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Abstract

Born in the late 70s, Abstract Interpretation has proven an effective
method to construct static analyzers. It has led to successful program
analysis tools routinely used in avionic, automotive, and space indus-
tries to help ensuring the correctness of mission-critical software.

This tutorial presents Abstract Interpretation and its use to create
static analyzers that infer numeric invariants on programs. We first
present the theoretical bases of Abstract Interpretation: how to assign
a well-defined formal semantics to programs, construct computable ap-
proximations to derive effective analyzers, and ensure soundness, i.e.,
any property derived by the analyzer is true of all actual executions —
although some properties may be missed due to approximations, a nec-
essary compromise to keep the analysis automatic, sound, and termi-
nating when inferring uncomputable properties. We describe the classic
numeric abstractions readily available to an analysis designer: intervals,
polyhedra, congruences, octagons, etc., as well as domain combiners:
the reduced product and various disjunctive completions. This tutorial
focuses not only on the semantic aspect, but also on the algorithmic
one, providing a description of the data-structures and algorithms nec-
essary to effectively implement all our abstractions. We will encounter
many trade-offs between cost on the one hand, and precision and ex-
pressiveness on the other hand. Invariant inference is formalized on an
idealized, toy-language, manipulating perfect numbers, but the princi-
ples and algorithms we present are effectively used in analyzers for real
industrial programs, although this is out of the scope of this tutorial.

This tutorial is intended as an entry course in Abstract Interpre-
tation, after which the reader should be ready to read the research
literature on current advances in Abstract Interpretation and on the
design of static analyzers for real languages.

A. Miné. Tutorial on Static Inference of Numeric Invariants by Abstract
Interpretation. Foundations and TrendsR© in Programming Languages, vol. 4,
no. 3-4, pp. 120–372, 2017.
DOI: 10.1561/2500000034.
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1
Introduction

While software are naturally meant to be run on computers, they can
also be studied, manipulated, analyzed, either by hand or mechanically,
that is, by other computer programs. A common example is compila-
tion, which transforms programs in source code form into programs in
binary code suitable for direct interpretation by a processor — or by
a virtual machine, yet another program. This tutorial concerns static
analysis, a less common example of computer programs manipulating
other programs. A static analyzer is a program that takes as input a
program and outputs information about its possible behaviors, without
actually executing it.

In a broad sense, static analysis also covers syntactic analyses, that
search for predefined patterns, as well as code quality metrics, such as
counting the number of comments. However, we focus here on semantic-
based static analyses. These methods output program properties that
are provably correct with respect to a clear mathematical formalization
of program behaviors. Such a high level of confidence in the analysis
results is necessary in many applications, ranging from compiler op-
timization to program verification. One example property is that two
pointers never alias. If proved true, the property can be exploited by a

2
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3

compiler to enable optimizations that would be incorrect in the pres-
ence of aliasing. Another example is finding bounds on array index ex-
pressions. This can be exploited in program verification to ensure that
a program is free from out-of-bound array accesses. For the correctness
proof to be valid, it is necessary to ensure that the inferred bounds
indeed encompass all possible index values computed in all possible
executions of the program.

Formal methods. The idea of reasoning with mathematical rigor
about programs dates back from the early days of computers [Tur-
ing, 1949] and lead to the rich field of formal methods with the pio-
neering work of Hoare [1969] and Floyd [1967] on program logic. The
lack of automation for writing and checking program proofs hindered
these early efforts. In fact, Turing famously proved the undecidability
of the halting problem, and Rice [1953] generalized this result, stating
that all non-trivial properties about programs are undecidable. Hence,
program verification cannot be fully automated. This fundamental lim-
itation can be sidestep in different ways, leading to the various flavors
of program verification methods used today. Cousot and Cousot [2010]
classify current formal methods into three categories, depending on
whether automation, generality, or completeness is abandoned:

• Deductive Methods, which inherit directly from the work of Hoare
[1969] and Floyd [1967], use interactive logic-based tools, includ-
ing proof assistants such as Coq [Bertot and Castéran, 2004] and
theorem provers such as PVS [Owre et al., 1992]. These tools are
largely mechanized, but rely ultimately on the user, to a varying
degree, to guide the proof.

• Model Checking, pioneered by Clarke et al. [1986], restricts pro-
gram verification problems to decidable fragments. Initially re-
stricted to finite models, it has since been generalized to infinite-
state but regular models by McMillan [1993] in symbolic model
checking. In practice, this often means that a model must be ex-
tracted, by hand, before the analysis can be performed. Alterna-
tively, software bounded model checkers, such as CBMC [Clarke

Full text available at: http://dx.doi.org/10.1561/2500000034



4 Introduction

et al., 2004], analyze programs in actual programming languages
such as C, but consider only a finite part of their executions.

• Static Analysis, studied in this tutorial, performs a direct analy-
sis of the original source code, considering all possible executions
and without user intervention, but resorts to approximations and
analyzes the program at some level of abstraction that forgets
about details that are, hopefully, irrelevant for the kind of prop-
erties checked. The abstraction is incomplete and can miss some
properties, resulting in false alarms, i.e., the program is correct
but the analyzer cannot prove it.

Abstract Interpretation. The theory of Abstract Interpretation, intro-
duced by Cousot and Cousot [1977], is a general theory of the approx-
imation of formal program semantics. It is an invaluable tool to prove
the correctness of a static analysis, as it makes it possible to express
mathematically the link between the output of a practical, approximate
analysis, and the original, uncomputable program semantics. Both are
seen as the same object, at different levels of abstraction. Additionally,
Abstract Interpretation makes it possible to derive, from the original
program semantics and a choice of abstraction, a static analysis that
is correct by construction. Finally, the notion of abstraction is a first
class citizen in Abstract Interpretation: abstractions can be manipu-
lated and combined, leading to modular designs for static analyses. In
this tutorial, we will design static analyses by Abstract Interpretation.

The rest of this chapter presents informally static analyses by Ab-
stract Interpretation in order to derive simple numeric properties on
the variables of a program.

1.1 A First Static Analysis: Informal Presentation

Let us consider, as first example, the program in Fig. 1.1. The mod
function takes two arguments, A and B, then computes in Q and R,
respectively, the integer dividend A/B and the remainder A%B, and
finally returns R. This very naive function is written in a C-like lan-
guage, and enriched with a //@requires annotation, written in the
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1.1. A First Static Analysis: Informal Presentation 5

//@ requires A >= 0 && B >= 0;
int mod(int A, int B) {

1: int Q = 0;
2: int R = A;
3: while (R >= B) {
4: R = R - B;
5: Q = Q + 1;
6: }
7: return R;

}

Figure 1.1: A simple C function returning the modulo R of its arguments, with
some precondition on the arguments A and B.

ACSL specification language [Cuoq et al., 2012], stating that it is al-
ways called with positive values for A and B.

The most straightforward way to model the function behavior is to
consider execution traces: we execute the function step by step (where
each step is a simple assignment or test) and record, at each step, the
current program location and the value of each variable in scope. In
our example, a program state would have the form 〈l : a, b, q, r〉 where
l is the line number from Fig. 1.1 and a, b, q, r are, respectively, the
values of variables A, B, Q, R. The execution starting with A = 10
and B = 3 would give the following trace (where variables not yet in
scope are not shown in the state):

〈1 : 10, 3〉 → 〈2 : 10, 3, 0〉 → 〈3 : 10, 3, 0, 10〉
→ 〈4 : 10, 3, 0, 10〉 → 〈5 : 10, 3, 0, 7〉 → 〈6 : 10, 3, 1, 7〉
→ 〈4 : 10, 3, 1, 7〉 → 〈5 : 10, 3, 1, 4〉 → 〈6 : 10, 3, 2, 4〉
→ 〈4 : 10, 3, 2, 4〉 → 〈5 : 10, 3, 2, 1〉 → 〈6 : 10, 3, 3, 1〉 → 〈7 : 10, 3, 3, 1〉

i.e., the function returns 1, which is indeed the remainder of 10 by 3.
There are many such executions, one for each initial value of A

and B, but we can see intuitively that, in each of them, R and Q

remain positive. This information can be useful to a compiler (which
can then use unsigned types and arithmetic instead of signed ones) or
to a program verifier (e.g., if the result of the function is used in an
unsigned context).

Full text available at: http://dx.doi.org/10.1561/2500000034



6 Introduction

1.1.1 Sign Analysis

Our first static analysis attempts to establish rigorously the sign of
the variables. A naive method, which ensures that all possible program
behaviors are considered, is to effectively simulate every possible exe-
cution by running the program, and then collect the signs of variable
values along these executions. Naturally, this is not very efficient, and
we will construct a far more efficient method.

A key principle of Abstract Interpretation is replacing these actual,
so-called concrete, executions, with abstract ones. For a sign analysis,
we replace the concrete states mapping each variable to an integer
value with an abstract state mapping each variable to a sign. Program
instructions can then be interpreted in the world of signs by employing
well-known rules of signs, such as (≥ 0) + (≥ 0) = (≥ 0), i.e., positive
plus positive equals positive, etc. Starting from positive values of A and
B, one possible execution is:

〈1 : (≥0), (≥0)〉 → 〈2 : (≥0), (≥0), 0〉 → 〈3 : (≥0), (≥0), 0, (≥0)〉
→ 〈4 : (≥0), (≥0), 0, (≥0)〉 → 〈5 : (≥0), (≥0), 0,>〉
→ 〈6 : (≥0), (≥0), (≥0),>〉 → 〈4 : (≥0), (≥0), (≥0),>〉
→ 〈5 : (≥0), (≥0), (≥0),>〉 → 〈6 : (≥0), (≥0), (≥0),>〉
→ 〈7 : (≥0), (≥0), (≥0),>〉

where > indicates that the sign is unknown — the variable may be
positive or negative. Note that the value of Q, which is 0 when first
going through location 4, becomes (≥0) at the second passage, which
is expected as Q increases. Collecting the sign of the variables at each
program point, we can annotate the program from Fig. 1.1 with sign
information; the result is shown in Fig. 1.2. These annotations are in-
variants: the values of the variables in every concrete execution passing
through a given control location satisfy the sign property we provided
at this location.

Note that, at the end of the function, we have no information on
R (R = >) while, in fact, R is always positive. We can trace the
introduction of an uncertainty, >, to the computation, at line 4, of R
- B which, in the sign domain, gives (≥ 0) − (≥ 0) = >. Indeed, R -
B can only be proven to be positive if we know that R ≥ B, which is
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1.1. A First Static Analysis: Informal Presentation 7

//@requires A >= 0 && B >= 0;
int mod(int A, int B) {

1: HA = (≥0), B = (≥0) I
int Q = 0;

2: HA = (≥0), B = (≥0), Q = 0 I
int R = A;

3: HA = (≥0), B = (≥0), Q = 0, R = 0 I
while (R >= B) {

4: HA = (≥0), B = (≥0), Q = (≥0), R = (≥0) I
R = R - B;

5: HA = (≥0), B = (≥0), Q = (≥0), R = > I
Q = Q + 1;

6: HA = (≥0), B = (≥0), Q = (≥0), R = > I
}

7: HA = (≥0), B = (≥0), Q = (≥0), R = > I
return R;

}

Figure 1.2: Modulo function from Fig. 1.1 annotated with the result of a sign
analysis in comments.

not a sign information. So, while R = (≥0) is an invariant and a sign
property, it cannot be found by reasoning purely in the sign domain.
Failure to infer the best invariants expressible in the abstract world
is common in Abstract Interpretation and motivates the introduction
of more expressive domains, as we will do shortly. The reader familiar
with deductive methods will have guessed that this is related to the
fact that R = (≥0) is an invariant but not an inductive invariant. We
will discuss this connection in depth later.

Note also that the test R >= B is interpreted in the abstract as
> ≥ (≥ 0), which is inconclusive. This means that, while we chose,
in our abstract execution, to iterate the loop twice, longer executions
with more loop iterations are also valid. The program, in the abstract,
becomes non-deterministic. We argue, informally for now, that further
iterations will not bring any new possible sign values: we have reached a
fixpoint. Another key part of Abstract Interpretation is to know how to
precisely iterate loops in the abstract, and when to stop, to guarantee
that all possible program behaviors have been considered. It will be
discussed at length in this tutorial.

Full text available at: http://dx.doi.org/10.1561/2500000034



8 Introduction

//@requires A >= 0 && B >= 0;
int mod(int A, int B) {

1: HA ≥ 0, B ≥ 0 I
int Q = 0;

2: HA ≥ 0, B ≥ 0, Q = 0 I
int R = A;

3: HA ≥ 0, B ≥ 0, Q = 0, R = A I
while (R >= B) {

4: HA ≥ 0, B ≥ 0, Q ≥ 0, R ≥ B I
R = R - B;

5: HA ≥ 0, B ≥ 0, Q ≥ 0, R ≥ 0 I
Q = Q + 1;

6: HA ≥ 0, B ≥ 0, Q ≥ 1, R ≥ 0 I
}

7: HA ≥ 0, B ≥ 0, Q ≥ 0, 0 ≤ R < B I
return R;

}

Figure 1.3: Modulo function from Fig. 1.1 annotated with the result of an affine
inequality analysis in comments. In red, we show the invariants that were not found
by the sign analysis of Fig. 1.2.

1.1.2 Affine Inequalities Analysis

The sign analysis we presented is one of the simplest and least expres-
sive static analysis there is. We illustrate the other end of the spectrum
with a static analysis able to infer affine inequalities between variables.
The invariants it computes on our modulo example are presented in
Fig. 1.3. Its principle remains the same: we propagate an abstract rep-
resentation of variable values through the program. However, it no
longer has the simple form of a map from variables to abstract values,
but is rather a conjunction of affine inequalities that delimit the set
of possible concrete states the program can be in. As a consequence,
the abstraction can represent relations, i.e., it is a relational analysis.
Geometrically, we obtain a polyhedron.

Program instructions can still be applied on polyhedra. For in-
stance, an assignment Q = Q + 1 is modeled as a translation, while
a test R >= B is modeled as adding an affine constraint. The exact al-
gorithms will be described in details in Sect. 5.3. They borrow heavily
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1.1. A First Static Analysis: Informal Presentation 9

A = 0; B = 0;
1: HA ∈ [0, 0], B ∈ [0, 0] I

while
2: HA ∈ [0, 100], B ∈ [0,+∞] I

(A < 100) {
3: HA ∈ [0, 99], B ∈ [0,+∞] I

A = A + 1;
4: HA ∈ [1, 100], B ∈ [0,+∞] I

B = B + 1;
5: HA ∈ [1, 100], B ∈ [1,+∞] I

}
6: HA ∈ [100, 100], B ∈ [0,+∞] I

iteration A B
1 [0, 0] [0, 0]
2 [0, 1] [0, 1]
3 [0, 2] [0, 2]

. . . . . .
100 [0, 99] [0, 99]
101 [0, 100] [0, 100]
102 [0, 100] [0, 101]
103 [0, 100] [0, 102]

(a) (b)

Figure 1.4: Interval analysis of a simple loop (a) and the detailed iteration for
location 2 (b).

from the classic mathematical theory of convex polyhedra. We can see,
in Fig. 1.3, that the analysis is now able to exactly represent R ≥ B,
and can thus deduce that R remains positive, which was not possible
in the sign analysis.

1.1.3 Iterations

To illustrate more clearly the need to iterate loops in the abstract, we
consider the simple loop in Fig. 1.4.(a) that increments A and B from
0 to 100. The program is annotated with invariants computed in yet
another abstraction, intervals, which infers variable bounds: a lower
bound and an upper bound. This popular abstraction will be discussed
at length in Sect. 4.5. We can easily compute the abstract effect of
instructions using interval arithmetic. For instance, A = A + 1 adds 1
to both the lower and the upper bounds of A.

Program location 2 in Fig. 1.4.(a) is the location reached just before
testing the condition A < 100 a first time to determine whether to enter
the loop at all, and reached again after each loop iteration before testing
the condition to determine whether to reenter the loop body for a new
iteration. The corresponding invariant is called a loop invariant, and
provides a convenient summary of the behavior of the loop. A classic
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10 Introduction

execution would have, for A at location 2, the sequence of values: 0, 1,
2, . . . , 100. The output of the analysis must, however, provide a single
interval for location 2 that takes into account all the reachable values.
Hence, the abstract semantics accumulates, at each iteration, every new
value with that of preceding iterations. This flavor of semantics, useful
for verification, is called a collecting semantics.

The iteration is shown in Fig. 1.4.(b). We observe that, for A, the
iteration stabilizes at [0, 100] after 101 iteration steps, allowing us to
deduce that A equals 100 when the program ends, after the loop exit
condition A >= 100. Such convergence is long. Another important con-
tribution of Abstract Interpretation is a set of convergence acceleration
methods, to construct more efficient analyses that use less iterations.

In some cases, the plain abstract iteration may not even converge.
This is the case for variable B in Fig. 1.4 as there is no test on B to
bound it. Convergence acceleration will ensure that, after a finite num-
ber of accelerated iterations, this behavior is detected and we output
the stable interval B ∈ [0,+∞].

1.1.4 Precision

As seen on the modulo example from Figs. 1.2–1.3, the result of a
static analysis depends on the abstract domain of interpretation, but
it will always represent an over-approximation of the set of possible
program states. More expressive abstractions generally lead to tighter
over-approximations, and so, more precise results.

Figure 1.5 illustrates this by showing a set of planar points (repre-
senting, e.g., a set of concrete program states over two variables) and
its best enclosing into a polyhedron (in the affine inequality domain), a
box (in the interval domain), and a quarter-plane (in the sign domain).
Polyhedra add less spurious states with respect to the concrete world,
but, as we will see, polyhedra algorithms are also more complex and
more costly, leading to a slower analysis. There is a tradeoff to reach
between precision and cost.
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affine inequalities intervals

signsconcrete  executions

Figure 1.5: A set of points abstracted using affine inequalities (dark polyhedron),
intervals (lighter rectangle) and signs (light quarter-plane).

1.1.5 Soundness

In the general sense, soundness states that whatever the properties
inferred by an analysis, they can be trusted to hold on actual program
executions. It is a very desirable property of formal methods, and one
we will always ensure in this tutorial.

In our case, we expect the analysis to output invariants. It must
thus contain at least all actual program states, but it may safely contain
more. Computing over-approximations is thus our soundness guarantee.
Considering over-approximations allows us to check rigorously so-called
safety correctness specifications, that is, specifications stating that the
set of reachable program states is included in a set of safe states —
in practice, this set is either specified by the user, through explicit
assertions, or specified implicitly by the language, such as the absence
of arithmetic overflow. The need for over-approximations is intuitive: if
the abstraction is included in the specification then, a forciori, the set
of actual executions is included in the specification. This is illustrated
in Fig. 1.6.(a).

If the abstract state computed does not satisfy the specification,
however, the analysis is inconclusive. Either the program is actually
flawed, or the program is correct but the abstraction over-approximates
its behavior too coarsely for the analysis to prove it. This last case,
called false alarm, is depicted in Fig. 1.6.(b). Handling this case requires
either some investigation of the alarm, either manually or employing
some other formal method, or running the analysis again with more
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S

P

A

S

P

A

S

P

A

precise analysis false alarm unsound analysis
A ⊆ S =⇒ P ⊆ S A 6⊆ S but P ⊆ S A ⊆ S but P 6⊆ S

(a) (b) (c)

Figure 1.6: Proving that a program P satisfies a safety specification S, i.e., that
P ⊆ S, using an abstraction A of P : (a) succeeds, (b) fails with a false alarm, and
(c) is not a possible configuration for a sound analysis.

precise abstractions. All the analyses we discus here are sound: the
case where the program does not satisfy its safety specification while
the analysis reports no specification violation, illustrated in Fig. 1.6.(c),
will never occur.

1.2 Scope and Applications

This tutorial focuses on sound static analysis based on Abstract Inter-
pretation in order to infer numeric invariants. For the sake of a pedagog-
ical presentation, we analyze a simple toy-language missing many fea-
tures from real-life languages, such as: functions, arrays, pointers, dy-
namic memory allocation, objects, exceptions, etc. We refer the reader
to other publications and tool presentations, such as [Bertrane et al.,
2015], to explain how to adapt the ideas presented here to the analy-
sis of real-life languages and software. Nevertheless, in this section, we
justify the interest of numeric invariants by showing analysis applica-
tions that are based on, or parameterized with, numeric abstractions.
As programs manipulate, at their core, numbers, it is natural to think
about numeric abstractions as a key component in most value-sensitive
program analyses.
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int delay[10], i;
i = 0;
while (1) {

〈 i ∈ [0, 9] 〉 int y = delay[i];
(a) 〈 i ∈ [0, 9] 〉 delay[i] = input();

〈 i+ 1 ∈ [−231, 231 − 1] 〉 i = i + 1;
if (i >= 10) i = 0;

}

int delay[10], i;
i = 0;

H i = 0 I while (1) {
H i ∈ [0, 9] I int y = delay[i];

(b) H i ∈ [0, 9] I delay[i] = input();
H i ∈ [0, 9] I i = i + 1;

H i ∈ [1, 10] I if (i >= 10) i = 0;
}

Figure 1.7: A C-like program manipulating an array annotated with: (a), correct-
ness verification conditions implied by the language; and (b), invariants inferred by
an interval static analysis.

1.2.1 Safety Verification

Figure 1.7.(a) gives an example program together with the verifica-
tion conditions it must satisfy at various program locations in order
to be free from arithmetic overflows and out-of-bound array accesses.
These conditions can be derived easily and purely mechanically from
the syntax of the program, and they have a purely numeric form.

Figure 1.7.(b) shows the invariants inferred at these points by a
static analysis based on intervals. The invariants clearly imply the veri-
fication conditions. Hence, the program is free from the errors we target.
As we have employed an interval analysis, and the verification condi-
tions can be expressed exactly as intervals, checking the conditions can
be done without leaving the abstract world of intervals.

1.2.2 Pointer Analysis

Numeric invariants are not only useful to analyze numeric variables,
but also any variable with a numeric aspect. Consider the program in
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float* p = q;
for (i = 0; i < 10; i++)

if (...) p++;

unsigned offp = offq;
for (i = 0; i < 10; i++)

if (...) offp += 4;
H off q ≤ off p ≤ off q + 4 i+ 4 I

(a) (b)

Figure 1.8: A C-like program manipulating a pointer p (a) and its translation into
a numeric program manipulating its offset off p (b). Program (b) also shows the
numeric invariants inferred on off p.

Fig. 1.8.(a) employing pointer arithmetic on a pointer p to traverse
data in a loop. We can view a pointer value as a pair composed of
a variable, and a numeric offset counting a number of bytes from the
first byte of the variable — offset 0. Pointer arithmetic will only operate
on the offset part, and in a way similar to integer arithmetic. We can
transform this program into a purely numeric program operating on
synthetic offset variables, such as off p, instead of pointers, as shown
in Fig. 1.8.(b). We can then apply a standard numeric static analysis
to infer numeric invariants on offsets. On the example of Fig. 1.8.(b),
an affine inequalities analysis would find a relation between the pointer
offset and the loop counter i.

Some information about pointer alignment, namely the fact that
the offset is a multiple of 4, is missing, because it cannot be repre-
sented using affine inequalities. We will see, in Sect. 4.8, a congruence
abstraction that solves this issue. In fact, each inference problem, for
each required property can be solved by designing some adapted ab-
straction. Finally, note that, in practice, a numeric analysis is combined
with a non-numeric points-to analysis [Balakrishnan and Reps, 2004,
Miné, 2006b] that infers the first component of pointer values, i.e., the
identity of the variables the pointers may point into.

Another, related class of analyses is that of C strings, for instance
the analyses by Dor et al. [2001] or by Simon and King [2002]. In this
case, a string buffer and a pointer into such a buffer are translated into
purely numeric synthetic variables. In addition to offset variables, we
need to insert instrumentation variables tracking the position of the
first occurrence of the null character (i.e., the string length) and the
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cell *x, *head = NULL;
for (i = 0; i < n; i++) {

x = alloc();
x->next = head; head = x;

}
for (i = 0, x = head; x; x = x->next, i++) {

H ∀k ∈ [0, i− 1] : a[k] = head(->next)k->data I
a[i] = x->data;

}
H ∀k ∈ [0, n− 1] : a[k] = head(->next)k->data I

Figure 1.9: A C-like program manipulating a linked list and an array, annotated
with non-uniform invariants stating a relation between the contents of the array at
position k and the list at the same position k.

number of bytes available until the end of the buffer. We also need to
modify the program to update them. Using a relational analysis, such
as affine inequalities, allows inferring non-trivial relationships, such as
a relation between the lengths of the strings used as arguments and
return in a string concatenation function such as strcat.

1.2.3 Shape Analysis

Beyond pointer analyses, shape analyses are a sophisticated family of
analyses targeting programs with dynamic memory allocation and re-
cursive data-structures, such as lists or trees. Such analyses also ben-
efit from instrumenting numeric quantities to discuss about, for in-
stance, list length or tree height. Additionally, a non-uniform anal-
ysis, as proposed by Venet [2004], is able to express properties that
distinguish between different instances of a recursive data-structure.
Figure 1.9 presents an application to the allocation of a linked list fol-
lowed by a copy from an array into the list. The loop invariant states
that, at loop step i, the k−th element of the linked list, pointed to by
head(->next)k->data, equals a[k]. This very symbolic logic predicate is
complemented by the numeric invariant 0 ≤ k ≤ i− 1, which restricts
the predicate to elements at indices up to i. This numeric invariant can
be inferred using the numeric abstractions presented in this tutorial.

Full text available at: http://dx.doi.org/10.1561/2500000034



16 Introduction

cost = 0;
for (i = 0; i < n-1; i++) {

H cost = i× n− i× (i+ 1)/2 I
for (j = i+1; j < n; j++) {

H cost = i× (n− i)× (i+ 1)/2 + j − i− 1 I
if (tab[i] > tab[j]) swap(tab[i],tab[j]);
cost = cost+1;

}
}
H cost = (n+ 1)× (n− 2)/2 I

Figure 1.10: A sorting algorithm, with an instrumentation variable, cost, added
to help compute the time complexity.

1.2.4 Cost Analysis

Numeric invariants do not necessarily refer to quantitative information
on the memory state, but can also refer to quantitative information
about execution traces, such as their length. This provides some infor-
mation about the time complexity of the program. One prime example
is the Costa analyzer, introduced by Albert et al. [2007].

Figure 1.10 shows a very simple method for obtaining such a bound:
the program is instrumented with a synthetic variable, named cost,
which is incremented at each step. A numeric invariant analysis can
then be used to infer properties on cost, including an upper bound
which is symbolic in the arguments of the function, thanks to a re-
lational analysis. Note that the invariants here are far more complex
than those we encountered before as they are not affine, but polyno-
mial. In this tutorial, we will limit ourselves to affine invariants, which
are generally not sufficient for cost analyses, but are much simpler and
can be inferred more efficiently.

Another, related application is proving termination. Classic ter-
mination proofs require finding a decreasing ranking function that is
bounded below, and numeric properties can help with that [Urban and
Miné, 2014].
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x = input([−10, 10]) H x ∈ [−10, 10] I H⊥ I
if (x == 0) z = 0;
else { H x ∈ [−10, 10] I H x = 0 I

y = x; H x ∈ [−10, 10], y ∈ [−10, 10] I H y = 0 I
if (y < 0) y = -y; H x ∈ [−10, 10], y ∈ [0, 10]] I H y = 0 I
z = x / y; H division by zero I

}

(a) (b) (c)

Figure 1.11: A program (a); the result of a forward analysis (b); and the result of
a backward analysis assuming a division by zero (c).

1.2.5 Backward Analysis

We return to purely numeric properties and intervals to show another
flavor of analysis, which goes backward. Instead of inferring the value
of variables by propagating forward an abstract memory state from
the beginning of the program, an analysis can start from a program
point of interest and an abstract property on the memory state, and go
backward to derive necessary conditions so that the executions reach
the given program point satisfying the given abstract state property.
In fact, backward analysis is most often used in combination with a
preliminary forward analysis, to refine and focus its results. This scheme
is developed for instance by Bourdoncle [1993a].

Figure 1.11.(a) shows a simple C program that divides x by its
absolute value y = |x|. As the division is guarded by the test x ==
0, there is no division by zero. Figure 1.11.(b) annotates the program
with the result of an interval analysis, starting from x ∈ [−10, 10]. As
the interval domain cannot represent [−10, 10] \ {0}, it cannot exploit
the fact that x 6= 0, and so, y 6= 0, when the division x / y occurs.
The analysis outputs an alarm, which is actually a false alarm. To help
the user reason about this alarm, a backward analysis is performed
starting just before the error, at the division, with the erroneous state
y = 0. This state is propagated backward, in the interval domain. We
deduce, in particular, that x = 0 must hold just after the test x == 0
has returned false. Propagating backward one more step, the analysis
infers that there is no possible program state, denoted here as ⊥. In
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our case, the backward analysis has proved automatically that the error
is spurious. In more complex cases, the analysis would simply find a
restriction of the state space that would help the user, or another formal
method, decide whether the alarm is false or justified.

In the rest of the tutorial, all our examples concern forward analyses
to infer invariants. Nevertheless, backward analyses are very similar,
and require only a few additional operators.

1.3 Outline

This chapter provided an informal introduction to numeric invariant
inference and its applications. The rest of the tutorial will present in-
ference methods in a rigorous way, based on the theory of Abstract
Interpretation.

Chapter 2 presents the mathematical tools that will be needed in
our formal presentation, including a short course on Abstract Inter-
pretation. Chapter 3 presents our target programming language: a toy
language tailored to illustrate numeric invariants. It presents not only
the language syntax, but also its concrete semantics in a mathemati-
cal, unambiguous way. It then presents how abstractions can be applied
to derive an effective static analysis that is sound with respect to the
concrete world: we state the operators and hypotheses required on the
abstraction, and then develop an analysis that is fully parametric in
the choice of the abstraction. Chapters 4 and 5 present two families of
such abstractions: firstly, non-relational domains, including signs, con-
stants, intervals, and congruences; secondly, relational domains, includ-
ing affine equalities, affine inequalities, and weakly relational domains
(zones, octagons, and templates). Chapter 6 discusses abstract domain
combiners that improve the precision of existing domains: firstly, the
reduced product, a technique to combine two or more existing abstrac-
tions and design a more expressive analyzer in a modular way; secondly,
three methods that improve the precision of a given abstraction by al-
lowing it to express symbolic disjunctions (powerset completion, state
partitioning, and path partitioning). To close this tutorial, Chap. 7
provides concluding remarks.
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Naturally, we devote a large amount of time presenting the data-
structures and algorithms necessary to implement effectively these ab-
stractions in a static analyzer, and we discuss their relative merits in
terms of precision, cost, and expressiveness. Each chapter ends with
bibliographical notes recalling major articles the reader is invited to
consult to complete this necessarily superficial survey.

1.4 Further Resources

To end our introduction, we list additional resources available on-line
that can be used as a complement to this tutorial.

For an informal introduction to Abstract Interpretation and links
to selected technical resources — including articles, slides, and video
presentations — we refer the reader to Patrick Cousot’s web-page.1

This tutorial is based on several Master-level courses, at École Nor-
male Supérieure, Paris 6, and Paris 7 Universities in France.2 A pro-
gramming project focusing on the development, in OCaml, of a simple
static analyzer for numeric properties on a toy-language, not unlike
the language studied here, is also available.3 We also refer the reader
to Master-level courses by Patrick Cousot at MIT4 and at Marktober-
dorf Summer School.5

Implementations of numeric static analyses are also available. The
Interproc analyzer6 is a simple, open-source numeric analyzer on a
toy-language, for educational and scientific demonstration purposes. It
demonstrates the use of some of the abstract domains we will present
in this tutorial: intervals, linear equalities, linear inequalities, and oc-
tagons. It additionally features backward and modular inter-procedural
analyses, which we will not present formally here. Its most notable fea-
ture is that it can be used on-line, through a web interface. The Apron

1http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
2Course slides in English are available at: https://www-apr.lip6.fr/~mine/en

seignement/mpri/2016-2017/
3English version available at: https://www-apr.lip6.fr/~mine/enseignement

/l3/2015-2016/project
4http://web.mit.edu/16.399/www/
5http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml
6http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

Full text available at: http://dx.doi.org/10.1561/2500000034

http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
https://www-apr.lip6.fr/~mine/enseignement/mpri/2016-2017/
https://www-apr.lip6.fr/~mine/enseignement/mpri/2016-2017/
https://www-apr.lip6.fr/~mine/enseignement/l3/2015-2016/project
https://www-apr.lip6.fr/~mine/enseignement/l3/2015-2016/project
http://web.mit.edu/16.399/www/
http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi


20 Introduction

library7 [Jeannet and Miné, 2009], on which Interproc is based, is an
open-source library implementing classic numeric domains; it can be
used in static analysis projects. Industrial-strength commercial static
analyzers include the Astrée analyzer for C [Bertrane et al., 2010],
which was used to analyze the run-time errors in avionics software.
Evaluation versions are freely available from AbsInt.8 Julia9 is a com-
mercial static analyzer for Java. Frama-C10 [Cuoq et al., 2012] is an
open-source program analyzer for C incorporating Abstract Interpre-
tation.

7http://apron.cri.ensmp.fr/library/
8http://www.absint.com/astree
9https://www.juliasoft.com/

10https://frama-c.com/
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