
Behavioral Types in
Programming Languages

Davide Ancona
Viviana Bono

Mario Bravetti
Joana Campos

Giuseppe Castagna
Pierre-Malo Deniélou

Simon J. Gay
Nils Gesbert

Elena Giachino
Raymond Hu

Einar Broch Johnsen
Francisco Martins
Viviana Mascardi
Fabrizio Montesi

Rumyana Neykova
Nicholas Ng

Luca Padovani
Vasco T. Vasconcelos

Nobuko Yoshida

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2500000031



Foundations and Trends R© in
Programming Languages

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

D. Ancona et al.. Behavioral Types in Programming Languages. Foundations and
TrendsR© in Programming Languages, vol. 3, no. 2-3, pp. 95–230, 2016.

This Foundations and TrendsR© issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-135-1
c© 2016 D. Ancona et al.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2500000031



Foundations and Trends R© in
Programming Languages
Volume 3, Issue 2-3, 2016

Editorial Board

Editor-in-Chief

Mooly Sagiv
Tel Aviv University
Israel

Editors

Martín Abadi
Google &
UC Santa Cruz
Anindya Banerjee
IMDEA
Patrick Cousot
ENS Paris & NYU
Oege De Moor
University of Oxford
Matthias Felleisen
Northeastern University
John Field
Google
Cormac Flanagan
UC Santa Cruz
Philippa Gardner
Imperial College
Andrew Gordon
Microsoft Research &
University of Edinburgh
Dan Grossman
University of Washington

Robert Harper
CMU
Tim Harris
Oracle
Fritz Henglein
University of Copenhagen
Rupak Majumdar
MPI-SWS & UCLA
Kenneth McMillan
Microsoft Research
J. Eliot B. Moss
UMass, Amherst
Andrew C. Myers
Cornell University
Hanne Riis Nielson
TU Denmark
Peter O’Hearn
UCL
Benjamin C. Pierce
UPenn
Andrew Pitts
University of Cambridge

Ganesan Ramalingam
Microsoft Research
Mooly Sagiv
Tel Aviv University
Davide Sangiorgi
University of Bologna
David Schmidt
Kansas State University
Peter Sewell
University of Cambridge
Scott Stoller
Stony Brook University
Peter Stuckey
University of Melbourne
Jan Vitek
Purdue University
Philip Wadler
University of Edinburgh
David Walker
Princeton University
Stephanie Weirich
UPenn

Full text available at: http://dx.doi.org/10.1561/2500000031



Editorial Scope

Topics

Foundations and Trends R© in Programming Languages publishes survey
and tutorial articles in the following topics:

• Abstract interpretation

• Compilation and
interpretation techniques

• Domain specific languages

• Formal semantics, including
lambda calculi, process calculi,
and process algebra

• Language paradigms

• Mechanical proof checking

• Memory management

• Partial evaluation

• Program logic

• Programming language
implementation

• Programming language
security

• Programming languages for
concurrency

• Programming languages for
parallelism

• Program synthesis

• Program transformations and
optimizations

• Program verification

• Runtime techniques for
programming languages

• Software model checking

• Static and dynamic program
analysis

• Type theory and type systems

Information for Librarians

Foundations and Trends R© in Programming Languages, 2016, Volume 3, 4
issues. ISSN paper version 2325-1107. ISSN online version 2325-1131. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2500000031



Foundations and TrendsR© in Programming Languages
Vol. 3, No. 2-3 (2016) 95–230
c© 2016 D. Ancona et al.
DOI: 10.1561/2500000031

Behavioral Types in Programming Languages

Davide Ancona, DIBRIS, Università di Genova, Italy
Viviana Bono, Dipartimento di Informatica, Università di Torino, Italy

Mario Bravetti, Università di Bologna, Italy / INRIA, France
Joana Campos, LaSIGE, Faculdade de Ciências, Univ de Lisboa, Portugal

Giuseppe Castagna, CNRS, IRIF, Univ Paris Diderot, Sorbonne Paris Cité, France
Pierre-Malo Deniélou, Royal Holloway, University of London, UK

Simon J. Gay, School of Computing Science, University of Glasgow, UK
Nils Gesbert, Université Grenoble Alpes, France

Elena Giachino, Università di Bologna, Italy / INRIA, France
Raymond Hu, Department of Computing, Imperial College London, UK

Einar Broch Johnsen, Institutt for informatikk, Universitetet i Oslo, Norway
Francisco Martins, LaSIGE, Faculdade de Ciências, Univ de Lisboa, Portugal

Viviana Mascardi, DIBRIS, Università di Genova, Italy
Fabrizio Montesi, University of Southern Denmark

Rumyana Neykova, Department of Computing, Imperial College London, UK
Nicholas Ng, Department of Computing, Imperial College London, UK
Luca Padovani, Dipartimento di Informatica, Università di Torino, Italy

Vasco T. Vasconcelos, LaSIGE, Faculdade de Ciências, Univ de Lisboa, Portugal
Nobuko Yoshida, Department of Computing, Imperial College London, UK

Full text available at: http://dx.doi.org/10.1561/2500000031



Contents

1 Introduction 2

2 Object-Oriented Languages 11
2.1 Session Types in Core Object-Oriented Languages . . . . . 12
2.2 Behavioral Types in Java-like Languages . . . . . . . . . . 27
2.3 Typestate . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Functional Languages 46
3.1 Effects for Session Type Checking . . . . . . . . . . . . . 47
3.2 Sessions and Explicit Continuations . . . . . . . . . . . . . 49
3.3 Monadic Approaches to Session Type Checking . . . . . . 50
3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 54

4 High-Performance Message-Passing Systems 55
4.1 Session C . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Deductive Verification of C+MPI Code . . . . . . . . . . . 62
4.3 MPI Code Generation . . . . . . . . . . . . . . . . . . . . 66
4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Multiagent Systems 68
5.1 Global Types for MAS Monitoring . . . . . . . . . . . . . 69

ii

Full text available at: http://dx.doi.org/10.1561/2500000031



iii

5.2 Advanced Constructs for Protocol Specification . . . . . . 74
5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Singularity OS 80
6.1 Channel Contracts in Sing# . . . . . . . . . . . . . . . . . 80
6.2 Behavioral Types for Memory Leak Prevention . . . . . . . 85
6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Web Services 89
7.1 Behavioral Interfaces for Web Services . . . . . . . . . . . 89
7.2 Languages for Service Composition . . . . . . . . . . . . . 91
7.3 Abstract Service Descriptions and Behavioral Contracts . . 94
7.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 98

8 Choreographies 100
8.1 Choreography Programming Languages . . . . . . . . . . . 101
8.2 Scribble . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 117

Acknowledgments 121

References 122

Full text available at: http://dx.doi.org/10.1561/2500000031



Abstract

A recent trend in programming language research is to use behav-
ioral type theory to ensure various correctness properties of large-
scale, communication-intensive systems. Behavioral types encompass
concepts such as interfaces, communication protocols, contracts, and
choreography. The successful application of behavioral types requires
a solid understanding of several practical aspects, from their represen-
tation in a concrete programming language, to their integration with
other programming constructs such as methods and functions, to de-
sign and monitoring methodologies that take behaviors into account.
This survey provides an overview of the state of the art of these aspects,
which we summarize as the pragmatics of behavioral types.

D. Ancona et al.. Behavioral Types in Programming Languages. Foundations and
TrendsR© in Programming Languages, vol. 3, no. 2-3, pp. 95–230, 2016.
DOI: 10.1561/2500000031.
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1
Introduction

Modern society is increasingly dependent on large-scale software sys-
tems that are distributed, collaborative and communication-centered.
Correctness and reliability of such systems depend on compatibility
between components and services that are newly developed or may al-
ready exist. The consequences of failure are severe, including security
breaches and unavailability of essential services. Current software de-
velopment technology is not well suited to producing these large-scale
systems, because of the lack of high-level structuring abstractions for
complex communication behavior.

A recent trend in current research is to use behavioral type the-
ory as the basis for new foundations, programming languages, and
software development methods for communication-intensive distributed
systems. Behavioral type theory encompasses concepts such as inter-
faces, communication protocols, contracts, and choreography. Roughly
speaking, a behavioral type describes a software entity, such as an ob-
ject, a communication channel, or a Web Service, in terms of the se-
quences of operations that allow for a correct interaction among the
involved entities. The precise notions of “operations” and of “correct
interaction” are very much context-dependent. Typical examples of op-

2
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Figure 1.1: Graphical representation of the Customer-Agency protocol.

erations are invoking a method on an object, connecting a client with
a Web Service in a distributed system, sending a message between
cores in a parallel program. The notion of correct interaction may en-
compass both safety properties (such as the communication of valid
method arguments, the absence of communication errors, the absence
of deadlocks) as well as liveness properties (such as the eventual receipt
of a message or the eventual termination of an interaction).

To illustrate some paradigmatic aspects of behavioral type theory
more concretely, consider the diagram in Figure 1.1 depicting the in-
teraction between two entities, named Customer and Agency. In this
diagram, the horizontal lines represent interaction events between the
two entities and the vertical lines represent their temporal ordering.
The s-labeled line at the top of the diagram denotes the establishment
of a connection between the two entities and the definition of an inter-
action scope that is often called session. The identifier s distinguishes
this particular session from others (not depicted) in which Customer
and Agency may be involved. We can think of s as the name of a com-
munication channel that is known only to Customer and Agency. The
proper interaction consists of two phases: the first one, marked as “re-
peat” in the figure, is made of an unbound number of queries issued by
a Customer who is planning a trip through a travel Agency. Each query

Full text available at: http://dx.doi.org/10.1561/2500000031



4 Introduction

includes the journey details, abstracted as a message of type String, to
which the Agency answers with the price of the journey, represented
as a message of type Double. In the second phase, marked as “choice”,
Customer decides whether to book one of the journeys, which it signals
by sending either an ACCEPT message followed by the Address to which
the physical documents related to the journey should be delivered at
some Date estimated by Agency, or a REJECT message that simply ter-
minates the interaction. Arrows in the diagram denote the direction of
messages. The discontinuity in the vertical development of the protocol
suggests that the sub-protocols beginning with the ACCEPT and REJECT
messages are mutually exclusive, the decision being taken by Customer.
Eventually, the interaction between Customer and Agency terminates
and the session that connects them is closed. This is denoted by the
s-labeled line at the bottom of the diagram. In summary, the diagram
describes a communication protocol between Customer and Agency as
a set of valid sequences of interactions. Making sure that some piece
of code modeling either Customer or Agency adheres to this protocol
is among the purposes of behavioral type systems, and the technical
instrument through which this is accomplished is behavioral types.

In the setting of typed programming languages, the challenge posed
by describing a channel like s with a type is that the same entity s is
used for exchanging messages of different types (labels such as ACCEPT
and REJECT, integers, strings, floating-point numbers, dates, etc.) at dif-
ferent times and traveling in different directions (both Customer and
Agency send and receive messages on s). Therefore, it is not obvious
which unique type should be given to a channel like s or, equivalently,
to the functions/methods for using it. The solution adopted in conven-
tional (i.e., non-behavioral) type systems, and that is found in virtually
all mainstream programming languages used today, is to declare that
communication channels like s can be used for exchanging “raw” mes-
sages in the form of byte arrays or strings. It is up to the programmer
to appropriately marshal data into such raw messages before trans-
mission and correspondingly unmarshal raw messages into data when
they reach their destination. In Java, for instance, the InputStream
and OutputStream interfaces and related ones provide read and write
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methods that respectively read data from a stream to a byte array
and write data from a byte array to a stream. The main shortcoming
of this approach is that it jeopardizes all the benefits and guarantees
provided by the type system: such lax typing of channels and of the op-
erations for using them provides no guarantee that the (un)marshalled
data has the expected type, nor does it guarantee that messages flow
along a channel in the direction intended by the protocol. Essentially,
the approach corresponds to using untyped channels and establishes a
border beyond which the type system of the programming language is
no longer in effect. The resulting code is declared well typed by the
compiler, but it may suffer from type-related errors (or other issues,
such as deadlocks) at runtime.

The key idea of a behavioral type theory is to enrich the expres-
siveness of types so that it becomes possible to formally describe the
sequences of messages (informally depicted in Figure 1.1) that are
expected to be exchanged along the communication channel s that
connects Customer and Agency. This type can then be used by a
type checker to verify that the programs implementing Customer and
Agency interact in accordance with the intended communication proto-
col. In fact, we can imagine two different types associated with channel
s, depending on viewpoint we take, that of the Customer or that of the
Agency. If we take the first viewpoint, we can describe s with a type T
defined as

T =
⊕ 

QUERY : !String.?Double.T
ACCEPT : !String.?Date.end
REJECT : end


where:

• The symbol
⊕

denotes a choice of possible behaviors that Cus-
tomer can attain to, each choice being represented by a symbolic
label. In this case, the possible behaviors for Customer are query-
ing the Agency (label QUERY), accepting an offer from the Agency
(label ACCEPT), or quitting the interaction (label REJECT).

• The punctuation marks ! and ? respectively prefix the type of
messages sent (String) and received (Double and Date) by Cus-

Full text available at: http://dx.doi.org/10.1561/2500000031



6 Introduction

tomer. With these annotations, we can specify the intended di-
rection of messages.

• The punctuation marks : and . represent the sequentiality of ac-
tions described by the type. In this case, a Customer that queries
an Agency must first send a message of type String and then wait
for a message of type Double. With these annotations, we can
specify how the capabilities of the channel change as the channel
is used for input/output operations.

• The occurrence of T on the right hand side of the equation in-
dicates that T is a recursive type, therefore allowing for an un-
bounded number of queries from Customer to Agency. This makes
it possible to specify recursive protocols.

• end marks the points in which the interaction between Customer
and Agency terminates and no more messages are supposed to
be exchanged.

If we take the Agency viewpoint, it is reasonable to expect that the
type of s should express complementary behaviors: the Agency offers
choices when Customer selects one, the Agency receives a message when
the Customer sends one, and vice versa. Customer and Agency should
also agree on the moments in which the interaction terminates. This
relation between the behaviors of Customer and Agency can be formal-
ized as a notion of duality between the two types of s. In particular,
the dual of T is the type S defined as

S =
∑ 

QUERY : ?String.!Double.S
ACCEPT : ?String.!Date.end
REJECT : end


obtained from T by swapping choices

⊕
with offers

∑
, inputs ? with

outputs !, and leaving end unchanged. Now, checking that Customer
and Agency use the respective ends of s according to T and S makes
sure that choices and offers match and messages of the right type are
exchanged at the right time. In summary, that Customer and Agency
interact correctly.
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The successful application of behavioral types to the development
of reliable, large-scale software requires both the study of formal type
theories but also understanding and addressing more practical aspects,
including the representation of behavioral types such as T and S in
a concrete programming language, the integration of behavioral type
checking with other programming constructs like methods and func-
tions, and also design methodologies that take behaviors into account.
The aim of this survey is to provide a first comprehensive overview
of the state of the art of these aspects, which we may summarize as
the pragmatics of behavioral types. The survey is structured as a se-
ries of chapters, each covering a particular programming paradigm or
methodology. Below is an account of the content of each chapter:
• Chapter 2 is devoted to the integration of behavioral types into
Object-Oriented languages. Object-oriented languages are rele-
vant for their widespread adoption in the current development of
software, for the wealth and popularity of tools that are avail-
able, and because objects nicely fit a distribution model to which
behavioral types can be applied naturally. The integration can
be achieved in different ways: either by enriching the languages
with constructs (in particular, sessions) that call for a correspond-
ing extension at the type level, or by amalgamating sessions and
objects to the point that the objects themselves become the enti-
ties for which a behavioral description is required, for example to
specify the order in which methods must/can be invoked. We also
survey a parallel, but related line of research concerning typestate.
This concept, originally introduced for discriminating the state
of imperative variables (uninitialized, initialized, finalized), finds
a natural application to describing object protocols and has been
recently converging to behavioral typing.

• Chapter 3 explores the integration of behavioral types within
functional languages. Functional languages are relevant for their
qualities of being easily endowed with high-level type-theoretic
and concurrent extensions, for their natural support to paral-
lelism, and since they permit rapid prototyping. We survey three
different approaches, one akin to an effect system, one based on
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8 Introduction

explicit continuation passing, and one based on monads. Besides
providing an out-of-the-box application of behavioral types to
a concrete programming language, the continuation-based and
monadic approaches can take advantage of the type inference en-
gine of the language so that the programmer is not required to
explicitly write (or annotate programs with) behavioral types,
which can be automatically reconstructed from the source code
of the program.

• High-performance computing often relies on parallel processes
that synchronize by means of message passing. Chapter 4 de-
scribes the use of behavioral types in conjunction with Message
Passing Interface (MPI) which is the de facto standard API for
high-performance computing. Also in this case, behavioral types
provide an effective means for making sure that communications
occur without errors. We survey three alternative approaches
making use of behavioral types in this context: one based on
higher-level structuring abstractions, one based on source code
verification, and one based on source code generation.

• Chapter 5 describes an application of behavioral types to multi-
agent systems. The latter have been proved to be an industrial-
strength technology for integrating and coordinating autonomous
and heterogeneous entities in open systems. In this setting, the
possibility of formally describing interaction protocols in the form
of behavioral types enables forms of runtime monitoring for multi-
agent systems.

• Chapter 6 provides an overview of the use of behavioral types in
Singularity OS, a prototype Operating System developed by Mi-
crosoft that adopts communication as the fundamental and only
synchronization mechanism between processes. Sing#, the pro-
gramming language used for the implementation of Singularity
OS, is an extension of C# that comprises both object-oriented
and functional constructs and provides a native notion of chan-
nel contract, a form of behavioral type. The formal investigation
of behavioral types in this setting has led to the discovery of un-
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forseen system configurations that yield memory leaks and to the
development of refined behavioral type theories preventing them.

• The WSDL and UDDI standards are technologies currently en-
abling the description of Web Service interfaces and the creation
of Web Service repositories. Chapter 7 explores the potential of
behavioral types, intended as abstract descriptions of Web Ser-
vice behaviors, as natural generalizations of WSDL interfaces to
realize sophisticated forms discovering, composition, and orches-
tration of Web Services.

• Chapter 8 illustrates the design-by-contract methodology for the
development of possibly distributed, communicating systems. Ac-
cording to this methodology, behavioral types are used for de-
scribing, from a vantage point of view, the topology of the com-
munication network, the communications that are supposed to
occur, and in which order. Such global specifications serve multi-
ple purposes: they are a valuable form of abstract specification of
the overall behavior of a distributed system; they can be projected
for describing the local behavior of the network participants to
allow the modular type checking of complex systems; they enable
the generation of monitors to verify, at runtime, that the partici-
pants of a heterogeneous distributed system behave as expected,
even if only some or none of them have been type checked against
their supposed or claimed behavior.

Overall, the survey provides substantial evidence that behavioral
types have sprinkled a remarkable interest in the research community
concerned with programming languages. The adoption of behavioral
types beside the academic context proceeds more slowly, but nonethe-
less there are encouraging signals. As a matter of fact, it is known
that programming languages tend to evolve slowly, especially when it
comes to the integration of sophisticated typing disciplines. In this re-
spect, approaches that rely on the encoding of behavioral types using
conventional type constructors (§3.3), that allow for the verification of
existing code (§4.2), or the type-driven generation of runtime monitors
(Chapters 5 and 8), enable developers to fill the gap between theory
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10 Introduction

and practice of behavioral typing with little or no changes to their
programming environment and development workflow. The survey also
contains pointers to industrial projects in which behavioral types al-
ready play a key role: the Ocean Observatories Initiative, which aims
at the realization of a planetary-scale network for the trasmission of
environmental data (§8.2), and the programming language Sing#, de-
veloped by Microsoft, which offers behavioral types as a native and key
feature (Chapter 6). These early examples of industrial applications of
behavioral types indirectly hint at their effectiveness in supporting the
development of complex, large-scale systems for which correctness and
reliability guarantees are of paramount importance.
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