Agency receives a message when
the Customer sends one, and vice versa. Customer and Agency should
also agree on the moments in which the interaction terminates. This
relation between the behaviors of Customer and Agency can be formal-
ized as a notion of duality between the two types of s. In particular,
the dual of T is the type S defined as

S =
∑ 

QUERY : ?String.!Double.S
ACCEPT : ?String.!Date.end
REJECT : end


obtained from T by swapping choices

⊕
with offers

∑
, inputs ? with

outputs !, and leaving end unchanged. Now, checking that Customer
and Agency use the respective ends of s according to T and S makes
sure that choices and offers match and messages of the right type are
exchanged at the right time. In summary, that Customer and Agency
interact correctly.

Full text available at: http://dx.doi.org/10.1561/2500000031

7

The successful application of behavioral types to the development
of reliable, large-scale software requires both the study of formal type
theories but also understanding and addressing more practical aspects,
including the representation of behavioral types such as T and S in
a concrete programming language, the integration of behavioral type
checking with other programming constructs like methods and func-
tions, and also design methodologies that take behaviors into account.
The aim of this survey is to provide a first comprehensive overview
of the state of the art of these aspects, which we may summarize as
the pragmatics of behavioral types. The survey is structured as a se-
ries of chapters, each covering a particular programming paradigm or
methodology. Below is an account of the content of each chapter:
• Chapter 2 is devoted to the integration of behavioral types into
Object-Oriented languages. Object-oriented languages are rele-
vant for their widespread adoption in the current development of
software, for the wealth and popularity of tools that are avail-
able, and because objects nicely fit a distribution model to which
behavioral types can be applied naturally. The integration can
be achieved in different ways: either by enriching the languages
with constructs (in particular, sessions) that call for a correspond-
ing extension at the type level, or by amalgamating sessions and
objects to the point that the objects themselves become the enti-
ties for which a behavioral description is required, for example to
specify the order in which methods must/can be invoked. We also
survey a parallel, but related line of research concerning typestate.
This concept, originally introduced for discriminating the state
of imperative variables (uninitialized, initialized, finalized), finds
a natural application to describing object protocols and has been
recently converging to behavioral typing.

• Chapter 3 explores the integration of behavioral types within
functional languages. Functional languages are relevant for their
qualities of being easily endowed with high-level type-theoretic
and concurrent extensions, for their natural support to paral-
lelism, and since they permit rapid prototyping. We survey three
different approaches, one akin to an effect system, one based on

Full text available at: http://dx.doi.org/10.1561/2500000031

8 Introduction

explicit continuation passing, and one based on monads. Besides
providing an out-of-the-box application of behavioral types to
a concrete programming language, the continuation-based and
monadic approaches can take advantage of the type inference en-
gine of the language so that the programmer is not required to
explicitly write (or annotate programs with) behavioral types,
which can be automatically reconstructed from the source code
of the program.

• High-performance computing often relies on parallel processes
that synchronize by means of message passing. Chapter 4 de-
scribes the use of behavioral types in conjunction with Message
Passing Interface (MPI) which is the de facto standard API for
high-performance computing. Also in this case, behavioral types
provide an effective means for making sure that communications
occur without errors. We survey three alternative approaches
making use of behavioral types in this context: one based on
higher-level structuring abstractions, one based on source code
verification, and one based on source code generation.

• Chapter 5 describes an application of behavioral types to multi-
agent systems. The latter have been proved to be an industrial-
strength technology for integrating and coordinating autonomous
and heterogeneous entities in open systems. In this setting, the
possibility of formally describing interaction protocols in the form
of behavioral types enables forms of runtime monitoring for multi-
agent systems.

• Chapter 6 provides an overview of the use of behavioral types in
Singularity OS, a prototype Operating System developed by Mi-
crosoft that adopts communication as the fundamental and only
synchronization mechanism between processes. Sing#, the pro-
gramming language used for the implementation of Singularity
OS, is an extension of C# that comprises both object-oriented
and functional constructs and provides a native notion of chan-
nel contract, a form of behavioral type. The formal investigation
of behavioral types in this setting has led to the discovery of un-

Full text available at: http://dx.doi.org/10.1561/2500000031

9

forseen system configurations that yield memory leaks and to the
development of refined behavioral type theories preventing them.

• The WSDL and UDDI standards are technologies currently en-
abling the description of Web Service interfaces and the creation
of Web Service repositories. Chapter 7 explores the potential of
behavioral types, intended as abstract descriptions of Web Ser-
vice behaviors, as natural generalizations of WSDL interfaces to
realize sophisticated forms discovering, composition, and orches-
tration of Web Services.

• Chapter 8 illustrates the design-by-contract methodology for the
development of possibly distributed, communicating systems. Ac-
cording to this methodology, behavioral types are used for de-
scribing, from a vantage point of view, the topology of the com-
munication network, the communications that are supposed to
occur, and in which order. Such global specifications serve multi-
ple purposes: they are a valuable form of abstract specification of
the overall behavior of a distributed system; they can be projected
for describing the local behavior of the network participants to
allow the modular type checking of complex systems; they enable
the generation of monitors to verify, at runtime, that the partici-
pants of a heterogeneous distributed system behave as expected,
even if only some or none of them have been type checked against
their supposed or claimed behavior.

Overall, the survey provides substantial evidence that behavioral
types have sprinkled a remarkable interest in the research community
concerned with programming languages. The adoption of behavioral
types beside the academic context proceeds more slowly, but nonethe-
less there are encouraging signals. As a matter of fact, it is known
that programming languages tend to evolve slowly, especially when it
comes to the integration of sophisticated typing disciplines. In this re-
spect, approaches that rely on the encoding of behavioral types using
conventional type constructors (§3.3), that allow for the verification of
existing code (§4.2), or the type-driven generation of runtime monitors
(Chapters 5 and 8), enable developers to fill the gap between theory

Full text available at: http://dx.doi.org/10.1561/2500000031

10 Introduction

and practice of behavioral typing with little or no changes to their
programming environment and development workflow. The survey also
contains pointers to industrial projects in which behavioral types al-
ready play a key role: the Ocean Observatories Initiative, which aims
at the realization of a planetary-scale network for the trasmission of
environmental data (§8.2), and the programming language Sing#, de-
veloped by Microsoft, which offers behavioral types as a native and key
feature (Chapter 6). These early examples of industrial applications of
behavioral types indirectly hint at their effectiveness in supporting the
development of complex, large-scale systems for which correctness and
reliability guarantees are of paramount importance.

Full text available at: http://dx.doi.org/10.1561/2500000031

References

Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks.
Typestate-oriented programming. In Proceedings of the 24th ACM SIG-
PLAN Conference Companion on Object-Oriented Programming Systems
Languages and Applications, pages 1015–1022. ACM, 2009.

David S. Allison, Miriam A. M. Capretz, Hany F. E. L. Yamany, and Shuy-
ing Wang. Privacy protection framework with defined policies for service-
oriented architecture. Journal of Software Engineering and Applications, 5
(3):200–215, 2012.

Nuno Alves, Raymond Hu, Nobuko Yoshida, and Pierre-Malo Deniélou. Se-
cure execution of distributed session programs. In Proceedings of the
3rd Workshop on Programming Language Approaches to Concurrency and
communication-cEntric Software, volume 69 of Electronic Proceedings in
Theoretical Computer Science, pages 1–11, 2010.

Davide Ancona, Sophia Drossopoulou, and Viviana Mascardi. Automatic Gen-
eration of Self-Monitoring MASs from Multiparty Global Session Types in
Jason. In Proceedings of the 10th International Workshop on Declarative
Agent Languages and Technologies, volume 7784 of Lecture Notes in Com-
puter Science, pages 76–95. Springer, 2012.

Davide Ancona, Matteo Barbieri, and Viviana Mascardi. Constrained global
types for dynamic checking of protocol conformance in multi-agent systems.
In Proceedings of the 28th Annual ACM Symposium on Applied Computing,
pages 1377–1379. ACM, 2013a.

122

Full text available at: http://dx.doi.org/10.1561/2500000031

References 123

Davide Ancona, Viviana Mascardi, and Matteo Barbieri. Global types for dy-
namic checking of protocol conformance in multi-agent systems. Technical
report, Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria
dei Sistemi, Università di Genova, 2013b.

John Langshaw Austin. How to Do Things with Words. Oxford: Clarendon
Press, 1962.

Nels E. Beckman, Kevin Bierhoff, and Jonathan Aldrich. Verifying correct
usage of atomic blocks and typestate. In Proceedings of the 23rd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 227–244. ACM, 2008.

Fabio L. Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing
Multi-Agent Systems with JADE. John Wiley & Sons, 2007.

Giovanni Bernardi and Matthew Hennessy. Mutually testing processes - (ex-
tended abstract). In Proceedings of the 24th International Conference on
Concurrency Theory, volume 8052 of Lecture Notes in Computer Science,
pages 61–75. Springer, 2013.

Lorenzo Bettini, Sara Capecchi, Mariangiola Dezani-Ciancaglini, Elena Gi-
achino, and Betti Venneri. Session and Union Types for Object Oriented
Programming. In Rocco De Nicola, Pierpaolo Degano, and José Meseguer,
editors, Concurrency, Graphs and Models, volume 5065 of Lecture Notes in
Computer Science, pages 659–680. Springer-Verlag, 2008a.

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola
Dezani-Ciancaglini, and Nobuko Yoshida. Global progress in dynamically
interleaved multiparty sessions. In Proceedings of the 19th International
Conference on Concurrency Theory, volume 5201 of Lecture Notes in Com-
puter Science, pages 418–433. Springer, 2008b.

Lorenzo Bettini, Sara Capecchi, Mariangiola Dezani-Ciancaglini, Elena Gi-
achino, and Betti Venneri. Deriving session and union types for objects.
Mathematical Structures in Computer Science, 23(6):1163–1219, 2013.

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Four-
net, and James J. Leifer. Cryptographic protocol synthesis and verification
for multiparty sessions. In Proceedings of the 22nd IEEE Computer Security
Foundations Symposium, pages 124–140. IEEE, 2009.

Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased
objects. In Proceedings of the 22nd Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
pages 301–320. ACM, 2007.

Full text available at: http://dx.doi.org/10.1561/2500000031

124 References

Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and
Nobuko Yoshida. Monitoring networks through multiparty session types.
In Proceedings of the 8th International Federated Conference on Distributed
Computing Techniques, volume 7892 of Lecture Notes in Computer Science,
pages 50–65. Springer, 2013.

Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed multiparty session
types. In Proceedings of the 25th International Conference on Concurrency
Theory, volume 8704 of Lecture Notes in Computer Science, pages 419–434.
Springer, 2014.

Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting deadlines together.
In Proceedings of the 26th International Conference on Concurrency The-
ory, volume 42 of Leibniz International Proceedings in Informatics, pages
283–296. Schloss Dagstuhl, 2015.

Viviana Bono and Luca Padovani. Typing Copyless Message Passing. Logical
Methods in Computer Science, 8:1–50, 2012.

Viviana Bono, Chiara Messa, and Luca Padovani. Typing Copyless Message
Passing. In Proceedings of the 20th European Symposium on Programming,
volume 6602 of Lecture Notes in Computer Science, pages 57–76. Springer,
2011.

Viviana Bono, Luca Padovani, and Andrea Tosatto. Polymorphic Types for
Leak Detection in a Session-Oriented Functional Language. In Proceedings
of the 8th International Federated Conference on Distributed Computing
Techniques, volume 7892 of Lecture Notes in Computer Science, pages 83–
98. Springer, 2013.

Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming
Multi-Agent Systems in AgentSpeak Using Jason. John Wiley & Sons, 2007.

Michele Boreale and Mario Bravetti. Advanced mechanisms for service com-
position, query and discovery. In Martin Wirsing and Matthias M. Hölzl,
editors, Results of the SENSORIA Project, volume 6582 of Lecture Notes
in Computer Science, pages 282–301. Springer, 2011.

John Boyland. Checking interference with fractional permissions. In Radhia
Cousot, editor, Proceedings of the 10th International Symposium on Static
Analysis, volume 2694 of Lecture Notes in Computer Science, pages 55–72.
Springer, 2003.

John Boyland. Fractional permissions. In Dave Clarke, James Noble, and To-
bias Wrigstad, editors, Aliasing in Object-Oriented Programming. Types,
Analysis and Verification, volume 7850 of Lecture Notes in Computer Sci-
ence, pages 270–288. Springer, 2013.

Full text available at: http://dx.doi.org/10.1561/2500000031

References 125

BPMN. Business Process Model and Notation. http://www.omg.org/spec/
BPMN/2.0/, 2011.

Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines.
Journal of ACM, 30:323–342, 1983.

Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory for chore-
ography conformance and contract compliance. In Markus Lumpe and Wim
Vanderperren, editors, Software Composition, volume 4829 of Lecture Notes
in Computer Science, pages 34–50. Springer, 2007.

Mario Bravetti and Gianluigi Zavattaro. Contract compliance and choreog-
raphy conformance in the presence of message queues. In Roberto Bruni
and Karsten Wolf, editors, Proceedings of the 5th International Workshop
on Web Services and Formal Methods, volume 5387 of Lecture Notes in
Computer Science, pages 37–54. Springer, 2008a.

Mario Bravetti and Gianluigi Zavattaro. A foundational theory of contracts
for multi-party service composition. Fundamenta Informaticae, 89(4):451–
478, 2008b.

Mario Bravetti and Gianluigi Zavattaro. Service discovery and composition
based on contracts and choreographic descriptions. In Guadalupe Ortiz and
Javier Cubo, editors, Adaptive Web Services for Modular and Reusable Soft-
ware Development: Tactics and Solutions, pages 60–88. IGI Global, 2013.

Luís Caires and Frank Pfenning. Session types as intuitionistic linear proposi-
tions. In Proceedings of the 21th International Conference on Concurrency
Theory, volume 6269 of Lecture Notes in Computer Science, pages 222–236.
Springer, 2010.

Joana Campos and Vasco T. Vasconcelos. MOOL. Available at http://
gloss.di.fc.ul.pt/mool/, accessed May 21, 2016.

Joana Campos and Vasco T. Vasconcelos. Channels as objects in concur-
rent object-oriented programming. In Proceedings of the 3rd Workshop on
Programming Language Approaches to Concurrency and communication-
cEntric Software, volume 69 of Electronic Proceedings in Theoretical Com-
puter Science, pages 12–28, 2010.

Sara Capecchi, Mario Coppo, Mariangiola Dezani-Ciancaglini, Sophia
Drossopoulou, and Elena Giachino. Amalgamating Sessions and Meth-
ods in Object Oriented Languages with Generics. Theoretical Computer
Science, 410:142–167, 2009.

Full text available at: http://dx.doi.org/10.1561/2500000031

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://gloss.di.fc.ul.pt/mool/
http://gloss.di.fc.ul.pt/mool/

126 References

Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multi-
party asynchronous global programming. In Proceedings of the 40th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 263–274. ACM, 2013.

Marco Carbone, Kohei Honda, Nobuko Yoshida, Robin Milner, Gary Brown,
and Steve Ross-Talbot. A theoretical basis of communication-centred con-
current programming, 2006. Available at http://www.w3.org/2002/ws/
chor/edcopies/theory/note.pdf.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured
communication-centered programming for web services. ACM Transactions
on Programming Languages and Systems, 34(2):8, 2012.

Marco Carbone, Fabrizio Montesi, and Carsten Schürmann. Choreographies,
logically. In Proceedings of the 25th International Conference on Concur-
rency Theory, volume 8704 of Lecture Notes in Computer Science, pages
47–62. Springer, 2014.

Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A Theory of Con-
tracts for Web Services. ACM Transactions on Programming Languages
and Systems, 31(5), 2009.

Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On
global types and multi-party session. Logical Methods in Computer Science,
8(1), 2012.

CDL. W3C Web Services Choreography Description Language. http://www.
w3.org/2002/ws/chor/, 2002.

Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel pro-
grammability and the chapel language. International Journal of High Per-
formance Computing Applications, 21(3):291–312, 2007.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa,
Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar.
X10: an object-oriented approach to non-uniform cluster computing. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 519–
538. ACM, 2005.

Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and
Nobuko Yoshida. Asynchronous distributed monitoring for multiparty ses-
sion enforcement. In Trustworthy Global Computing, volume 7173 of Lecture
Notes in Computer Science, pages 25–45. Springer, 2012.

Chor. Programming Language. Available at http://www.chor-lang.org/,
accessed May 21, 2016.

Full text available at: http://dx.doi.org/10.1561/2500000031

http://www.w3.org/2002/ws/chor/edcopies/theory/note.pdf
http://www.w3.org/2002/ws/chor/edcopies/theory/note.pdf
http://www.w3.org/2002/ws/chor/
http://www.w3.org/2002/ws/chor/
http://www.chor-lang.org/

References 127

Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał
Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A
practical system for verifying concurrent C. In Proceedings of the 22nd
International Conference on Theorem Proving in Higher Order Logics, vol-
ume 5674 of Lecture Notes in Computer Science, pages 23–42. Springer,
2009.

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. Asyn-
chronous Session Types and Progress for Object-Oriented Languages. In
Proceedings of the 9th International Conference on Formal Methods for
Open Object-Based Distributed Systems, volume 4468 of Lecture Notes in
Computer Science, pages 1–31. Springer, 2007.

Ricardo Corin and Pierre-Malo Deniélou. A protocol compiler for secure
sessions in ML. In Trustworthy Global Computing, volume 4912 of Lecture
Notes in Computer Science, pages 276–293. Springer, 2008.

Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, Karthikeyan Bharga-
van, and James J. Leifer. A secure compiler for session abstractions. Journal
of Computer Security, 16(5):573–636, 2008.

Silvia Crafa and Luca Padovani. The Chemical Approach to Typestate-
Oriented Programming. In Proceedings of the ACM International Con-
ference on Object-Oriented Programming, Systems, Languages, and Appli-
cations, pages 917–934. ACM, 2015.

Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revis-
ited. In Proceedings of the 14th symposium on Principles and practice of
declarative programming, pages 139–150. ACM, 2012.

Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83–133, 1984.

Robert DeLine and Manuel Fähndrich. Typestates for objects. In Proceedings
of the 18th European Conference on Object-Oriented Programming, volume
3086 of Lecture Notes in Computer Science, pages 465–490. Springer, 2004.

Romain Demangeon and Kohei Honda. Nested protocols in session types.
In Proceedings of the 23rd International Conference on Concurrency The-
ory, volume 7454 of Lecture Notes in Computer Science, pages 272–286.
Springer, 2012.

Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and
Nobuko Yoshida. Practical interruptible conversations: Distributed dy-
namic verification with multiparty session types and Python. Formal Meth-
ods in System Design, 46(3):197–225, 2015.

Full text available at: http://dx.doi.org/10.1561/2500000031

128 References

Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types.
In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 435–446. ACM, 2011.

Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet
communicating automata. In Proceedings of the 21st European Symposium
on Programming, volume 7211 of Lecture Notes in Computer Science, pages
194–213. Springer, 2012.

Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in
communicating automata: Characterisation and synthesis of global session
types. In Proceedings of the 40th International Colloquium on Automata,
Languages, and Programming, volume 7966 of Lecture Notes in Computer
Science, pages 174–186. Springer, 2013.

Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Pa-
rameterised multiparty session types. Logical Methods in Computer Science,
8(4), 2012.

Jolie development team. Jolie Programming Language. Available at http:
//www.jolie-lang.org/, accessed May 21, 2016.

Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, Alexander Ahern, and
Sophia Drossopoulou. ldoos: a Distributed Object-Oriented language with
Session types. In Trustworthy Global Computing, volume 3705 of Lecture
Notes in Computer Science, pages 299–318. Springer, 2005.

Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and
Sophia Drossopoulou. Session Types for Object-Oriented Languages. In
Proceedings of the 20th European Conference on Object-Oriented Program-
ming, volume 4067 of Lecture Notes in Computer Science, pages 328–352.
Springer, 2006.

Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Elena Giachino, and
Nobuko Yoshida. Bounded Session Types for Object-Oriented Languages.
In Proceedings of the 5th International Symposium on Formal Methods for
Components and Objects, volume 4709 of Lecture Notes in Computer Sci-
ence, pages 207–245. Springer-Verlag, 2007.

Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Dimitris Mostrous,
and Nobuko Yoshida. Objects and Session Types. Information and Com-
putation, 207(5):595–641, 2009.

Sophia Drossopoulou, Mariangiola Dezani-Ciancaglini, and Mario Coppo.
Amalgamating the Session Types and the Object Oriented Programming
Paradigms. In Proceedings of the Workshop on Multiparadigm Programming
in Object-Oriented Languages, 2007.

Full text available at: http://dx.doi.org/10.1561/2500000031

http://www.jolie-lang.org/
http://www.jolie-lang.org/

References 129

Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical linear
types for imperative programming. In Jens Knoop and Laurie J. Hendren,
editors, Proceedings of the 2002 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 13–24. ACM, 2002.

Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt,
James R. Larus, and Steven Levi. Language Support for Fast and Reliable
Message-based Communication in Singularity OS. In Proceedings of the 1st
ACM SIGOPS/EuroSys European Conference on Computer Systems, pages
177–190. ACM, 2006.

MPI Forum. MPI: A Message-Passing Interface Standard—Version 3.0. High-
Performance Computing Center Stuttgart, 2012.

Luca Fossati, Raymond Hu, and Nobuko Yoshida. Multiparty session nets. In
Trustworthy Global Computing, volume 8902 of Lecture Notes in Computer
Science, pages 112–127. Springer, 2014.

Foundation for Intelligent Physical Agents. FIPA ACL message struc-
ture specification. Available at http://www.fipa.org/specs/fipa00061/
SC00061G.html, accessed May 21, 2016.

Cédric Fournet, Tony Hoare, Sriram K. Rajamani, and Jakob Rehof. Stuck-
free conformance. In Rajeev Alur and Doron Peled, editors, Proceedings of
the 16th International Conference on Computer Aided Verification, volume
3114 of Lecture Notes in Computer Science, pages 242–254. Springer, 2004.

Ronald Garcia, Eric Tanter, Roger Wolff, and Jonathan Aldrich. Foundations
of typestate-oriented programming. ACM Transactions on Programming
Languages and Systems, 2014.

Simon Gay. Bounded polymorphism in session types. Mathematical Structures
in Computer Science, 18(5):895–930, 2008.

Simon Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous
session types. Journal of Functional Programming, 20(1):19–50, 2010.

Simon J. Gay, Nils Gesbert, António Ravara, and Vasco Thudichum Vascon-
celos. Modular session types for objects. Logical Methods in Computer
Science, 11(4), 2015.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
GMC. From communicating machines to graphical choreographies. Available

at https://bitbucket.org/julien-lange/gmc-synthesis, accessed 21
May 2016.

GTV. Global Types Verification. Available at http://www.disi.unige.it/
person/MascardiV/Software/globalTypes.html, accessed 21 May 2016.

Full text available at: http://dx.doi.org/10.1561/2500000031

http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.fipa.org/specs/fipa00061/SC00061G.html
https://bitbucket.org/julien-lange/gmc-synthesis
http://www.disi.unige.it/person/MascardiV/Software/globalTypes.html
http://www.disi.unige.it/person/MascardiV/Software/globalTypes.html

130 References

Claudio Guidi, Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. Dy-
namic error handling in service oriented applications. Fundamenta Infor-
maticae, 95(1):73–102, 2009.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asyn-
chronous Session Types. In Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 273–
284. ACM, 2008.

Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and
Nobuko Yoshida. Scribbling interactions with a formal foundation. In Pro-
ceedings of the 7th International Conference on Distributed Computing and
Internet Technology, volume 6536 of Lecture Notes in Computer Science,
pages 55–75. Springer, 2011.

Kohei Honda, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng,
Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Verification of mpi
programs using session types. In Proceedings of the 19th European MPI
Users’ Group Meeting on Recent Advances in the Message Passing Inter-
face, volume 7490 of Lecture Notes in Computer Science, pages 291–293.
Springer, 2012.

Kohei Honda, Raymond Hu, Rumyana Neykova, Tzu-Chun Chen, Romain
Demangeon, Pierre-Malo Deniélou, and Nobuko Yoshida. Structuring com-
munication with session types. In Gul A. Agha, Atsushi Igarashi, Naoki
Kobayashi, Hidehiko Masuhara, Satoshi Matsuoka, Etsuya Shibayama, and
Kenjiro Taura, editors, Concurrent Objects and Beyond - Papers dedicated
to Akinori Yonezawa on the Occasion of His 65th Birthday, volume 8665
of Lecture Notes in Computer Science, pages 105–127. Springer, 2014.

Raymond Hu and Nobuko Yoshida. Hybrid session verification through API
generation. In Proceedings of the 19th International Conference on Funda-
mental Approaches to Software Engineering, volume 9633 of Lecture Notes
in Computer Science, pages 401–418. Springer, 2016.

Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed
programming in java. In Proceedings of the 22nd European Conference on
Object-Oriented Programming, volume 5142 of Lecture Notes in Computer
Science, pages 516–541. Springer, 2008.

Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Ko-
hei Honda. Type-safe eventful sessions in Java. In Proceedings of the
24th European Conference on Object-Oriented Programming, volume 6183
of Lecture Notes in Computer Science, pages 329–353. Springer, 2010.

Full text available at: http://dx.doi.org/10.1561/2500000031

References 131

Raymond Hu, Rumyana Neykova, Nobuko Yoshida, and Romain Deman-
geon. Practical Interruptible Conversations: Distributed Dynamic Verifi-
cation with Session Types and Python. In Proceedings of the 4th Interna-
tional Conference on Runtime Verification, volume 8174 of Lecture Notes
in Computer Science, pages 130–148. Springer, 2013.

Galen Hunt, James Larus, Martín Abadi, Mark Aiken, Paul Barham, Manuel
Fähndrich, Chris Hawblitzel, Orion Hodson, Steven Levi, Nick Murphy,
Bjarne Steensgaard, David Tarditi, Ted Wobber, and Brian Zill. An
Overview of the Singularity Project. Technical Report MSR-TR-2005-135,
Microsoft Research, 2005.

Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. Session type inference in Haskell.
In Proceedings of the 3rd Workshop on Programming Language Approaches
to Concurrency and communication-cEntric Software, volume 69 of Elec-
tronic Proceedings in Theoretical Computer Science, pages 74–91, 2010.

Svetlana Jakšić and Luca Padovani. Exception Handling for Copyless Messag-
ing. In Proceedings of the 14th International ACM SIGPLAN Symposium
on Principles and Practice of Declarative Programming, pages 151–162.
ACM, 2012.

Svetlana Jakšić and Luca Padovani. Exception Handling for Copyless Mes-
saging. Science of Computer Programming, 84:22–51, 2014.

Nicholas R. Jennings, Katia P. Sycara, and Michael Wooldridge. A roadmap
of agent research and development. Autonomous Agents and Multi-Agent
Systems, 1(1):7–38, 1998.

Jacek Kopecký, Tomas Vitvar, Carine Bournez, and Joel Farrell. Sawsdl: Se-
mantic annotations for wsdl and xml schema. IEEE Xplore: IEEE Internet
Computing, 11(6):60–67, 2007.

Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Mungo.
http://www.dcs.gla.ac.uk/research/mungo, 2015.

Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. Bridg-
ing the gap between interaction- and process-oriented choreographies. In
Proceedings of the 6th IEEE International Conference on Software Engi-
neering and Formal Methods, pages 323–332. IEEE, 2008.

Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating ma-
chines to graphical choreographies. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 221–232. ACM, 2015.

Full text available at: http://dx.doi.org/10.1561/2500000031

http://www.dcs.gla.ac.uk/research/mungo

132 References

Hugo A. López, Eduardo R. B. Marques, Francisco Martins, Nicholas
Ng, César Santos, Vasco Thudichum Vasconcelos, and Nobuko Yoshida.
Protocol-based verification of message-passing parallel programs. In Pro-
ceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 280–
298. ACM, 2015.

Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, César Santos,
Vasco T. Vasconcelos, and Nobuko Yoshida. Specification and verification
of protocols for MPI programs. Available at http://www.di.fc.ul.pt/
~vv/papers/marques.martins_specification-verification-mpi.pdf,
2013a.

Eduardo R. B. Marques, Francisco Martins, Vasco T. Vasconcelos, Nicholas
Ng, and Nuno Martins. Towards deductive verification of MPI programs
against session types. In Proceedings of the 6th Workshop on Program-
ming Language Approaches to Concurrency and Communication-cEntric
Software, volume 137 of Electronic Proceedings in Theoretical Computer
Science, pages 103–113, 2013b.

Viviana Mascardi and Davide Ancona. Attribute global types for dynamic
checking of protocols in logic-based multiagent systems. Theory and Prac-
tice of Logic Programming, 13(4-5-Online-Supplement), 2013.

James Mayfield, Yannis Labrou, and Tim Finin. Evaluation of KQML as an
agent communication language. In Proceedings of the Workshop on Agent
Theories, Architectures, and Languages, volume 1037 of Lecture Notes in
Computer Science, pages 347–360. Springer, 1995.

Jan Mendling and Michael Hafner. From inter-organizational workflows to
process execution: Generating bpel from ws-cdl. In On the Move to Mean-
ingful Internet Systems 2005: OTM 2005 Workshops, volume 3762 of Lec-
ture Notes in Computer Science, pages 506–515. Springer, 2005.

Filipe Militão. Design and implementation of a behaviorally typed program-
ming system for web services. Master’s thesis, Universidade Nova de Lis-
boa, Faculdade de Ciências e Tecnologia. Available at http://run.unl.
pt/handle/10362/1792, accessed May 21, 2016.

Filipe Militão and Luís Caires. An exception aware behavioral type system
for object-oriented programs. In Proceedings of the Simpósio de Infor-
mática, 2009. Available at http://www.cs.cmu.edu/~foliveir/papers/
corta2009.pdf.

Fabrizio Montesi. Process-aware web programming with Jolie. In Proceedings
of the 28th Annual ACM Symposium on Applied Computing, pages 761–763.
ACM, 2013a.

Full text available at: http://dx.doi.org/10.1561/2500000031

http://www.di.fc.ul.pt/~vv/papers/marques.martins_specification-verification-mpi.pdf
http://www.di.fc.ul.pt/~vv/papers/marques.martins_specification-verification-mpi.pdf
http://run.unl.pt/handle/10362/1792
http://run.unl.pt/handle/10362/1792
http://www.cs.cmu.edu/~foliveir/papers/corta2009.pdf
http://www.cs.cmu.edu/~foliveir/papers/corta2009.pdf

References 133

Fabrizio Montesi. Choreographic Programming. Ph.D. thesis, IT University
of Copenhagen, 2013b. Available at http://www.fabriziomontesi.com/
files/choreographic_programming.pdf.

Fabrizio Montesi and Nobuko Yoshida. Compositional choreographies. In Pro-
ceedings of the 24th International Conference on Concurrency Theory, vol-
ume 8052 of Lecture Notes in Computer Science, pages 425–439. Springer,
2013.

Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Composing services
with Jolie. In Proceedings of the 5th IEEE European Conference on Web
Services, pages 13–22. IEEE Computer Society, 2007.

Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-oriented
programming with Jolie. In Web Services Foundations, pages 81–107.
Springer, 2014.

Roger M. Needham and Michael D. Schroeder. Using encryption for authen-
tication in large networks of computers. Communications of the ACM, 21
(12):993–999, 1978.

Matthias Neubauer and Peter Thiemann. An implementation of session types.
In Proceedings of the 6th International Symposium on Practical Aspects of
Declarative Languages, volume 3057 of Lecture Notes in Computer Science,
pages 56–70. Springer, 2004.

Rumyana Neykova and Nobuko Yoshida. Multiparty session actors. In Pro-
ceedings of the 16th International Conference on Coordination Models and
Languages, volume 8459 of Lecture Notes in Computer Science, pages 131–
146. Springer, 2014.

Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. SPY: Local Verifica-
tion of Global Protocols. In Proceedings of the 4th International Conference
on Runtime Verification, volume 8174 of Lecture Notes in Computer Sci-
ence, pages 358–363. Springer, 2013.

Nicholas Ng and Nobuko Yoshida. Pabble: parameterised Scribble. Service
Oriented Computing and Applications, 9(3-4):269–284, 2015.

Nicholas Ng, Nobuko Yoshida, Olivier Pernet, Raymond Hu, and Yiannos
Kryftis. Safe parallel programming with session java. In Proceedings of the
13th International Conference on Coordination Models and Languages, vol-
ume 6721 of Lecture Notes in Computer Science, pages 110–126. Springer,
2011.

Full text available at: http://dx.doi.org/10.1561/2500000031

http://www.fabriziomontesi.com/files/choreographic_programming.pdf
http://www.fabriziomontesi.com/files/choreographic_programming.pdf

134 References

Nicholas Ng, Nobuko Yoshida, and Kohei Honda. Multiparty session c: Safe
parallel programming with message optimisation. In Proceedings of the 50th
International Conference on Objects, Models, Components, Patterns, vol-
ume 7304 of Lecture Notes in Computer Science, pages 202–218. Springer,
2012.

Nicholas Ng, Jose G. F. Coutinho, and Nobuko Yoshida. Protocols by default:
Safe MPI code generation based on session types. In Proceedings of the
24th International Conference on Compiler Construction, volume 9031 of
Lecture Notes in Computer Science, pages 212–232. Springer, 2015.

OASIS. Web Services Business Process Execution Language. http://docs.
oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

Pabble-MPI. MPI Generation Framework. Available at https://github.
com/sessionc/pabble-mpi, accessed May 21, 2016.

Luca Padovani. Contract-based Discovery and Adaptation of Web Ser-
vices, volume 5569 of Lecture Notes in Computer Science, pages 213–260.
Springer, 2009.

Luca Padovani. Contract-Based Discovery of Web Services Modulo Simple
Orchestrators. Theoretical Computer Science, 411:3328–3347, 2010.

Luca Padovani. A Simple Library Implementation of Binary Sessions. Tech-
nical Report hal-01216310, Dipartimento di Informatica, Università di
Torino, Italy, 2015. Available at https://hal.archives-ouvertes.fr/
hal-01216310.

Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no
class. In Proceedings of the 1st ACM SIGPLAN Symposium on Haskell,
pages 25–36. ACM, 2008.

Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. Towards the
theoretical foundation of choreography. In Proceedings of the 16th Interna-
tional Conference on World Wide Web, pages 973–982. ACM, 2007.

Anand S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable
language. In Proceedings of the 7th European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World, volume 1038 of Lecture Notes in
Computer Science, pages 42–55. Springer, 1996.

Arend Rensink and Walter Vogler. Fair testing. Information and Computa-
tion, 205(2):125–198, 2007.

Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of mobile
processes. Cambridge University Press, 2001.

Full text available at: http://dx.doi.org/10.1561/2500000031

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
https://github.com/sessionc/pabble-mpi
https://github.com/sessionc/pabble-mpi
https://hal.archives-ouvertes.fr/hal-01216310
https://hal.archives-ouvertes.fr/hal-01216310

References 135

Vijay Saraswat, George Almasi, Ganesh Bikshandi, Calin Cascaval, David
Cunningham, David Grove, Sreedhar Kodali, Igor Peshansky, and Olivier
Tardieu. The asynchronous partitioned global address space model. In
Proceedings of the 1st Workshop on Advances in Message Passing, 2010.

Scribble. Available at http://www.scribble.org, accessed May 21, 2016.
Jeremy G. Siek and Walid Taha. Gradual typing for objects. In Proceedings

of the 21st European Conference on Object-Oriented Programming, volume
4609 of Lecture Notes in Computer Science, pages 2–27. Springer, 2007.

Singularity OS. Available at http://singularity.codeplex.com/, accessed
May 21, 2016.

SJ. Session J. Available at http://code.google.com/p/sessionj/, accessed
May 21, 2016.

Guy L. Steele. Parallel programming and parallel abstractions in fortress. In
Proceedings of the 8th International Symposium on Functional and Logic
Programming, volume 3945 of Lecture Notes in Computer Science, pages
1–1. Springer, 2006.

Zachary Stengel and Tevfik Bultan. Analyzing Singularity Channel Contracts.
In Proceedings of the 18th International Symposium on Software Testing
and Analysis, pages 13–24. ACM, 2009.

Robert E. Strom and Shaula Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Transactions on Software
Engineering, 12(1):157–171, 1986.

Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and Éric Tan-
ter. First-class state change in Plaid. In Proceedings of the 26th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 713–732. ACM, 2011a.

Joshua Sunshine, Sven Stork, Karl Naden, and Jonathan Aldrich. Changing
state in the Plaid language. In Proceedings of the Companion to the 26th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 37–38. ACM, 2011b.

Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order processes,
functions, and sessions: A monadic integration. In Proceedings of the 22nd
European Symposium on Programming, volume 7792 of Lecture Notes in
Computer Science, pages 350–369. Springer, 2013.

Vasco T. Vasconcelos, Simon Gay, and António Ravara. Typechecking a mul-
tithreaded functional language with session types. Theoretical Computer
Science, 368(1–2):64–87, 2006.

Full text available at: http://dx.doi.org/10.1561/2500000031

http://www.scribble.org
http://singularity.codeplex.com/
http://code.google.com/p/sessionj/

136 References

Jules Villard, Étienne Lozes, and Cristiano Calcagno. Proving Copyless Mes-
sage Passing. In Proceedings of the 7th Asian Symposium on Programming
Languages and Systems, volume 5904 of Lecture Notes in Computer Sci-
ence, pages 194–209. Springer, 2009.

Jules Villard, Étienne Lozes, and Cristiano Calcagno. Tracking Heaps That
Hop with Heap-Hop. In Proceedings of the 16th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, volume
6015 of Lecture Notes in Computer Science, pages 275–279. Springer, 2010.

Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich. Gradual
typestate. In Proceedings of the 25th European Conference on Object-
Oriented Programming, volume 6813 of Lecture Notes in Computer Science,
pages 459–483. Springer, 2011.

Nobuko Yoshida and Vasco Thudichum Vasconcelos. Language primitives and
type discipline for structured communication-based programming revisited:
Two systems for higher-order session communication. Electronic Notes in
Theoretical Computer Science, 171(4):73–93, 2007.

Full text available at: http://dx.doi.org/10.1561/2500000031

	Introduction
	Object-Oriented Languages
	Session Types in Core Object-Oriented Languages
	Behavioral Types in Java-like Languages
	Typestate
	Related Work

	Functional Languages
	Effects for Session Type Checking
	Sessions and Explicit Continuations
	Monadic Approaches to Session Type Checking
	Related Work

	High-Performance Message-Passing Systems
	Session C
	Deductive Verification of C+MPI Code
	MPI Code Generation
	Related Work

	Multiagent Systems
	Global Types for MAS Monitoring
	Advanced Constructs for Protocol Specification
	Related Work

	Singularity OS
	Channel Contracts in Sing#
	Behavioral Types for Memory Leak Prevention
	Related Work

	Web Services
	Behavioral Interfaces for Web Services
	Languages for Service Composition
	Abstract Service Descriptions and Behavioral Contracts
	Related Work

	Choreographies
	Choreography Programming Languages
	Scribble
	Related Work

	Acknowledgments
	References

