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Abstract

A common application of generative programming is building high-
performance computational kernels highly tuned to the problem at
hand. A typical linear algebra kernel is specialized to the numerical
domain (rational, float, double, etc.), loop unrolling factors, array lay-
out and a priori knowledge (e.g., the matrix being positive definite).
It is tedious and error prone to specialize by hand, writing numerous
variations of the same algorithm.

The widely used generators such as ATLAS and SPIRAL reliably
produce highly tuned specialized code but are difficult to extend. In
ATLAS, which generates code using printf, even balancing parentheses
is a challenge. According to the ATLAS creator, debugging is night-
mare.

A typed staged programming language such as MetaOCaml lets us
state a general, obviously correct algorithm and add layers of special-
izations in a modular way. By ensuring that the generated code always
compiles and letting us quickly test it, MetaOCaml makes writing gen-
erators less daunting and more productive.

The readers will see it for themselves in this hands-on tutorial. As-
suming no prior knowledge of MetaOCaml and only a basic familiarity
with functional programming, we will eventually implement a simple
domain-specific language (DSL) for linear algebra, with layers of opti-
mizations for sparsity and memory layout of matrices and vectors, and
their algebraic properties. We will generate optimal BLAS kernels. We
shall get the taste of the “Abstraction without guilt”.

O. Kiselyov. Reconciling Abstraction with High Performance: A MetaOCaml
approach. Foundations and TrendsR© in Programming Languages, vol. 5, no. 1,
pp. 1–101, 2018.
DOI: 10.1561/2500000038.
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1
Introduction

1.1 Why metaprogramming?

Ever-present in all areas of programming is the agonizing trade-off
between, on one hand, the maintainable, reusable, easy to read and
understand, obviously correct, textbook code – and the code that
performs well. The trade-off is exacerbated in high-performance com-
puting (HPC). Coding the matrix-vector multiplication just as a ∗ v
is clear, portable, self-describing. On the other hand, the typical
high-performance code that multiplies an integer-valued matrix to an
integer-valued vector takes many, many lines and not at all self-evident.
It looks nothing like a ∗ v. It also looks nothing like the code that multi-
plies a single-precision floating-point matrix to a floating-point vector.
Which, in turn, bears scarcely any resemblance to the high-performance
code multiplying a sparse matrix to a vector.

Already at the end of the last century it was recognized that we
can no longer rely on optimizing compilers to turn the high-level code
to the high-performance code (see references in Cohen et al. (2006)):
many profitable optimizations are domain specific and often narrowly
applicable, and hence unlikely to be supported by a general-purpose
compiler. Even the simplest replacement 0∗e with 0 is not generally

2
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1.1. Why metaprogramming? 3

sound: think of e that calls external functions or returns NaN1. A do-
main expert, knowing the input data and the entire algorithm, could
tell that the side effects of e may be disregarded or NaNs do not occur –
hence the optimization should be carried out, for particular multipli-
cations in particular expressions.

It is cognitively and economically prohibitive for general-purpose
compilers to give programmers such minute level of control over opti-
mizations. It is very common therefore for experts to write the compu-
tational kernels by hand – and keep re-writing them to accommodate
new architectures or new patterns in the input data.

Metaprogramming – code generation specifically – promises a way
out: instead of a program we write a program generator, which incor-
porates domain-specific knowledge and outputs a number of low-level,
specialized, high-performance programs. This is the approach taken by
the widely known and used fast Fourier transformer generator FFTW
(Frigo and Johnson, 2005), basic linear algebra (BLAS) generator AT-
LAS (Whaley and Petitet, 2005), DSP and linear algebra generator
SPIRAL (Püschel et al., 2005), image filter generator Halide (Ragan-
Kelley et al., 2013).

The above projects also showed that writing a good generator is still
very difficult: it is worth a paper in a prestigious conference. For exam-
ple, ATLAS – which uses C to generate C code as strings – has been
notoriously difficult to write, debug and extend. We need help with
code-generating chores – provided by MetaOCaml, Lightweight Mod-
ular Staging in Scala (Rompf and Odersky, 2012) or Template Haskell
(Sheard and Peyton Jones, 2002). We need levels of abstractions.

Ideally, the end user would write the matrix-vector multiplication
generator just as a ∗ v. The (domain-specific) operation ∗ would be
implemented (perhaps by another programmer, an algorithm designer)
using the vocabulary of a different, ‘MapReduce’ domain:
let dot v1 v2 = reduce add zero (zip_with mul v1 v2)
let ( ∗ ) a v = map (dot v) a

The generators reduce, add, etc. are to be provided by some other do-

1In fact, OCaml before version 4.05 incorrectly performed this optimization:
https://github.com/ocaml/ocaml/pull/956.
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4 Introduction

main expert, a specialist in data layout. An expert in the domain over
which matrices and vectors are taken would supply a library of alge-
braic laws, to invoke to simplify scalar expressions. Eventually it comes
to MetaOCaml, to generate code in OCaml or (with offshoring) C or
LLVM. This ideal is attainable! In fact, by the end of the tutorial,
we shall implement exactly such layered domain-specific language for
simple linear algebra. Rompf et al. (2013) and the FEniCS project
(Markall et al., 2013) present more examples of such generator DSLs
built by composing progressively more detailed abstractions – and their
empirical evaluation.

All in all, we do let the end users write programs in the clearest
to them form in terms of the familiar domain vocabulary – and yet
obtain the high-performance code tuned to various domains. To use
Ken Kennedy’s phrase, metaprogramming gives us “Abstraction with-
out guilt”.

1.2 Why this tutorial?

The goal of the tutorial is to teach how to write typed code generators,
how to make them modular, and how to gradually introduce domain-
specific optimizations – with MetaOCaml. By the end of the tutorial
we will implement a simple domain-specific language (DSL) for linear
algebra, with layers of optimizations for the memory layout of matrices
and vectors, their sparsity and algebraic properties. We will generate
optimal Basic Linear Algebra (BLAS) kernels. Hopefully the readers
will see that writing generators is not too complicated and that (staged)
types are of great help.

The readers are not expected to know MetaOCaml but should be
somewhat familiar with a modern functional language. Even a brief
experience with a language in the ML family is a boon. However, Scala
or Haskell, etc., programmers should not feel left out.

The present tutorial is by and large a written record of a live tutorial
delivered on several occasions (first at CUFP – Commercial Users of
Functional Programming 2013). It inherits the hands-on style of those
tutorials, built around live coding, in interaction with the MetaOCaml

Full text available at: http://dx.doi.org/10.1561/2500000038



1.3. Why MetaOCaml? 5

and its type checker – and the audience. We will be developing code
piece-by-piece, by submitting small fragments to the MetaOCaml in-
terpreter; fixing the pointed out type problems; generating sample code
and testing it; noting the points of improvement and adjusting the gen-
erator as needed. The tutorial includes many exercises and homework
projects to work on alone or in groups.

1.3 Why MetaOCaml?

We will be using BER MetaOCaml (Kiselyov, 2017, 2014), which is a
complete re-implementation of the no longer available original MetaO-
Caml by Walid Taha, Cristiano Calcagno and collaborators (Calcagno
et al., 2003).

BER MetaOCaml is a conservative extension of OCaml for “writing
programs that generate programs”. BER MetaOCaml adds to OCaml
the type of code values (denoting “program code”, or future-stage com-
putations), and two basic constructs to build them: quoting and splic-
ing. The generated code can be printed, stored in a file – or compiled
and linked-back to the running program, thus implementing run-time
code optimization. MetaOCaml code without staging annotations, or
with the annotations erased, is regular OCaml.

MetaOCaml has been successfully used for the most optimal stream
fusion (Kiselyov et al., 2017), specializing numeric and dynamic pro-
gramming algorithms, building FFT kernels, compilers for an image
processing and database query DSLs, OCaml server pages, generating
families of specialized basic linear algebra and Gaussian Elimination
routines, and high-performance stencil computations (Aktemur et al.,
2013). See Lengauer and Taha (2006) for a collection of MetaOCaml
applications.

Writing code generators in a typed staged language like MetaO-
Caml benefits in several ways. First, the generated code will be well-
formed, with all parentheses matching. Such a guarantee is a dear wish
when writing C with printf (as done in ATLAS) or C++ with Matlab.
MetaOCaml makes sure that the generated code is well-typed and shall
compile without errors. There is no longer puzzling out a compilation
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6 Introduction

error in the generated code, which is typically large, obfuscated and
with unhelpful variable names. Mainly, code generation errors are re-
ported in terms of the generator rather than the generated code. The
tutorial will give many chances to see the importance of good error
reporting.

MetaOCaml generators are hygienic, producing well-scoped code,
with no unbound variables. Otherwise, hygiene violations are hard to
detect in practice and may lead to the devious error of unintention-
ally bound variables. Although the unbound variables in the generated
code stand out (when compiling it), determining what has caused them
proved to be highly non-trivial in practice, as reported by Ofenbeck
et al. (2016). The authors wrote a new compiler testing framework,
to specifically detect unbound variable and other such problems in-
troduced during refactoring of generators. MetaOCaml is designed to
prevent the generation of the problematic code in the first place.

Most importantly, MetaOCaml is typed. Types, staged types in
particular, really do help write the code. All throughout the tutorial
we will be writing code in live interaction with the type checker –
accepting type errors not as a punishment but as a valuable hint. We
shall see on many occasions that once we fix the type signature, the
generator practically writes itself. The type checker will tell us where
to put a staging annotation.

MetaOCaml is purely generative: the generated code is treated as
a black box and cannot be examined. One can put code together but
cannot take it apart. Pure generativity significantly simplifies the type
system and strengthens the static assurances. It may also seem that
pure generativity precludes code optimizations. Fortunately, that is not
the case, as shall soon see.

The staging annotations of MetaOCaml are like the “assembler”
instructions of metaprogramming. We need higher-level abstractions.
The final benefit of MetaOCaml – compared to the preprocessors like
camlp4 or ppx – is that it is part of OCaml itself, and hence can take
the full advantage of OCaml’s abstraction and combination facilities,
from higher-order functions to modules. Building optimization libraries
and composing generators is the stress of the tutorial.

Full text available at: http://dx.doi.org/10.1561/2500000038



1.4. Overview 7

1.4 Overview

The tutorial is based on the progression of problems, which, except the
introductory one, are all slightly simplified versions of real-life prob-
lems:

1. First steps in staging and MetaOCaml

2. Digital filters

3. Complex vector multiplication: varying data representation
(structure of arrays vs. array of structures)

4. Systematic optimization of simple linear algebra: building exten-
sively specialized general BLAS

5. From an interpreter to a compiler: DSL for image manipulation

6. Further challenges (Homework)

In fact, problems 3, 4 and 6 were suggested by HPC researchers as
challenges to program generation community (Shonan challenges). The
common theme is building high-performance computational kernels
highly tuned to the problem at hand. Hence most problems revolve
around simple linear algebra – a typical and most frequently executed
part in HPC.

The stress on high-performance applications and on modular op-
timizations and generators sets this tutorial apart from Taha’s very
accessible, gentle introductions to the ‘classical’ partial evaluation and
staging, focused on turning an interpreter of a generally higher-order
language into a compiler (Taha, 2004, 2008). We also get to see this
classical area in §6; however, we pay less attention to lambda-calculus
and more to image processing. Furthermore, this tutorial mentions re-
cent additions to MetaOCaml such as offshoring and let-insertion.

The source code for the tutorial is available as a supplement: §8.

Full text available at: http://dx.doi.org/10.1561/2500000038



8 Introduction

1.5 Obtaining MetaOCaml

The tutorial needs at least BER MetaOCaml N104, which is available
from OPAM

opam update
opam switch 4.04.0+BER # or a later version
eval ‘opam config env‘

The MetaOCaml web page http://okmij.org/ftp/ML/
MetaOCaml.html talks in depth about the design, implementa-
tion and history of MetaOCaml. It also shows other ways of installing
it.
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