
Tutorial on Static
Inference of Numeric
Invariants by Abstract

Interpretation

Antoine Miné
Sorbonne Universités, UPMC Univ. Paris 06, CNRS, LIP6

antoine.mine@lip6.fr

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2500000034

antoine.mine@lip6.fr

Foundations and Trends R© in
Programming Languages
Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

A. Miné. Tutorial on Static Inference of Numeric Invariants by Abstract
Interpretation. Foundations and TrendsR© in Programming Languages, vol. 4,
no. 3-4, pp. 120–372, 2017.

This Foundations and TrendsR© issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-386-7
c© 2017 A. Miné

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2500000034

Foundations and Trends R© in
Programming Languages
Volume 4, Issue 3-4, 2017

Editorial Board

Editor-in-Chief

Mooly Sagiv
Tel Aviv University
Israel

Editors

Martín Abadi
Google &
UC Santa Cruz
Anindya Banerjee
IMDEA
Patrick Cousot
ENS Paris & NYU
Oege De Moor
University of Oxford
Matthias Felleisen
Northeastern University
John Field
Google
Cormac Flanagan
UC Santa Cruz
Philippa Gardner
Imperial College
Andrew Gordon
Microsoft Research &
University of Edinburgh
Dan Grossman
University of Washington

Robert Harper
CMU
Tim Harris
Oracle
Fritz Henglein
University of Copenhagen
Rupak Majumdar
MPI-SWS & UCLA
Kenneth McMillan
Microsoft Research
J. Eliot B. Moss
UMass, Amherst
Andrew C. Myers
Cornell University
Hanne Riis Nielson
TU Denmark
Peter O’Hearn
UCL
Benjamin C. Pierce
UPenn
Andrew Pitts
University of Cambridge

Ganesan Ramalingam
Microsoft Research
Mooly Sagiv
Tel Aviv University
Davide Sangiorgi
University of Bologna
David Schmidt
Kansas State University
Peter Sewell
University of Cambridge
Scott Stoller
Stony Brook University
Peter Stuckey
University of Melbourne
Jan Vitek
Purdue University
Philip Wadler
University of Edinburgh
David Walker
Princeton University
Stephanie Weirich
UPenn

Full text available at: http://dx.doi.org/10.1561/2500000034

Editorial Scope

Topics

Foundations and Trends R© in Programming Languages publishes survey
and tutorial articles in the following topics:

• Abstract interpretation

• Compilation and
interpretation techniques

• Domain specific languages

• Formal semantics, including
lambda calculi, process calculi,
and process algebra

• Language paradigms

• Mechanical proof checking

• Memory management

• Partial evaluation

• Program logic

• Programming language
implementation

• Programming language
security

• Programming languages for
concurrency

• Programming languages for
parallelism

• Program synthesis

• Program transformations and
optimizations

• Program verification

• Runtime techniques for
programming languages

• Software model checking

• Static and dynamic program
analysis

• Type theory and type systems

Information for Librarians

Foundations and Trends R© in Programming Languages, 2017, Volume 4, 4
issues. ISSN paper version 2325-1107. ISSN online version 2325-1131. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2500000034

Foundations and TrendsR© in Programming Languages
Vol. 4, No. 3-4 (2017) 120–372
c© 2017 A. Miné
DOI: 10.1561/2500000034

Tutorial on Static Inference of Numeric
Invariants by Abstract Interpretation

Antoine Miné
Sorbonne Universités, UPMC Univ. Paris 06, CNRS, LIP6

antoine.mine@lip6.fr

Full text available at: http://dx.doi.org/10.1561/2500000034

antoine.mine@lip6.fr

Contents

1 Introduction 2
1.1 A First Static Analysis: Informal Presentation 4
1.2 Scope and Applications 12
1.3 Outline . 18
1.4 Further Resources . 19

2 Elements of Abstract Interpretation 21
2.1 Order Theory . 23
2.2 Fixpoints . 35
2.3 Approximations . 39
2.4 Summary . 55
2.5 Bibliographic Notes . 55

3 Language and Semantics 57
3.1 Syntax . 58
3.2 Atomic Statement Semantics 62
3.3 Denotational-Style Semantics 66
3.4 Equation-Based Semantics 72
3.5 Abstract Semantics . 76
3.6 Bibliographic Notes . 80

4 Non-Relational Abstract Domains 83

ii

Full text available at: http://dx.doi.org/10.1561/2500000034

iii

4.1 Value and State Abstractions 84
4.2 The Sign Domain . 91
4.3 The Constant Domain . 93
4.4 The Constant Set Domain 96
4.5 The Interval Domain . 99
4.6 Advanced Abstract Tests 104
4.7 Advanced Iteration Techniques 109
4.8 The Congruence Domain 121
4.9 The Cartesian Abstraction 125
4.10 Summary . 126
4.11 Bibliographic Notes . 127

5 Relational Abstract Domains 129
5.1 Motivation . 129
5.2 The Affine Equalities Domain (Karr’s Domain) 133
5.3 The Affine Inequalities Domain (Polyhedra Domain) 144
5.4 The Zone and Octagon Domains 165
5.5 The Template Domain 187
5.6 Summary . 191
5.7 Bibliographic Notes . 193

6 Domain Transformers 195
6.1 The Lattice of Abstractions 196
6.2 Product Domains . 199
6.3 Disjunctive Completions 211
6.4 Summary . 232
6.5 Bibliographic Notes . 233

7 Conclusion 235
7.1 Summary . 235
7.2 Principles . 236
7.3 Towards the Analysis of Realistic Programs 239

Acknowledgements 241

References 242

Full text available at: http://dx.doi.org/10.1561/2500000034

Abstract

Born in the late 70s, Abstract Interpretation has proven an effective
method to construct static analyzers. It has led to successful program
analysis tools routinely used in avionic, automotive, and space indus-
tries to help ensuring the correctness of mission-critical software.

This tutorial presents Abstract Interpretation and its use to create
static analyzers that infer numeric invariants on programs. We first
present the theoretical bases of Abstract Interpretation: how to assign
a well-defined formal semantics to programs, construct computable ap-
proximations to derive effective analyzers, and ensure soundness, i.e.,
any property derived by the analyzer is true of all actual executions —
although some properties may be missed due to approximations, a nec-
essary compromise to keep the analysis automatic, sound, and termi-
nating when inferring uncomputable properties. We describe the classic
numeric abstractions readily available to an analysis designer: intervals,
polyhedra, congruences, octagons, etc., as well as domain combiners:
the reduced product and various disjunctive completions. This tutorial
focuses not only on the semantic aspect, but also on the algorithmic
one, providing a description of the data-structures and algorithms nec-
essary to effectively implement all our abstractions. We will encounter
many trade-offs between cost on the one hand, and precision and ex-
pressiveness on the other hand. Invariant inference is formalized on an
idealized, toy-language, manipulating perfect numbers, but the princi-
ples and algorithms we present are effectively used in analyzers for real
industrial programs, although this is out of the scope of this tutorial.

This tutorial is intended as an entry course in Abstract Interpre-
tation, after which the reader should be ready to read the research
literature on current advances in Abstract Interpretation and on the
design of static analyzers for real languages.

A. Miné. Tutorial on Static Inference of Numeric Invariants by Abstract
Interpretation. Foundations and TrendsR© in Programming Languages, vol. 4,
no. 3-4, pp. 120–372, 2017.
DOI: 10.1561/2500000034.

Full text available at: http://dx.doi.org/10.1561/2500000034

1
Introduction

While software are naturally meant to be run on computers, they can
also be studied, manipulated, analyzed, either by hand or mechanically,
that is, by other computer programs. A common example is compila-
tion, which transforms programs in source code form into programs in
binary code suitable for direct interpretation by a processor — or by
a virtual machine, yet another program. This tutorial concerns static
analysis, a less common example of computer programs manipulating
other programs. A static analyzer is a program that takes as input a
program and outputs information about its possible behaviors, without
actually executing it.

In a broad sense, static analysis also covers syntactic analyses, that
search for predefined patterns, as well as code quality metrics, such as
counting the number of comments. However, we focus here on semantic-
based static analyses. These methods output program properties that
are provably correct with respect to a clear mathematical formalization
of program behaviors. Such a high level of confidence in the analysis
results is necessary in many applications, ranging from compiler op-
timization to program verification. One example property is that two
pointers never alias. If proved true, the property can be exploited by a

2

Full text available at: http://dx.doi.org/10.1561/2500000034

3

compiler to enable optimizations that would be incorrect in the pres-
ence of aliasing. Another example is finding bounds on array index ex-
pressions. This can be exploited in program verification to ensure that
a program is free from out-of-bound array accesses. For the correctness
proof to be valid, it is necessary to ensure that the inferred bounds
indeed encompass all possible index values computed in all possible
executions of the program.

Formal methods. The idea of reasoning with mathematical rigor
about programs dates back from the early days of computers [Tur-
ing, 1949] and lead to the rich field of formal methods with the pio-
neering work of Hoare [1969] and Floyd [1967] on program logic. The
lack of automation for writing and checking program proofs hindered
these early efforts. In fact, Turing famously proved the undecidability
of the halting problem, and Rice [1953] generalized this result, stating
that all non-trivial properties about programs are undecidable. Hence,
program verification cannot be fully automated. This fundamental lim-
itation can be sidestep in different ways, leading to the various flavors
of program verification methods used today. Cousot and Cousot [2010]
classify current formal methods into three categories, depending on
whether automation, generality, or completeness is abandoned:

• Deductive Methods, which inherit directly from the work of Hoare
[1969] and Floyd [1967], use interactive logic-based tools, includ-
ing proof assistants such as Coq [Bertot and Castéran, 2004] and
theorem provers such as PVS [Owre et al., 1992]. These tools are
largely mechanized, but rely ultimately on the user, to a varying
degree, to guide the proof.

• Model Checking, pioneered by Clarke et al. [1986], restricts pro-
gram verification problems to decidable fragments. Initially re-
stricted to finite models, it has since been generalized to infinite-
state but regular models by McMillan [1993] in symbolic model
checking. In practice, this often means that a model must be ex-
tracted, by hand, before the analysis can be performed. Alterna-
tively, software bounded model checkers, such as CBMC [Clarke

Full text available at: http://dx.doi.org/10.1561/2500000034

4 Introduction

et al., 2004], analyze programs in actual programming languages
such as C, but consider only a finite part of their executions.

• Static Analysis, studied in this tutorial, performs a direct analy-
sis of the original source code, considering all possible executions
and without user intervention, but resorts to approximations and
analyzes the program at some level of abstraction that forgets
about details that are, hopefully, irrelevant for the kind of prop-
erties checked. The abstraction is incomplete and can miss some
properties, resulting in false alarms, i.e., the program is correct
but the analyzer cannot prove it.

Abstract Interpretation. The theory of Abstract Interpretation, intro-
duced by Cousot and Cousot [1977], is a general theory of the approx-
imation of formal program semantics. It is an invaluable tool to prove
the correctness of a static analysis, as it makes it possible to express
mathematically the link between the output of a practical, approximate
analysis, and the original, uncomputable program semantics. Both are
seen as the same object, at different levels of abstraction. Additionally,
Abstract Interpretation makes it possible to derive, from the original
program semantics and a choice of abstraction, a static analysis that
is correct by construction. Finally, the notion of abstraction is a first
class citizen in Abstract Interpretation: abstractions can be manipu-
lated and combined, leading to modular designs for static analyses. In
this tutorial, we will design static analyses by Abstract Interpretation.

The rest of this chapter presents informally static analyses by Ab-
stract Interpretation in order to derive simple numeric properties on
the variables of a program.

1.1 A First Static Analysis: Informal Presentation

Let us consider, as first example, the program in Fig. 1.1. The mod
function takes two arguments, A and B, then computes in Q and R,
respectively, the integer dividend A/B and the remainder A%B, and
finally returns R. This very naive function is written in a C-like lan-
guage, and enriched with a //@requires annotation, written in the

Full text available at: http://dx.doi.org/10.1561/2500000034

1.1. A First Static Analysis: Informal Presentation 5

//@ requires A >= 0 && B >= 0;
int mod(int A, int B) {

1: int Q = 0;
2: int R = A;
3: while (R >= B) {
4: R = R - B;
5: Q = Q + 1;
6: }
7: return R;

}

Figure 1.1: A simple C function returning the modulo R of its arguments, with
some precondition on the arguments A and B.

ACSL specification language [Cuoq et al., 2012], stating that it is al-
ways called with positive values for A and B.

The most straightforward way to model the function behavior is to
consider execution traces: we execute the function step by step (where
each step is a simple assignment or test) and record, at each step, the
current program location and the value of each variable in scope. In
our example, a program state would have the form 〈l : a, b, q, r〉 where
l is the line number from Fig. 1.1 and a, b, q, r are, respectively, the
values of variables A, B, Q, R. The execution starting with A = 10
and B = 3 would give the following trace (where variables not yet in
scope are not shown in the state):

〈1 : 10, 3〉 → 〈2 : 10, 3, 0〉 → 〈3 : 10, 3, 0, 10〉
→ 〈4 : 10, 3, 0, 10〉 → 〈5 : 10, 3, 0, 7〉 → 〈6 : 10, 3, 1, 7〉
→ 〈4 : 10, 3, 1, 7〉 → 〈5 : 10, 3, 1, 4〉 → 〈6 : 10, 3, 2, 4〉
→ 〈4 : 10, 3, 2, 4〉 → 〈5 : 10, 3, 2, 1〉 → 〈6 : 10, 3, 3, 1〉 → 〈7 : 10, 3, 3, 1〉

i.e., the function returns 1, which is indeed the remainder of 10 by 3.
There are many such executions, one for each initial value of A

and B, but we can see intuitively that, in each of them, R and Q

remain positive. This information can be useful to a compiler (which
can then use unsigned types and arithmetic instead of signed ones) or
to a program verifier (e.g., if the result of the function is used in an
unsigned context).

Full text available at: http://dx.doi.org/10.1561/2500000034

6 Introduction

1.1.1 Sign Analysis

Our first static analysis attempts to establish rigorously the sign of
the variables. A naive method, which ensures that all possible program
behaviors are considered, is to effectively simulate every possible exe-
cution by running the program, and then collect the signs of variable
values along these executions. Naturally, this is not very efficient, and
we will construct a far more efficient method.

A key principle of Abstract Interpretation is replacing these actual,
so-called concrete, executions, with abstract ones. For a sign analysis,
we replace the concrete states mapping each variable to an integer
value with an abstract state mapping each variable to a sign. Program
instructions can then be interpreted in the world of signs by employing
well-known rules of signs, such as (≥ 0) + (≥ 0) = (≥ 0), i.e., positive
plus positive equals positive, etc. Starting from positive values of A and
B, one possible execution is:

〈1 : (≥0), (≥0)〉 → 〈2 : (≥0), (≥0), 0〉 → 〈3 : (≥0), (≥0), 0, (≥0)〉
→ 〈4 : (≥0), (≥0), 0, (≥0)〉 → 〈5 : (≥0), (≥0), 0,>〉
→ 〈6 : (≥0), (≥0), (≥0),>〉 → 〈4 : (≥0), (≥0), (≥0),>〉
→ 〈5 : (≥0), (≥0), (≥0),>〉 → 〈6 : (≥0), (≥0), (≥0),>〉
→ 〈7 : (≥0), (≥0), (≥0),>〉

where > indicates that the sign is unknown — the variable may be
positive or negative. Note that the value of Q, which is 0 when first
going through location 4, becomes (≥0) at the second passage, which
is expected as Q increases. Collecting the sign of the variables at each
program point, we can annotate the program from Fig. 1.1 with sign
information; the result is shown in Fig. 1.2. These annotations are in-
variants: the values of the variables in every concrete execution passing
through a given control location satisfy the sign property we provided
at this location.

Note that, at the end of the function, we have no information on
R (R = >) while, in fact, R is always positive. We can trace the
introduction of an uncertainty, >, to the computation, at line 4, of R
- B which, in the sign domain, gives (≥ 0) − (≥ 0) = >. Indeed, R -
B can only be proven to be positive if we know that R ≥ B, which is

Full text available at: http://dx.doi.org/10.1561/2500000034

1.1. A First Static Analysis: Informal Presentation 7

//@requires A >= 0 && B >= 0;
int mod(int A, int B) {

1: HA = (≥0), B = (≥0) I
int Q = 0;

2: HA = (≥0), B = (≥0), Q = 0 I
int R = A;

3: HA = (≥0), B = (≥0), Q = 0, R = 0 I
while (R >= B) {

4: HA = (≥0), B = (≥0), Q = (≥0), R = (≥0) I
R = R - B;

5: HA = (≥0), B = (≥0), Q = (≥0), R = > I
Q = Q + 1;

6: HA = (≥0), B = (≥0), Q = (≥0), R = > I
}

7: HA = (≥0), B = (≥0), Q = (≥0), R = > I
return R;

}

Figure 1.2: Modulo function from Fig. 1.1 annotated with the result of a sign
analysis in comments.

not a sign information. So, while R = (≥0) is an invariant and a sign
property, it cannot be found by reasoning purely in the sign domain.
Failure to infer the best invariants expressible in the abstract world
is common in Abstract Interpretation and motivates the introduction
of more expressive domains, as we will do shortly. The reader familiar
with deductive methods will have guessed that this is related to the
fact that R = (≥0) is an invariant but not an inductive invariant. We
will discuss this connection in depth later.

Note also that the test R >= B is interpreted in the abstract as
> ≥ (≥ 0), which is inconclusive. This means that, while we chose,
in our abstract execution, to iterate the loop twice, longer executions
with more loop iterations are also valid. The program, in the abstract,
becomes non-deterministic. We argue, informally for now, that further
iterations will not bring any new possible sign values: we have reached a
fixpoint. Another key part of Abstract Interpretation is to know how to
precisely iterate loops in the abstract, and when to stop, to guarantee
that all possible program behaviors have been considered. It will be
discussed at length in this tutorial.

Full text available at: http://dx.doi.org/10.1561/2500000034

8 Introduction

//@requires A >= 0 && B >= 0;
int mod(int A, int B) {

1: HA ≥ 0, B ≥ 0 I
int Q = 0;

2: HA ≥ 0, B ≥ 0, Q = 0 I
int R = A;

3: HA ≥ 0, B ≥ 0, Q = 0, R = A I
while (R >= B) {

4: HA ≥ 0, B ≥ 0, Q ≥ 0, R ≥ B I
R = R - B;

5: HA ≥ 0, B ≥ 0, Q ≥ 0, R ≥ 0 I
Q = Q + 1;

6: HA ≥ 0, B ≥ 0, Q ≥ 1, R ≥ 0 I
}

7: HA ≥ 0, B ≥ 0, Q ≥ 0, 0 ≤ R < B I
return R;

}

Figure 1.3: Modulo function from Fig. 1.1 annotated with the result of an affine
inequality analysis in comments. In red, we show the invariants that were not found
by the sign analysis of Fig. 1.2.

1.1.2 Affine Inequalities Analysis

The sign analysis we presented is one of the simplest and least expres-
sive static analysis there is. We illustrate the other end of the spectrum
with a static analysis able to infer affine inequalities between variables.
The invariants it computes on our modulo example are presented in
Fig. 1.3. Its principle remains the same: we propagate an abstract rep-
resentation of variable values through the program. However, it no
longer has the simple form of a map from variables to abstract values,
but is rather a conjunction of affine inequalities that delimit the set
of possible concrete states the program can be in. As a consequence,
the abstraction can represent relations, i.e., it is a relational analysis.
Geometrically, we obtain a polyhedron.

Program instructions can still be applied on polyhedra. For in-
stance, an assignment Q = Q + 1 is modeled as a translation, while
a test R >= B is modeled as adding an affine constraint. The exact al-
gorithms will be described in details in Sect. 5.3. They borrow heavily

Full text available at: http://dx.doi.org/10.1561/2500000034

1.1. A First Static Analysis: Informal Presentation 9

A = 0; B = 0;
1: HA ∈ [0, 0], B ∈ [0, 0] I

while
2: HA ∈ [0, 100], B ∈ [0,+∞] I

(A < 100) {
3: HA ∈ [0, 99], B ∈ [0,+∞] I

A = A + 1;
4: HA ∈ [1, 100], B ∈ [0,+∞] I

B = B + 1;
5: HA ∈ [1, 100], B ∈ [1,+∞] I

}
6: HA ∈ [100, 100], B ∈ [0,+∞] I

iteration A B
1 [0, 0] [0, 0]
2 [0, 1] [0, 1]
3 [0, 2] [0, 2]

.
100 [0, 99] [0, 99]
101 [0, 100] [0, 100]
102 [0, 100] [0, 101]
103 [0, 100] [0, 102]

(a) (b)

Figure 1.4: Interval analysis of a simple loop (a) and the detailed iteration for
location 2 (b).

from the classic mathematical theory of convex polyhedra. We can see,
in Fig. 1.3, that the analysis is now able to exactly represent R ≥ B,
and can thus deduce that R remains positive, which was not possible
in the sign analysis.

1.1.3 Iterations

To illustrate more clearly the need to iterate loops in the abstract, we
consider the simple loop in Fig. 1.4.(a) that increments A and B from
0 to 100. The program is annotated with invariants computed in yet
another abstraction, intervals, which infers variable bounds: a lower
bound and an upper bound. This popular abstraction will be discussed
at length in Sect. 4.5. We can easily compute the abstract effect of
instructions using interval arithmetic. For instance, A = A + 1 adds 1
to both the lower and the upper bounds of A.

Program location 2 in Fig. 1.4.(a) is the location reached just before
testing the condition A < 100 a first time to determine whether to enter
the loop at all, and reached again after each loop iteration before testing
the condition to determine whether to reenter the loop body for a new
iteration. The corresponding invariant is called a loop invariant, and
provides a convenient summary of the behavior of the loop. A classic

Full text available at: http://dx.doi.org/10.1561/2500000034

10 Introduction

execution would have, for A at location 2, the sequence of values: 0, 1,
2, . . . , 100. The output of the analysis must, however, provide a single
interval for location 2 that takes into account all the reachable values.
Hence, the abstract semantics accumulates, at each iteration, every new
value with that of preceding iterations. This flavor of semantics, useful
for verification, is called a collecting semantics.

The iteration is shown in Fig. 1.4.(b). We observe that, for A, the
iteration stabilizes at [0, 100] after 101 iteration steps, allowing us to
deduce that A equals 100 when the program ends, after the loop exit
condition A >= 100. Such convergence is long. Another important con-
tribution of Abstract Interpretation is a set of convergence acceleration
methods, to construct more efficient analyses that use less iterations.

In some cases, the plain abstract iteration may not even converge.
This is the case for variable B in Fig. 1.4 as there is no test on B to
bound it. Convergence acceleration will ensure that, after a finite num-
ber of accelerated iterations, this behavior is detected and we output
the stable interval B ∈ [0,+∞].

1.1.4 Precision

As seen on the modulo example from Figs. 1.2–1.3, the result of a
static analysis depends on the abstract domain of interpretation, but
it will always represent an over-approximation of the set of possible
program states. More expressive abstractions generally lead to tighter
over-approximations, and so, more precise results.

Figure 1.5 illustrates this by showing a set of planar points (repre-
senting, e.g., a set of concrete program states over two variables) and
its best enclosing into a polyhedron (in the affine inequality domain), a
box (in the interval domain), and a quarter-plane (in the sign domain).
Polyhedra add less spurious states with respect to the concrete world,
but, as we will see, polyhedra algorithms are also more complex and
more costly, leading to a slower analysis. There is a tradeoff to reach
between precision and cost.

Full text available at: http://dx.doi.org/10.1561/2500000034

1.1. A First Static Analysis: Informal Presentation 11

affine inequalities intervals

signsconcrete executions

Figure 1.5: A set of points abstracted using affine inequalities (dark polyhedron),
intervals (lighter rectangle) and signs (light quarter-plane).

1.1.5 Soundness

In the general sense, soundness states that whatever the properties
inferred by an analysis, they can be trusted to hold on actual program
executions. It is a very desirable property of formal methods, and one
we will always ensure in this tutorial.

In our case, we expect the analysis to output invariants. It must
thus contain at least all actual program states, but it may safely contain
more. Computing over-approximations is thus our soundness guarantee.
Considering over-approximations allows us to check rigorously so-called
safety correctness specifications, that is, specifications stating that the
set of reachable program states is included in a set of safe states —
in practice, this set is either specified by the user, through explicit
assertions, or specified implicitly by the language, such as the absence
of arithmetic overflow. The need for over-approximations is intuitive: if
the abstraction is included in the specification then, a forciori, the set
of actual executions is included in the specification. This is illustrated
in Fig. 1.6.(a).

If the abstract state computed does not satisfy the specification,
however, the analysis is inconclusive. Either the program is actually
flawed, or the program is correct but the abstraction over-approximates
its behavior too coarsely for the analysis to prove it. This last case,
called false alarm, is depicted in Fig. 1.6.(b). Handling this case requires
either some investigation of the alarm, either manually or employing
some other formal method, or running the analysis again with more

Full text available at: http://dx.doi.org/10.1561/2500000034

12 Introduction

S

P

A

S

P

A

S

P

A

precise analysis false alarm unsound analysis
A ⊆ S =⇒ P ⊆ S A 6⊆ S but P ⊆ S A ⊆ S but P 6⊆ S

(a) (b) (c)

Figure 1.6: Proving that a program P satisfies a safety specification S, i.e., that
P ⊆ S, using an abstraction A of P : (a) succeeds, (b) fails with a false alarm, and
(c) is not a possible configuration for a sound analysis.

precise abstractions. All the analyses we discus here are sound: the
case where the program does not satisfy its safety specification while
the analysis reports no specification violation, illustrated in Fig. 1.6.(c),
will never occur.

1.2 Scope and Applications

This tutorial focuses on sound static analysis based on Abstract Inter-
pretation in order to infer numeric invariants. For the sake of a pedagog-
ical presentation, we analyze a simple toy-language missing many fea-
tures from real-life languages, such as: functions, arrays, pointers, dy-
namic memory allocation, objects, exceptions, etc. We refer the reader
to other publications and tool presentations, such as [Bertrane et al.,
2015], to explain how to adapt the ideas presented here to the analy-
sis of real-life languages and software. Nevertheless, in this section, we
justify the interest of numeric invariants by showing analysis applica-
tions that are based on, or parameterized with, numeric abstractions.
As programs manipulate, at their core, numbers, it is natural to think
about numeric abstractions as a key component in most value-sensitive
program analyses.

Full text available at: http://dx.doi.org/10.1561/2500000034

1.2. Scope and Applications 13

int delay[10], i;
i = 0;
while (1) {

〈 i ∈ [0, 9] 〉 int y = delay[i];
(a) 〈 i ∈ [0, 9] 〉 delay[i] = input();

〈 i+ 1 ∈ [−231, 231 − 1] 〉 i = i + 1;
if (i >= 10) i = 0;

}

int delay[10], i;
i = 0;

H i = 0 I while (1) {
H i ∈ [0, 9] I int y = delay[i];

(b) H i ∈ [0, 9] I delay[i] = input();
H i ∈ [0, 9] I i = i + 1;

H i ∈ [1, 10] I if (i >= 10) i = 0;
}

Figure 1.7: A C-like program manipulating an array annotated with: (a), correct-
ness verification conditions implied by the language; and (b), invariants inferred by
an interval static analysis.

1.2.1 Safety Verification

Figure 1.7.(a) gives an example program together with the verifica-
tion conditions it must satisfy at various program locations in order
to be free from arithmetic overflows and out-of-bound array accesses.
These conditions can be derived easily and purely mechanically from
the syntax of the program, and they have a purely numeric form.

Figure 1.7.(b) shows the invariants inferred at these points by a
static analysis based on intervals. The invariants clearly imply the veri-
fication conditions. Hence, the program is free from the errors we target.
As we have employed an interval analysis, and the verification condi-
tions can be expressed exactly as intervals, checking the conditions can
be done without leaving the abstract world of intervals.

1.2.2 Pointer Analysis

Numeric invariants are not only useful to analyze numeric variables,
but also any variable with a numeric aspect. Consider the program in

Full text available at: http://dx.doi.org/10.1561/2500000034

14 Introduction

float* p = q;
for (i = 0; i < 10; i++)

if (...) p++;

unsigned offp = offq;
for (i = 0; i < 10; i++)

if (...) offp += 4;
H off q ≤ off p ≤ off q + 4 i+ 4 I

(a) (b)

Figure 1.8: A C-like program manipulating a pointer p (a) and its translation into
a numeric program manipulating its offset off p (b). Program (b) also shows the
numeric invariants inferred on off p.

Fig. 1.8.(a) employing pointer arithmetic on a pointer p to traverse
data in a loop. We can view a pointer value as a pair composed of
a variable, and a numeric offset counting a number of bytes from the
first byte of the variable — offset 0. Pointer arithmetic will only operate
on the offset part, and in a way similar to integer arithmetic. We can
transform this program into a purely numeric program operating on
synthetic offset variables, such as off p, instead of pointers, as shown
in Fig. 1.8.(b). We can then apply a standard numeric static analysis
to infer numeric invariants on offsets. On the example of Fig. 1.8.(b),
an affine inequalities analysis would find a relation between the pointer
offset and the loop counter i.

Some information about pointer alignment, namely the fact that
the offset is a multiple of 4, is missing, because it cannot be repre-
sented using affine inequalities. We will see, in Sect. 4.8, a congruence
abstraction that solves this issue. In fact, each inference problem, for
each required property can be solved by designing some adapted ab-
straction. Finally, note that, in practice, a numeric analysis is combined
with a non-numeric points-to analysis [Balakrishnan and Reps, 2004,
Miné, 2006b] that infers the first component of pointer values, i.e., the
identity of the variables the pointers may point into.

Another, related class of analyses is that of C strings, for instance
the analyses by Dor et al. [2001] or by Simon and King [2002]. In this
case, a string buffer and a pointer into such a buffer are translated into
purely numeric synthetic variables. In addition to offset variables, we
need to insert instrumentation variables tracking the position of the
first occurrence of the null character (i.e., the string length) and the

Full text available at: http://dx.doi.org/10.1561/2500000034

1.2. Scope and Applications 15

cell *x, *head = NULL;
for (i = 0; i < n; i++) {

x = alloc();
x->next = head; head = x;

}
for (i = 0, x = head; x; x = x->next, i++) {

H ∀k ∈ [0, i− 1] : a[k] = head(->next)k->data I
a[i] = x->data;

}
H ∀k ∈ [0, n− 1] : a[k] = head(->next)k->data I

Figure 1.9: A C-like program manipulating a linked list and an array, annotated
with non-uniform invariants stating a relation between the contents of the array at
position k and the list at the same position k.

number of bytes available until the end of the buffer. We also need to
modify the program to update them. Using a relational analysis, such
as affine inequalities, allows inferring non-trivial relationships, such as
a relation between the lengths of the strings used as arguments and
return in a string concatenation function such as strcat.

1.2.3 Shape Analysis

Beyond pointer analyses, shape analyses are a sophisticated family of
analyses targeting programs with dynamic memory allocation and re-
cursive data-structures, such as lists or trees. Such analyses also ben-
efit from instrumenting numeric quantities to discuss about, for in-
stance, list length or tree height. Additionally, a non-uniform anal-
ysis, as proposed by Venet [2004], is able to express properties that
distinguish between different instances of a recursive data-structure.
Figure 1.9 presents an application to the allocation of a linked list fol-
lowed by a copy from an array into the list. The loop invariant states
that, at loop step i, the k−th element of the linked list, pointed to by
head(->next)k->data, equals a[k]. This very symbolic logic predicate is
complemented by the numeric invariant 0 ≤ k ≤ i− 1, which restricts
the predicate to elements at indices up to i. This numeric invariant can
be inferred using the numeric abstractions presented in this tutorial.

Full text available at: http://dx.doi.org/10.1561/2500000034

16 Introduction

cost = 0;
for (i = 0; i < n-1; i++) {

H cost = i× n− i× (i+ 1)/2 I
for (j = i+1; j < n; j++) {

H cost = i× (n− i)× (i+ 1)/2 + j − i− 1 I
if (tab[i] > tab[j]) swap(tab[i],tab[j]);
cost = cost+1;

}
}
H cost = (n+ 1)× (n− 2)/2 I

Figure 1.10: A sorting algorithm, with an instrumentation variable, cost, added
to help compute the time complexity.

1.2.4 Cost Analysis

Numeric invariants do not necessarily refer to quantitative information
on the memory state, but can also refer to quantitative information
about execution traces, such as their length. This provides some infor-
mation about the time complexity of the program. One prime example
is the Costa analyzer, introduced by Albert et al. [2007].

Figure 1.10 shows a very simple method for obtaining such a bound:
the program is instrumented with a synthetic variable, named cost,
which is incremented at each step. A numeric invariant analysis can
then be used to infer properties on cost, including an upper bound
which is symbolic in the arguments of the function, thanks to a re-
lational analysis. Note that the invariants here are far more complex
than those we encountered before as they are not affine, but polyno-
mial. In this tutorial, we will limit ourselves to affine invariants, which
are generally not sufficient for cost analyses, but are much simpler and
can be inferred more efficiently.

Another, related application is proving termination. Classic ter-
mination proofs require finding a decreasing ranking function that is
bounded below, and numeric properties can help with that [Urban and
Miné, 2014].

Full text available at: http://dx.doi.org/10.1561/2500000034

1.2. Scope and Applications 17

x = input([−10, 10]) H x ∈ [−10, 10] I H⊥ I
if (x == 0) z = 0;
else { H x ∈ [−10, 10] I H x = 0 I

y = x; H x ∈ [−10, 10], y ∈ [−10, 10] I H y = 0 I
if (y < 0) y = -y; H x ∈ [−10, 10], y ∈ [0, 10]] I H y = 0 I
z = x / y; H division by zero I

}

(a) (b) (c)

Figure 1.11: A program (a); the result of a forward analysis (b); and the result of
a backward analysis assuming a division by zero (c).

1.2.5 Backward Analysis

We return to purely numeric properties and intervals to show another
flavor of analysis, which goes backward. Instead of inferring the value
of variables by propagating forward an abstract memory state from
the beginning of the program, an analysis can start from a program
point of interest and an abstract property on the memory state, and go
backward to derive necessary conditions so that the executions reach
the given program point satisfying the given abstract state property.
In fact, backward analysis is most often used in combination with a
preliminary forward analysis, to refine and focus its results. This scheme
is developed for instance by Bourdoncle [1993a].

Figure 1.11.(a) shows a simple C program that divides x by its
absolute value y = |x|. As the division is guarded by the test x ==
0, there is no division by zero. Figure 1.11.(b) annotates the program
with the result of an interval analysis, starting from x ∈ [−10, 10]. As
the interval domain cannot represent [−10, 10] \ {0}, it cannot exploit
the fact that x 6= 0, and so, y 6= 0, when the division x / y occurs.
The analysis outputs an alarm, which is actually a false alarm. To help
the user reason about this alarm, a backward analysis is performed
starting just before the error, at the division, with the erroneous state
y = 0. This state is propagated backward, in the interval domain. We
deduce, in particular, that x = 0 must hold just after the test x == 0
has returned false. Propagating backward one more step, the analysis
infers that there is no possible program state, denoted here as ⊥. In

Full text available at: http://dx.doi.org/10.1561/2500000034

18 Introduction

our case, the backward analysis has proved automatically that the error
is spurious. In more complex cases, the analysis would simply find a
restriction of the state space that would help the user, or another formal
method, decide whether the alarm is false or justified.

In the rest of the tutorial, all our examples concern forward analyses
to infer invariants. Nevertheless, backward analyses are very similar,
and require only a few additional operators.

1.3 Outline

This chapter provided an informal introduction to numeric invariant
inference and its applications. The rest of the tutorial will present in-
ference methods in a rigorous way, based on the theory of Abstract
Interpretation.

Chapter 2 presents the mathematical tools that will be needed in
our formal presentation, including a short course on Abstract Inter-
pretation. Chapter 3 presents our target programming language: a toy
language tailored to illustrate numeric invariants. It presents not only
the language syntax, but also its concrete semantics in a mathemati-
cal, unambiguous way. It then presents how abstractions can be applied
to derive an effective static analysis that is sound with respect to the
concrete world: we state the operators and hypotheses required on the
abstraction, and then develop an analysis that is fully parametric in
the choice of the abstraction. Chapters 4 and 5 present two families of
such abstractions: firstly, non-relational domains, including signs, con-
stants, intervals, and congruences; secondly, relational domains, includ-
ing affine equalities, affine inequalities, and weakly relational domains
(zones, octagons, and templates). Chapter 6 discusses abstract domain
combiners that improve the precision of existing domains: firstly, the
reduced product, a technique to combine two or more existing abstrac-
tions and design a more expressive analyzer in a modular way; secondly,
three methods that improve the precision of a given abstraction by al-
lowing it to express symbolic disjunctions (powerset completion, state
partitioning, and path partitioning). To close this tutorial, Chap. 7
provides concluding remarks.

Full text available at: http://dx.doi.org/10.1561/2500000034

1.4. Further Resources 19

Naturally, we devote a large amount of time presenting the data-
structures and algorithms necessary to implement effectively these ab-
stractions in a static analyzer, and we discuss their relative merits in
terms of precision, cost, and expressiveness. Each chapter ends with
bibliographical notes recalling major articles the reader is invited to
consult to complete this necessarily superficial survey.

1.4 Further Resources

To end our introduction, we list additional resources available on-line
that can be used as a complement to this tutorial.

For an informal introduction to Abstract Interpretation and links
to selected technical resources — including articles, slides, and video
presentations — we refer the reader to Patrick Cousot’s web-page.1

This tutorial is based on several Master-level courses, at École Nor-
male Supérieure, Paris 6, and Paris 7 Universities in France.2 A pro-
gramming project focusing on the development, in OCaml, of a simple
static analyzer for numeric properties on a toy-language, not unlike
the language studied here, is also available.3 We also refer the reader
to Master-level courses by Patrick Cousot at MIT4 and at Marktober-
dorf Summer School.5

Implementations of numeric static analyses are also available. The
Interproc analyzer6 is a simple, open-source numeric analyzer on a
toy-language, for educational and scientific demonstration purposes. It
demonstrates the use of some of the abstract domains we will present
in this tutorial: intervals, linear equalities, linear inequalities, and oc-
tagons. It additionally features backward and modular inter-procedural
analyses, which we will not present formally here. Its most notable fea-
ture is that it can be used on-line, through a web interface. The Apron

1http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
2Course slides in English are available at: https://www-apr.lip6.fr/~mine/en

seignement/mpri/2016-2017/
3English version available at: https://www-apr.lip6.fr/~mine/enseignement

/l3/2015-2016/project
4http://web.mit.edu/16.399/www/
5http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml
6http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

Full text available at: http://dx.doi.org/10.1561/2500000034

http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
https://www-apr.lip6.fr/~mine/enseignement/mpri/2016-2017/
https://www-apr.lip6.fr/~mine/enseignement/mpri/2016-2017/
https://www-apr.lip6.fr/~mine/enseignement/l3/2015-2016/project
https://www-apr.lip6.fr/~mine/enseignement/l3/2015-2016/project
http://web.mit.edu/16.399/www/
http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

20 Introduction

library7 [Jeannet and Miné, 2009], on which Interproc is based, is an
open-source library implementing classic numeric domains; it can be
used in static analysis projects. Industrial-strength commercial static
analyzers include the Astrée analyzer for C [Bertrane et al., 2010],
which was used to analyze the run-time errors in avionics software.
Evaluation versions are freely available from AbsInt.8 Julia9 is a com-
mercial static analyzer for Java. Frama-C10 [Cuoq et al., 2012] is an
open-source program analyzer for C incorporating Abstract Interpre-
tation.

7http://apron.cri.ensmp.fr/library/
8http://www.absint.com/astree
9https://www.juliasoft.com/

10https://frama-c.com/

Full text available at: http://dx.doi.org/10.1561/2500000034

http://apron.cri.ensmp.fr/library/
http://www.absint.com/astree
https://www.juliasoft.com/
https://frama-c.com/

References

E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of
Java bytecode. In Proc. of the 16th European Symposium on Programming,
LNCS, pages 157–172. Springer, 2007.

G. Amato and F. Scozzari. The abstract domain of parallelotopes. Electronic
Notes in Theoretical Computer Science, 287:17–28, 2012. Proceedings of
the Fourth International Workshop on Numerical and Symbolic Abstract
Domains, NSAD 2012.

C. Ancourt, F. Coelho, and F. Irigoin. A modular static analysis approach
to affine loop invariants detection. Electronic Notes in Theoretical Com-
puter Science, 267(1):3 – 16, 2010. Proceeding of the Second International
Workshop on Numerical and Symbolic Abstract Domains: NSAD 2010.

R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed con-
vex polyhedra and the Parma Polyhedra Library. In Static Analysis: Pro-
ceedings of the 9th International Symposium, volume 2477 of LNCS, pages
213–229. Springer, 2002.

R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset
domains. In Proc. of the 5h Int. Conf. on Verification, Model Checking, and
Abstract Interpretation (VMCAI’04), volume 2477 of LNCS, pages 135–148.
Springer, 2004.

R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators
for convex polyhedra. Science of Computer Programming, 58(1–2):28–56,
October 2005a.

243

Full text available at: http://dx.doi.org/10.1561/2500000034

244 References

R. Bagnara, E. Rodríguez-Carbonell, and E. Zaffanella. Generation of basic
semi-algebraic invariants using convex polyhedra. In Static Analysis: 12th
International Symposium, SAS 2005, pages 19–34. Springer, 2005b.

R. Bagnara, P. M. Hill, and E. Zaffanella. An improved tight closure algo-
rithm for integer octagonal constraints. In Verification, Model Checking
and Abstract Interpretation: Proceedings of the 9th International Confer-
ence (VMCAI 2008), volume 4905 of LNCS, pages 8–21. Springer, 2008a.

R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: To-
ward a complete set of numerical abstractions for the analysis and verifica-
tion of hardware and software systems. Science of Computer Programming,
72(1–2):3–21, 2008b.

R. Bagnara, P. M. Hill, and E. Zaffanella. Weakly-relational shapes for nu-
meric abstractions: Improved algorithms and proofs of correctness. Formal
Methods in System Design, 35(3):279–323, 2009.

R. Bagnara, P. M. Hill, and E. Zaffanella. Exact join detection for convex poly-
hedra and other numerical abstractions. Computational Geometry: Theory
and Applications, 43(5):453–473, 2010.

G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables.
In Proc. of the Int. Conf. on Compiler Construction (CC’04), number 2985
in LNCS, pages 5–23. Springer, 2004.

V. Balasundaram and K. Kennedy. A technique for summarizing data access
and its use in parallelism enhancing transformations. In ACM PLDI’89,
pages 41–53. ACM Press, 1989.

F. Banterle and R. Giacobazzi. A fast implementation of the octagon ab-
stract domain on graphics hardware. In Static Analysis: 14th International
Symposium, SAS 2007, Kongens Lyngby, Denmark, August 22-24, 2007.
Proceedings, pages 315–332. Springer, 2007.

C. Bartzis and T. Bultan. Efficient symbolic representations for arithmetic
constraints in verification. Int. J. Found. Comput. Sci., 14(4):605–624,
2003.

C. Bartzis and T. Bultan. Widening arithmetic automata. In Computer Aided
Verification, 16th International Conference, CAV, volume 3114 of LNCS,
pages 321–333. Springer, 2004.

F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revisiting hull
and box consistency. In Proc. of the 16th Int. Conf. on Logic Programming,
pages 230–244, 1999.

F. Benoy, A. King, and F. Mesnard. Computing convex hulls with a linear
solver. Theory and Practice of Logic Programming, 5(1–2):259–271, 2005.

Full text available at: http://dx.doi.org/10.1561/2500000034

References 245

Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Devel-
opment. Springer, 2004.

J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X.
Rival. Static analysis and verification of aerospace software by abstract
interpretation. In AIAA Infotech@Aerospace, number 2010-3385 in AIAA,
pages 1–38. AIAA (American Institute of Aeronautics and Astronautics),
April 2010.

J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and
X. Rival. Static analysis and verification of aerospace software by ab-
stract interpretation. Foundations and Trends in Programming Languages
(FnTPL), 2(2–3):71–190, 2015.

G. Birkhoff. Lattice theory. In Colloquium Publications, volume 25. Amer.
Math. Soc., 3. edition, 1967.

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.
Monniaux, and X. Rival. A static analyzer for large safety-critical software.
In Proc. of the ACM SIGPLAN Conf. on Programming Languages Design
and Implementation (PLDI’03), pages 196–207. ACM, June 2003.

M. Bouaziz. TreeKs: A functor to make numerical abstract domains scalable.
In 4th International Workshop on Numerical and Symbolic Abstract Do-
mains (NSAD 2012), volume 287, pages 41–52. Elsevier, September 2012.

F. Bourdoncle. Abstract interpretation by dynamic partitioning. J. Funct.
Program., 2(4):407–423, 1992.

F. Bourdoncle. Abstract debugging of higher-order imperative languages.
SIGPLAN Not., 28(6):46–55, June 1993a.

F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc.
of the Int. Conf. on Formal Methods in Programming and their Applications
(FMPA’93), volume 735 of LNCS, pages 128–141. Springer, June 1993b.

R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. on Computers, 35:677–691, 1986.

R. M. Burstall. Program proving as hand simulation with a little induction.
Information Processing, pages 308–312, 1974.

L. Chen, A. Miné, and P. Cousot. A sound floating-point polyhedra abstract
domain. In Proc. of the Sixth Asian Symp. on Programming Languages
and Systems (APLAS’08), volume 5356 of LNCS, pages 3–18. Springer,
December 2008.

L. Chen, A. Miné, J. Wang, and P. Cousot. Linear absolute value relation
analysis. In Proc. of the 20th European Symp. on Programming (ESOP’11),
volume 6602 of LNCS, pages 156–175. Springer, March 2011.

Full text available at: http://dx.doi.org/10.1561/2500000034

246 References

N. V. Chernikova. Algorithm for discovering the set of all the solutions of
a linear programming problem. USSR Computational Mathematics and
Mathematical Physics, 8(6):282 – 293, 1968.

C. K. Chiu and J. H. M. Lee. Efficient interval linear equality solving in con-
straint logic programming. Reliable Computing, 8(2):139–174, April 2002.

E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. on
Programming Languages and Systems, 8:244–263, 1986.

E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.
In In Tools and Algorithms for the Construction and Analysis of Systems,
pages 168–176. Springer, 2004.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, second edition, 2001.

A. Cortesi and M. Zanioli. Widening and narrowing operators for abstract
interpretation. Computer Languages, Systems & Structures, 37(1):24–42,
2011.

A. Cortesi, G. Filé, F. Ranzato, R. Giacobazzi, and C. Palamidessi. Comple-
mentation in abstract interpretation. ACM Trans. Program. Lang. Syst.,
19(1):7–47, January 1997.

A. Cortesi, G. Costantini, and P. Ferrara. A survey on product operators in
abstract interpretation. In Semantics, Abstract Interpretation, and Reason-
ing about Programs: Essays Dedicated to David A. Schmidt on the Occasion
of his Sixtieth Birthday, pages 325–336, 2013.

A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. A policy iter-
ation algorithm for computing fixed points in static analysis of programs.
In Computer Aided Verification: 17th International Conference, CAV 2005,
pages 462–475. Springer, 2005.

P. Cousot. Asynchronous iterative methods for solving a fixed point system of
monotone equations in a complete lattice. Res. rep. R.R. 88, Laboratoire
IMAG, Université scientifique et médicale de Grenoble, September 1977.
15 p.

P. Cousot. Semantic foundations of program analysis. In Program Flow
Analysis: Theory and Applications, chapter 10, pages 303–342. Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1981.

P. Cousot. Types as abstract interpretations, invited paper. In Conference
Record of the Twentyfourth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 316–331, Paris, France,
January 1997. ACM Press.

Full text available at: http://dx.doi.org/10.1561/2500000034

References 247

P. Cousot. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. Theoretical Computer Science, 277(1–
2):47–103, 2002.

P. Cousot. Abstracting induction by extrapolation and interpolation. In Ver-
ification, Model Checking, and Abstract Interpretation: 16th International
Conference, VMCAI 2015, pages 19–42. Springer, 2015.

P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In Proc. of the 2d Int. Symp. on Programming, pages 106–130.
Dunod, Paris, France, 1976.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In Proc. of the 4th ACM Symp. on Principles of Programming Languages
(POPL’77), pages 238–252. ACM, January 1977.

P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In Conf. Rec. of the 6th Annual ACM SIGPLAN-SIGACT Symp. on Prin-
ciples of Programming Languages (POPL’79), pages 269–282. ACM Press,
1979a.

P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theo-
rems. Pacific Journal of Mathematics, 81(1):43–57, 1979b.

P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation, invited paper. In
Proc. of the Int. Workshop on Programming Language Implementation
and Logic Programming (PLILP’92), volume 631 of LNCS, pages 269–295.
Springer, 1992a.

P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of
Logic and Computation, 2(4):511–547, August 1992b.

P. Cousot and R. Cousot. “à la Burstall” intermittent assertions induction
principles for proving inevitability properties of programs. Theoret. Com-
put. Sci., 120(1):123–155, 1993.

P. Cousot and R. Cousot. A gentle introduction to formal verification of
computer systems by abstract interpretation. In Logics and Languages for
Reliability and Security, NATO Science Series III: Computer and Systems
Sciences, pages 1–29. IOS Press, 2010.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Conf. Rec. of the 5th Annual
ACM SIGPLAN/SIGACT Symp. on Principles of Programming Languages
(POPL’78), pages 84–97. ACM, 1978.

Full text available at: http://dx.doi.org/10.1561/2500000034

248 References

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
Rival. Combination of abstractions in the Astrée static analyzer. In Proc.
of the 11th Annual Asian Computing Science Conf. (ASIAN’06), volume
4435 of LNCS, pages 272–300. Springer, December 2006.

P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. In Pnueli Festschrift, volume 6200 of LNCS, pages 72–95.
Springer, 2010.

R. Cousot. Reasoning about program invariance proof methods. Res. rep.
CRIN-80-P050, Centre de Recherche en Informatique de Nancy (CRIN),
Institut National Polytechnique de Lorraine, Nancy, France, July 1980.

P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B.
Yakobowski. Frama-C: A software analysis perspective. In Proc. of the
10th International Conference on Software Engineering and Formal Meth-
ods, SEFM’12, pages 233–247. Springer, 2012.

E. W. Dijkstra. Guarded commands, non-determinacy and formal derivation
of programs. Commun. ACM, 18(8):453–457, 1975.

N. Dor, M. Rodeh, and M. Sagiv. Cleanness checking of string manipulations
in C programs via integer analysis. In Static Analysis: 8th International
Symposium, SAS 2001 Paris, France, July 16–18, 2001 Proceedings, pages
194–212. Springer, 2001.

J. Feret. Static analysis of digital filters. In Proc. of the 13th European Symp.
on Programming (ESOP’04), volume 2986 of LNCS, pages 33–48. Springer,
March 2004.

J. Feret. The arithmetic-geometric progression abstract domain. In Proc. of
the 6th Int. Conf. on Verification, Model Checking, and Abstract Interpre-
tation (VMCAI’05), volume 3385 of LNCS, pages 42–58. Springer, January
2005.

G. Filé and F. Ranzato. The powerset operator on abstract interpretations.
Theoretical Computer Science, 222(1):77–111, 1999.

R. W. Floyd. Assigning meanings to programs. In Proc. of the American
Mathematical Society Symposia on Applied Mathematics, volume 19, pages
19–32, Providence, USA, 1967.

G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. In-
terval analysis and machine arithmetic: Why signedness ignorance is bliss.
ACM Trans. Program. Lang. Syst., 37(1):1:1–1:35, January 2015.

K. Ghorbal, E. Goubault, and S. Putot. The zonotope abstract domain Tay-
lor1+. In Proc. of the 21st Int. Conf. on Computer Aided Verification
(CAV’09), volume 5643 of LNCS, pages 627–633. Springer, June 2009.

Full text available at: http://dx.doi.org/10.1561/2500000034

References 249

R. Giacobazzi and F. Ranzato. Refining and compressing abstract domains.
In Automata, Languages and Programming: 24th International Colloquium,
ICALP ’97, pages 771–781. Springer, 1997.

R. Giacobazzi and F. Ranzato. Optimal domains for disjunctive abstract
interpretation. Science of Computer Programming, 32(1):177–210, 1998.

R. Giacobazzi and F. Scozzari. A logical model for relational abstract domains.
ACM Trans. Program. Lang. Syst., 20(5):1067–1109, September 1998.

R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations
complete. J. ACM, 47(2):361–416, March 2000.

P. Granger. Static analysis of arithmetic congruences. Int. Journal of Com-
puter Mathematics, 30:165–199, 1989.

P. Granger. Static analysis of linear congruence equalities among variables
of a program. In Proc. of the Int. Joint Conf. on Theory and Practice of
Soft. Development (TAPSOFT’91), volume 493 of LNCS, pages 169–192.
Springer, 1991.

P. Granger. Improving the results of static analyses of programs by local de-
creasing iterations. In Foundations of Software Technology and Theoretical
Computer Science: 12th Conference, pages 68–79. Springer, 1992.

P. Granger. Static analyses of congruence properties on rational numbers
(extended abstract). In Static Analysis: 4th International Symposium, SAS
’97, pages 278–292. Springer, 1997.

N. Halbwachs and J. Henry. When the decreasing sequence fails. In
Static Analysis: 19th International Symposium, SAS 2012, pages 198–213.
Springer, 2012.

M. Handjieva and S. Tzolovski. Refining static analyses by trace-based parti-
tioning using control flow. In Static Analysis: 5th International Symposium,
SAS’98, pages 200–214. Springer, 1998.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, October 1969.

ISO/IEC JTC1/SC22/WG14 working group. C standard. Technical Report
1124, ISO & IEC, 2007.

B. Jeannet. Dynamic partitioning in linear relation analysis: Application to
the verification of reactive systems. Formal Methods in System Design, 23
(1):5–37, July 2003.

Full text available at: http://dx.doi.org/10.1561/2500000034

250 References

B. Jeannet and A. Miné. Apron: A library of numerical abstract domains
for static analysis. In Proc. of the 21th Int. Conf. on Computer Aided
Verification (CAV’09), volume 5643 of LNCS, pages 661–667. Springer,
June 2009.

G. Kahn. Natural semantics. Technical Report 601, INRIA, 1987.
M. Karr. Affine relationships among variables of a program. Acta Inf., 6:

133–151, 1976.
G. Kildall. A unified approach to global program optimization. In Proc. of the

1st Annual ACM SIGACT-SIGPLAN Symp. on Principles of Programming
Languages (POPL’73), pages 194–206. ACM, 1973.

J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):
385–394, 1976.

S. C. Kleene. Introduction to metamathematics. Bibliotheca mathematica.
North-Holland Pub. Co., 1964.

S. Lang. Introduction to Linear Algebra. Undergraduate Texts in Mathemat-
ics. Springer, 1997.

H. LeVerge. A note on Chernikova’s algorithm. Technical Report 635, IRISA,
1992.

F. Logozzo and M. Fähndrich. Pentagons: A weakly relational abstract do-
main for the efficient validation of array accesses. Science of Computer
Programming, 75(9):796–807, 2010.

A. Maréchal, D. Monniaux, and M. Périn. Scalable minimizing-operators on
polyhedra via parametric linear programming. In Static Analysis - 24th
International Symposium, pages 212–231, 2017.

I. Mastroeni. Algebraic power analysis by abstract interpretation. Higher-
Order and Symbolic Computation, 17(4):297–345, December 2004.

L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation
based static analyzer. In Proc. of the 14th European Symp. on Programming
(ESOP’05), volume 3444 of LNCS, pages 5–20. Springer, April 2005.

K. McMillan. Symbolic Model Checking. Kluwer, 1993.
A. Miné. A new numerical abstract domain based on difference-bound ma-

trices. In Proc. of the Second Symposium on Programs as Data Objects
(PADO II), volume 2053 of LNCS, pages 155–172. Springer, May 2001.

A. Miné. Relational abstract domains for the detection of floating-point run-
time errors. In Proc. of the European Symp. on Programming (ESOP’04),
volume 2986 of LNCS, pages 3–17. Springer, March 2004.

Full text available at: http://dx.doi.org/10.1561/2500000034

References 251

A. Miné. The octagon abstract domain. Higher-Order and Symbolic Compu-
tation, 19(1):31–100, 2006a.

A. Miné. Field-sensitive value analysis of embedded C programs with
union types and pointer arithmetics. In Proc. of the ACM SIG-
PLAN/SIGBED Conf. on Languages, Compilers, and Tools for Embedded
Systems (LCTES’06), pages 54–63. ACM, June 2006b.

A. Miné. Abstract domains for bit-level machine integer and floating-point
operations. In Proc. of the 4th Int. Workshop on Invariant Generation
(WING’12), number HW-MACS-TR-0097 in EPiC Series in Computing,
page 16. Computer Science, School of Mathematical and Computer Science,
Heriot-Watt University, UK, June 2012.

R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs N. J., USA,
1966.

M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. In Proc. of the
14th European Symp. on Prog. (ESOP’05), volume 3444 of LNCS, pages
46–60. Springer, April 2005.

D. Nguyen Que. Robust and generic abstract domain for static program anal-
ysis: The polyhedral case. PhD thesis, École des Mines de Paris, 2010.

H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi. Design and implementation of
sparse global analyses for C-like languages. SIGPLAN Not., 47(6):229–238,
June 2012.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In Proc. of the 11th Int. Conf. on Automated Deduction (CADE’92), volume
607 of LNAI, pages 748–752. Springer, June 1992.

G. D. Plotkin. A structural approach to operational semantics, 1981.
W. Pugh. The Omega test: A fast and practical integer programming al-

gorithm for dependence analysis. Commun. of the ACM, 8:4–13, August
1992.

H. G. Rice. Classes of recursively enumerable sets and their decision problems.
Trans. Amer. Math. Soc., 74:358–366, 1953.

E. Rodríguez-Carbonell and D. Kapur. Automatic generation of polynomial
invariants of bounded degree using abstract interpretation. Science of Com-
puter Programming, 64(1):54 – 75, 2007.

S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear
systems using mathematical programming. In Proc. of the 6th Int. Conf.
on Verification, Model Checking, and Abstract Interpretation (VMCAI’05),
volume 3385 of LNCS, pages 21–47. Springer, 2005.

Full text available at: http://dx.doi.org/10.1561/2500000034

252 References

D. Schmidt. Abstract interpretation from a topological perspective. In
Static Analysis: 16th International Symposium, SAS 2009, pages 293–308.
Springer, 2009.

P. Schrammel and B. Jeannet. Logico-numerical abstract acceleration and
application to the verification of data-flow programs. In Static Analysis:
18th International Symposium, SAS 2011, pages 233–248. Springer, 2011.

A. Schrijver. Theory of linear and integer programming. John Wiley & Sons,
Inc., 1986.

D. Scott and C. Strachey. Towards a mathematical semantics for computer
languages. Technical Report PRG-6, Oxford U. Computing Lab, 1971.

Y. Seladji. Finding relevant templates via the principal component analysis.
In Verification, Model Checking, and Abstract Interpretation, VMCAI 2017,
pages 483–499. Springer, 2017.

A. Simon and A. King. Analyzing string buffers in C. In Proceedings of
the 9th International Conference on Algebraic Methodology and Software
Technology, AMAST ’02, pages 365–379. Springer, 2002.

A. Simon and A. King. Exploiting sparsity in polyhedral analysis. In Proc.
of the 12th Int. Symp. on Static Analysis (SAS’05), volume 3672 of LNCS,
pages 336–351. Springer, September 2005.

A. Simon and A. King. Taming the wrapping of integer arithmetic. In Proc.
of the 14th Int. Symp. on Static Analysis (SAS’07), volume 4634 of LNCS,
pages 121–136. Springer, August 2007.

A. Simon, A. King, and J. M. Howe. Two variables per linear inequality as
an abstract domain. In Proc. of the 12th Int. Conf. on Logic based program
synthesis and transformation (LOPSTR’02), volume 2664 of LNCS, pages
71–89. Springer, 2002.

G. Singh, M. Püschel, and M. Vechev. Fast polyhedra abstract domain. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 2017, pages 46–59. ACM, 2017.

A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–310, 1955.

A. Turing. Checking a large routine. In Report of a Conference on High Speed
Automatic Calculating Machines, pages 67–69. University Mathematical
Laboratory, 1949.

C. Urban and A. Miné. A decision tree abstract domain for proving conditional
termination. In Proc. of the 21st International Static Analysis Symposium
(SAS’14), volume 8373 of LNCS, pages 302–318. Springer, September 2014.

Full text available at: http://dx.doi.org/10.1561/2500000034

References 253

A. Venet. A scalable nonuniform pointer analysis for embedded programs.
In Proc. of the Int. Symp. on Static Analysis (SAS’04), number 3148 in
LNCS, pages 149–164. Springer, 2004.

Full text available at: http://dx.doi.org/10.1561/2500000034

	Introduction
	A First Static Analysis: Informal Presentation
	Scope and Applications
	Outline
	Further Resources

	Elements of Abstract Interpretation
	Order Theory
	Fixpoints
	Approximations
	Summary
	Bibliographic Notes

	Language and Semantics
	Syntax
	Atomic Statement Semantics
	Denotational-Style Semantics
	Equation-Based Semantics
	Abstract Semantics
	Bibliographic Notes

	Non-Relational Abstract Domains
	Value and State Abstractions
	The Sign Domain
	The Constant Domain
	The Constant Set Domain
	The Interval Domain
	Advanced Abstract Tests
	Advanced Iteration Techniques
	The Congruence Domain
	The Cartesian Abstraction
	Summary
	Bibliographic Notes

	Relational Abstract Domains
	Motivation
	The Affine Equalities Domain (Karr's Domain)
	The Affine Inequalities Domain (Polyhedra Domain)
	The Zone and Octagon Domains
	The Template Domain
	Summary
	Bibliographic Notes

	Domain Transformers
	The Lattice of Abstractions
	Product Domains
	Disjunctive Completions
	Summary
	Bibliographic Notes

	Conclusion
	Summary
	Principles
	Towards the Analysis of Realistic Programs

	Acknowledgements
	References

