
From Fine- to
Coarse-Grained Dynamic
Information Flow Control

and Back

Full text available at: http://dx.doi.org/10.1561/2500000046

Other titles in Foundations and Trends® in Programming Languages

Probabilistic Trace and Testing Semantics: The Importance of Being
Coherent
Marco Bernardo
ISBN: 978-1-63828-074-3

Introduction to Neural Network Verification
Aws Albarghouthi
ISBN: 978-1-68083-910-4

Refinement Types: A Tutorial
Ranjit Jhala and Niki Vazou
ISBN: 978-1-68083-884-8

Shape Analysis
Bor-Yuh Evan Chang, Cezara Drăgoi, Roman Manevich, Noam Rinet-
zky and Xavier Rival
ISBN: 978-1-68083-732-2

Progress of Concurrent Objects
Hongjin Liang and Xinyu Feng
ISBN: 978-1-68083-672-1

QED at Large: A Survey of Engineering of Formally Verified
Software
Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric and
Zachary Tatlock
ISBN: 978-1-68083-594-6

Full text available at: http://dx.doi.org/10.1561/2500000046

From Fine- to Coarse-Grained
Dynamic Information Flow Control

and Back
A Tutorial on Dynamic Information Flow

Marco Vassena
Utrecht University

m.vassena@uu.nl

Alejandro Russo
Chalmers University of Technology

russo@chalmers.se

Deepak Garg
Max Planck Institute for Software Systems

dg@mpi-sws.org

Vineet Rajani
University of Kent

v.rajani@kent.ac.uk

Deian Stefan
University of California, San Diego

deian@cs.ucsd.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2500000046

Foundations and Trends® in Programming Lan-
guages

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

M. Vassena et al.. From Fine- to Coarse-Grained Dynamic Information Flow Control
and Back. Foundations and Trends® in Programming Languages, vol. 8, no. 1, pp. 1–
117, 2023.

ISBN: 978-1-63828-219-8
© 2023 M. Vassena et al.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2500000046

Foundations and Trends® in Programming
Languages

Volume 8, Issue 1, 2023
Editorial Board

Editor-in-Chief
Rupak Majumdari
Max Planck Institute for Software Systems

Editors

Martín Abadi
Google and UC Santa
Cruz

Anindya Banerjee
IMDEA Software Instituet

Patrick Cousot
ENS, Paris and NYU

Oege De Moor
University of Oxford

Matthias Felleisen
Northeastern University

John Field
Google

Cormac Flanagan
UC Santa Cruz

Philippa Gardner
Imperial College

Andrew Gordon
Microsoft Research and
University of Edinburgh

Dan Grossman
University of Washington

Robert Harper
CMU

Tim Harris
Amazon

Fritz Henglein
University of Copenhagen

Rupak Majumdar
MPI and UCLA

Kenneth McMillan
Microsoft Research

J. Eliot B. Moss
University of
Massachusetts, Amherst

Andrew C. Myers
Cornell University

Hanne Riis Nielson
Technical University of
Denmark

Peter O’Hearni
University College London

Benjamin C. Pierce
University of Pennsylvania

Andrew Pittsi
University of Cambridge

Ganesan Ramalingami
Microsoft Research

Mooly Sagiv
Tel Aviv University

Davide Sangiorgi
University of Bologna

David Schmidt
Kansas State University

Peter Sewell
University of Cambridge

Scott Stoller
Stony Brook University

Peter Stuckey
University of Melbourne

Jan Vitek
Northeastern University

Philip Wadler
University of Edinburgh

David Walker
Princeton University

Stephanie Weirich
University of Pennsylvania

Full text available at: http://dx.doi.org/10.1561/2500000046

Editorial Scope
Topics

Foundations and Trends® in Programming Languages publishes survey and
tutorial articles in the following topics:

• Abstract Interpretation
• Compilation and Interpretation

Techniques
• Domain Specific Languages
• Formal Semantics, including

Lambda Calculi, Process
Calculi, and Process Algebra

• Language Paradigms
• Mechanical Proof Checking
• Memory Management
• Partial Evaluation
• Program Logic
• Programming Language

Implementation
• Programming Language

Security

• Programming Languages for
Concurrency

• Programming Languages for
Parallelism

• Program Synthesis

• Program Transformations and
Optimizations

• Program Verification

• Runtime Techniques for
Programming Languages

• Software Model Checking

• Static and Dynamic Program
Analysis

• Type Theory and Type
Systems

Information for Librarians

Foundations and Trends® in Programming Languages, 2023, Volume 8,
4 issues. ISSN paper version 2325-1107. ISSN online version 2325-1131.
Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2500000046

Contents

1 Introduction 3

2 Fine-Grained IFC Calculus 8
2.1 Dynamics . 10
2.2 Security . 16
2.3 Flow-Sensitive References 23

3 Coarse-Grained IFC Calculus 42
3.1 Dynamics . 44
3.2 Security . 50
3.3 Flow-Sensitive References 56

4 Verified Artifacts 67
4.1 Artifact Analysis . 68

5 Fine- to Coarse-Grained Program Translation 72
5.1 Types and Values . 72
5.2 Expressions . 73
5.3 References . 78
5.4 Correctness . 79
5.5 Recovery of Non-Interference 80

Full text available at: http://dx.doi.org/10.1561/2500000046

6 Coarse- to Fine-Grained Program Translation 84
6.1 Types and Values . 85
6.2 Expressions and Thunks 87
6.3 References . 89
6.4 Cross-Language Equivalence Relation 90
6.5 Correctness . 94
6.6 Recovery of Non-Interference 96

7 Related work 100
7.1 Relative Expressiveness of IFC Systems 100
7.2 Coarse-Grained Dynamic IFC 102
7.3 Fine-Grained Dynamic IFC 103
7.4 Label Introspection and Flow-Sensitive References 104
7.5 Proof Techniques . 104

8 Conclusion 107

References 108

Full text available at: http://dx.doi.org/10.1561/2500000046

From Fine- to Coarse-Grained
Dynamic Information Flow Control
and Back
Marco Vassena1, Alejandro Russo2, Deepak Garg3, Vineet Rajani4 and
Deian Stefan5

1Utrecht University, The Netherlands; m.vassena@uu.nl
2Chalmers University of Technology, Sweden; russo@chalmers.se
3Max Planck Institute for Software Systems, Germany; dg@mpi-sws.org
4University of Kent, UK; v.rajani@kent.ac.uk
5University of California, San Diego, USA; deian@cs.ucsd.edu

ABSTRACT

This tutorial provides a complete and homogeneous account
of the latest advances in fine- and coarse-grained dynamic
information-flow control (IFC) security. Since the 1970s, the
programming language and the operating system commu-
nities proposed different IFC approaches. IFC operating
systems track information flows in a coarse-grained fash-
ion, at the granularity of a process. In contrast, traditional
language-based approaches to IFC are fine-grained: they
track information flows at the granularity of program vari-
ables. For decades, researchers believed coarse-grained IFC
to be strictly less permissive than fine-grained IFC—coarse
grained IFC systems seem inherently less precise because
they track less information—–and so granularity appeared
to be a fundamental feature of IFC systems.

Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani and Deian Stefan
(2023), “From Fine- to Coarse-Grained Dynamic Information Flow Control and
Back”, Foundations and Trends® in Programming Languages: Vol. 8, No. 1, pp 1–117.
DOI: 10.1561/2500000046.
©2023 M. Vassena et al.

Full text available at: http://dx.doi.org/10.1561/2500000046

2

We show that the granularity of the tracking system does not
fundamentally restrict how precise or permissive dynamic
IFC systems can be. To this end, we mechanize two mostly
standard languages, one with a fine-grained dynamic IFC
system and the other with a coarse-grained dynamic IFC
system, and prove a semantics-preserving translation from
each language to the other. In addition, we derive the stan-
dard security property of non-interference of each language
from that of the other, via our verified translation.

These translations stand to have important implications on
the usability of IFC approaches. The coarse- to fine-grained
direction can be used to remove the label annotation burden
that fine-grained systems impose on developers, while the
fine- to coarse-grained translation shows that coarse-grained
systems—which are easier to design and implement—can
track information as precisely as fine-grained systems and
provides an algorithm for automatically retrofitting legacy
applications to run on existing coarse-grained systems.

Full text available at: http://dx.doi.org/10.1561/2500000046

1
Introduction

Dynamic information-flow control (IFC) is a principled approach to
protecting the confidentiality and integrity of data in software systems.
Conceptually, dynamic IFC systems are very simple—they associate
security levels or labels with every bit of data in the system to subse-
quently track and restrict the flow of labeled data throughout the system,
e.g., to enforce a security property such as non-interference (Goguen
and Meseguer, 1982). In practice, dynamic IFC implementations are
considerably more complex—the granularity of the tracking system
alone has important implications for the usage of IFC technology. In-
deed, until somewhat recently (Roy et al., 2009; Stefan et al., 2017),
granularity was the main distinguishing factor between dynamic IFC
operating systems and programming languages. Most IFC operating
systems (e.g., Efstathopoulos et al., 2005; Zeldovich et al., 2006; Krohn
et al., 2007) are coarse-grained, i.e., they track and enforce informa-
tion flow at the granularity of a process or thread. Conversely, most
programming languages with dynamic IFC (e.g., Austin and Flanagan,
2009; Zdancewic, 2002; Hedin et al., 2014; Hritcu et al., 2013; Yang
et al., 2012) track the flow of information in a more fine-grained fashion,
e.g., at the granularity of program variables and references.

3

Full text available at: http://dx.doi.org/10.1561/2500000046

4 Introduction

Dynamic coarse-grained IFC systems in the style of LIO (Stefan
et al., 2017; Stefan et al., 2011; Stefan et al., 2012; Heule et al., 2015;
Buiras et al., 2015; Vassena et al., 2017) have several advantages over dy-
namic fine-grained IFC systems. Such coarse-grained systems are often
easier to design and implement—they inherently track less information.
For example, LIO protects against control-flow-based implicit flows by
tracking information at a coarse-grained level—to branch on secrets,
LIO programs must first taint the context where secrets are going to
be observed. Finally, coarse-grained systems often require considerably
fewer programmer annotations—unlike fine-grained ones. More specifi-
cally, developers often only need a single label-annotation to protect
everything in the scope of a thread or process responsible to handle
sensitive data.

Unfortunately, these advantages of coarse-grained systems give up
on the many benefits of fine-grained ones. For instance, one main
drawback of coarse-grained systems is that it requires developers to
compartmentalize their application in order to avoid both false alarms
and the label creep problem, i.e., wherein the program gets too “tainted”
to do anything useful. To this end, coarse-grained systems often create
special abstractions (e.g., event processes (Efstathopoulos et al., 2005),
gates (Zeldovich et al., 2006), and security regions (Roy et al., 2009))
that compensate for the conservative approximations of the coarse-
grained tracking approach. Furthermore, fine-grained systems do not
impose the burden of focusing on avoiding the label creep problem on
developers. By tracking information at fine granularity, such systems
are seemingly more flexible and do not suffer from false alarms and label
creep issues (Austin and Flanagan, 2009) as coarse-grained systems do.
Indeed, fine-grained systems such as JSFlow (Hedin et al., 2014) can
often be used to secure existing, legacy applications; they only require
developers to properly annotate the application.

This tutorial removes the division between fine- and coarse-grained
dynamic IFC systems and the belief that they are fundamentally differ-
ent. In particular, we show that dynamic fine-grained and coarse-grained
IFC are equally expressive. Our work is inspired by the recent work
of Rajani et al. (2017) and Rajani and Garg (2018), who prove similar
results for static fine-grained and coarse-grained IFC systems. Specifi-

Full text available at: http://dx.doi.org/10.1561/2500000046

5

cally, they establish a semantics- and type-preserving translation from a
coarse-grained IFC type system to a fine-grained one and vice-versa. We
complete the picture by showing a similar result for dynamic IFC sys-
tems that additionally allow introspection on labels at run-time. While
label introspection is meaningless in a static IFC system, in a dynamic
IFC system this feature is key to both writing practical applications
and mitigating the label creep problem (Stefan et al., 2017).

Using the Agda proof assistant (Norell, 2009; Bove et al., 2009), we
formalize a traditional fine-grained system (in the style of Austin and
Flanagan, 2009) extended with label introspection primitives, as well
as a coarse-grained system (in the style of Stefan et al., 2017). We then
define and formalize modular semantics-preserving translations between
them. Our translations are macro-expressible in the sense of Felleisen
(1991), i.e., they can be expressed as a pure source program rewriting.

We show that a translation from fine- to coarse-grained is possible
when the coarse-grained system is equipped with a primitive that limits
the scope of tainting (e.g., when reading sensitive data). In practice,
this is not an imposing requirement since most coarse-grained systems
rely on such primitives for compartmentalization. For example, Stefan
et al. (2017) and Stefan et al. (2012), provide toLabeled(·) blocks and
threads for precisely this purpose. Dually, we show that the translation
from coarse- to fine-grained is possible when the fine-grained system has
a primitive taint(·) that relaxes precision to keep the program counter
label synchronized when translating a program to the coarse-grained
language. While this primitive is largely necessary for us to establish
the coarse- to fine-grained translation, extending existing fine-grained
systems with it is both secure and trivial.

The implications of our results are multi-fold. The fine- to coarse-
grained translation formally confirms an old OS-community hypothesis
that it is possible to restructure a system into smaller compartments
to address the label creep problem—indeed our translation is a (naive)
algorithm for doing so. This translation also allows running legacy
fine-grained IFC compatible applications atop coarse-grained systems
like LIO. Dually, the coarse- to fine-grained translation allows devel-
opers building new applications in a fine-grained system to avoid the
annotation burden of the fine-grained system by writing some of the

Full text available at: http://dx.doi.org/10.1561/2500000046

6 Introduction

code in the coarse-grained system and compiling it automatically to the
fine-grained system with our translation. The technical contributions of
this monograph are:

• A pair of semantics-preserving translations between traditional dy-
namic fine-grained and coarse-grained IFC systems equipped with
label introspection and flow-insensitive references (Theorems 5
and 7).

• Two different proofs of termination-insensitive non-interference
(TINI) for each calculus: one is derived directly in the usual way
(Theorems 1 and 3), while the other is recovered via our verified
translation (Theorems 6 and 8).

• Mechanized Agda proofs of our results (~4,000 LOC).

This monograph is based on our conference paper (Vassena et al.,
2019) and extended with:

• A tutorial-style introduction to fine- and coarse-grained dynamic
IFC, which (i) illustrates their specific features and (apparent)
differences through examples, and (ii) supplements our proof
artifacts with general explanations of the proof techniques used.

• Flow-sensitive references, a key feature for boosting the permis-
siveness of dynamic IFC systems (Austin and Flanagan, 2009). We
extend both fine- and coarse-grained language with flow-sensitive
references (Sections 2.3 and 3.3), adapt their security proofs (The-
orems 2 and 4), and the verified translations to each other.

• A discussion and analysis of our extended proof artifact (~6,900
LOC)1. Our analysis finds that the security proofs for fine-grained
languages are between 43% and 74% longer than for coarse-grained
languages. These empirical results suggests that it is indeed easier
to reason about coarse-grained IFC languages than fine-grained
languages.

1The extended artifact is available at https://hub.docker.com/r/marcovassena/
granularity-ftpl and supersedes the artifact archived with the conference paper.

Full text available at: http://dx.doi.org/10.1561/2500000046

https://hub.docker.com/r/marcovassena/granularity-ftpl
https://hub.docker.com/r/marcovassena/granularity-ftpl
https://hub.docker.com/r/marcovassena/granularity-ftpl
https://hub.docker.com/r/marcovassena/granularity-ftpl

7

This tutorial is organized as follows. Our dynamic fine- and coarse-
grained IFC calculi are introduced in Sections 2 and 3, and then ex-
tended with flow-sensitive references in Sections 2.3 and 3.3, respectively.
We prove the soundness guarantees (i.e., termination-insensitive non-
interference) of the original languages (Sections 2.2 and 3.2), and of the
extended languages (Sections 2.3.3 and 3.3.3). In Section 4, we discuss
our mechanized proof artifacts and compare the security proofs of the
two calculi, before and after the extension. In Section 5, we present the
fine- to coarse-grained translation and a proof of non-interference for
the fine-grained calculus recovered from non-interference of the other
calculus through our verified translation. Section 6 presents similar
results in the other direction. Related work is described in Section 7
and Section 8 concludes the tutorial.

Full text available at: http://dx.doi.org/10.1561/2500000046

References

Abadi, M., A. Banerjee, N. Heintze, and J. Riecke. (1999). “A Core
Calculus of Dependency”. In: Proc. ACM Symp. on Principles of
Programming Languages. 147–160.

Abel, A., G. Allais, A. Hameer, B. Pientka, A. Momigliano, S. Schäfer,
and K. Stark. (2019). “POPLMark reloaded: Mechanizing proofs by
logical relations”. Journal of Functional Programming. 29: e19. doi:
10.1017/S0956796819000170.

Ahmadpanah, M. M., D. Hedin, M. Balliu, L. E. Olsson, and A. Sabelfeld.
(2021). “SandTrap: Securing JavaScript-driven Trigger-Action Plat-
forms”. In: 30th USENIX Security Symposium (USENIX Security
21). USENIX Association. 2899–2916. url: https://www.usenix.org
/conference/usenixsecurity21/presentation/ahmadpanah.

Algehed, M. and J.-P. Bernardy. (2019). “Simple Noninterference from
Parametricity”. Proc. ACM Program. Lang. 3(ICFP). doi: 10.1145
/3341693.

Austin, T. H. and C. Flanagan. (2009). “Efficient Purely-Dynamic
Information Flow Analysis”. In: Proc. of the 9th ACM Workshop on
Programming Languages and Analysis for Security (PLAS ’09).

Austin, T. H. and C. Flanagan. (2010). “Permissive Dynamic Informa-
tion Flow Analysis”. In: Proc. of the 5th ACM SIGPLAN Workshop
on Programming Languages and Analysis for Security. PLAS ’10.

108

Full text available at: http://dx.doi.org/10.1561/2500000046

https://doi.org/10.1017/S0956796819000170
https://www.usenix.org/conference/usenixsecurity21/presentation/ahmadpanah
https://www.usenix.org/conference/usenixsecurity21/presentation/ahmadpanah
https://doi.org/10.1145/3341693
https://doi.org/10.1145/3341693

References 109

Austin, T. H. and C. Flanagan. (2012). “Multiple Facets for Dy-
namic Information Flow”. In: Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’12. Philadelphia, PA, USA: Association for Comput-
ing Machinery. 165–178. doi: 10.1145/2103656.2103677.

Austin, T. H., T. Schmitz, and C. Flanagan. (2017). “Multiple Facets for
Dynamic Information Flow with Exceptions”. ACM Trans. Program.
Lang. Syst. 39(3). doi: 10.1145/3024086.

Balliu, M., D. Schoepe, and A. Sabelfeld. (2017). “We Are Family:
Relating Information-Flow Trackers”. In: ESORICS.

Banerjee, A. and D. A. Naumann. (2005). “Stack-based access control
and secure information flow”. Journal Functional Programming.
15(2): 131–177.

Barthe, G., T. Rezk, and A. Basu. (2007). “Security Types Preserving
Compilation”. Computer Languages, Systems & Structures. 33(2):
35–59. doi: 10.1016/j.cl.2005.05.002.

Bastys, I., M. Balliu, and A. Sabelfeld. (2018). “If This Then What?
Controlling Flows in IoT Apps”. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security.
CCS ’18. Toronto, Canada: Association for Computing Machinery.
1102–1119. doi: 10.1145/3243734.3243841.

Bauer, L., S. Cai, L. Jia, T. Passaro, M. Stroucken, and Y. Tian. (2015).
“Run-time Monitoring and Formal Analysis of Information Flows in
Chromium”. In: Proc. of the 22nd Annual Network & Distributed
System Security Symposium. Internet Society.

Bell, E. D. and J. L. La Padula. (1976). “Secure computer system:
Unified exposition and Multics interpretation”. Bedford, MA. url:
http://csrc.nist.gov/publications/history/bell76.pdf.

Bichhawat, A., V. Rajani, D. Garg, and C. Hammer. (2014a). “Gener-
alizing Permissive-Upgrade in Dynamic Information Flow Analysis”.
In: Proceedings of the Ninth Workshop on Programming Languages
and Analysis for Security. PLAS’14. Uppsala, Sweden: Association
for Computing Machinery. 15–24. doi: 10.1145/2637113.2637116.

Full text available at: http://dx.doi.org/10.1561/2500000046

https://doi.org/10.1145/2103656.2103677
https://doi.org/10.1145/3024086
https://doi.org/10.1016/j.cl.2005.05.002
https://doi.org/10.1145/3243734.3243841
http://csrc.nist.gov/publications/history/bell76.pdf
https://doi.org/10.1145/2637113.2637116

110 References

Bichhawat, A., V. Rajani, D. Garg, and C. Hammer. (2014b). “Infor-
mation Flow Control in WebKit’s JavaScript Bytecode”. In: Inter-
national Conference on Principles of Security and Trust (POST).
159–178.

Bichhawat, A., V. Rajani, D. Garg, and C. Hammer. (2021). “Permissive
runtime information flow control in the presence of exceptions”.
Journal of Computer Security. 29: 361–401. doi: 10.3233/JCS-2113
85.

Bielova, N. and T. Rezk. (2016a). “A Taxonomy of Information Flow
Monitors”. In: Principles of Security and Trust. Ed. by F. Piessens
and L. Viganò. Berlin, Heidelberg: Springer Berlin Heidelberg. 46–
67.

Bielova, N. and T. Rezk. (2016b). “Spot the Difference: Secure Multi-
execution and Multiple Facets”. In: Computer Security – ESORICS
2016. Cham: Springer International Publishing. 501–519.

Birkedal, L., B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg,
and H. Yang. (2011). “Step-Indexed Kripke Models over Recur-
sive Worlds”. In: Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages.
POPL ’11. Austin, Texas, USA: Association for Computing Machin-
ery. 119–132. doi: 10.1145/1926385.1926401.

Bove, A., P. Dybjer, and U. Norell. (2009). “A Brief Overview of Agda –
A Functional Language with Dependent Types”. In: Theorem Prov-
ing in Higher Order Logics. Ed. by S. Berghofer, T. Nipkow, C.
Urban, and M. Wenzel. Berlin, Heidelberg: Springer Berlin Heidel-
berg. 73–78.

Bowman, W. J. and A. Ahmed. (2015). “Noninterference for Free”. In:
Proceedings of the 20th ACM SIGPLAN International Conference
on Functional Programming. ICFP 2015. Vancouver, BC, Canada:
Association for Computing Machinery. 101–113. doi: 10.1145/2784
731.2784733.

Broberg, N., B. van Delft, and D. Sands. (2013). “Paragon for Practical
Programming with Information-Flow Control”. In: Proc. of the 11th
Asian Symposium on Programming Languages and Systems. APLAS
’13. 217–232.

Full text available at: http://dx.doi.org/10.1561/2500000046

https://doi.org/10.3233/JCS-211385
https://doi.org/10.3233/JCS-211385
https://doi.org/10.1145/1926385.1926401
https://doi.org/10.1145/2784731.2784733
https://doi.org/10.1145/2784731.2784733

References 111

Buiras, P., D. Stefan, and A. Russo. (2014). “On Dynamic Flow-Sensitive
Floating-Label Systems”. In: Proc. of the 2014 IEEE 27th Computer
Security Foundations Symposium. CSF ’14. Washington, DC, USA:
IEEE Computer Society. 65–79. doi: 10.1109/CSF.2014.13.

Buiras, P., D. Vytiniotis, and A. Russo. (2015). “HLIO: Mixing Static
and Dynamic Typing for Information-Flow Control in Haskell”. In:
Proceedings of the 20th ACM SIGPLAN International Conference
on Functional Programming. ICFP 2015. Vancouver, BC, Canada:
Association for Computing Machinery. 289–301. doi: 10.1145/2784
731.2784758.

Cheng, W., D. R. Ports, D. Schultz, V. Popic, A. Blankstein, J. Cowling,
D. Curtis, L. Shrira, and B. Liskov. (2012). “Abstractions for Usable
Information Flow Control in Aeolus”. In: 2012 USENIX Annual
Technical Conference (USENIX ATC 12). Boston, MA: USENIX
Association. 139–151. url: https://www.usenix.org/conference/atc
12/technical-sessions/presentation/cheng.

Devriese, D. and F. Piessens. (2010). “Noninterference through Secure
Multi-execution”. In: Proc. of the 2010 IEEE Symposium on Security
and Privacy. SP ’10. IEEE Computer Society.

Efstathopoulos, P., M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazières, F. Kaashoek, and R. Morris. (2005). “Labels
and Event Processes in the Asbestos Operating System”. In: Proc.
of the 20th ACM symp. on Operating systems principles. SOSP ’05.

Felleisen, M. (1991). “On the Expressive Power of Programming Lan-
guages”. Sci. Comput. Program. 17(1-3): 35–75. doi: 10.1016/0167-
6423(91)90036-W.

Fernandes, E., J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A.
Prakash. (2016). “FlowFence: Practical Data Protection for Emerg-
ing IoT Application Frameworks”. In: USENIX Security Symposium.
531–548.

Giffin, D. B., A. Levy, D. Stefan, D. Terei, D. Mazières, J. C. Mitchell,
and A. Russo. (2012). “Hails: Protecting Data Privacy in Untrusted
Web Applications”. In: 10th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’12.

Full text available at: http://dx.doi.org/10.1561/2500000046

https://doi.org/10.1109/CSF.2014.13
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/2784731.2784758
https://www.usenix.org/conference/atc12/technical-sessions/presentation/cheng
https://www.usenix.org/conference/atc12/technical-sessions/presentation/cheng
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1016/0167-6423(91)90036-W

112 References

Goguen, J. and J. Meseguer. (1982). “Security Policies and Security
Models”. In: Proc. of IEEE Symposium on Security and Privacy.
IEEE Computer Society.

Gregersen, S. O., J. Bay, A. Timany, and L. Birkedal. (2021). “Mecha-
nized Logical Relations for Termination-Insensitive Noninterference”.
Proc. ACM Program. Lang. 5(POPL). doi: 10.1145/3434291.

Hedin, D., A. Birgisson, L. Bello, and A. Sabelfeld. (2014). “JSFlow:
Tracking Information Flow in JavaScript and its APIs”. In: Proc. of
the ACM Symposium on Applied Computing (SAC ’14).

Hedin, D. and D. Sands. (2006). “Noninterference in the presence of
non-opaque pointers”. In: Proc. of the 19th IEEE Computer Security
Foundations Workshop. IEEE Computer Society Press.

Hedin, D. and A. Sabelfeld. (2012). “Information-Flow Security for a
Core of JavaScript”. In: Proc. IEEE Computer Sec. Foundations
Symposium. IEEE Computer Society.

Heintze, N. and J. G. Riecke. (1998). “The SLam calculus: programming
with secrecy and integrity”. In: Proc. ACM Symp. on Principles of
Programming Languages. 365–377.

Heule, S., D. Stefan, E. Z. Yang, J. C. Mitchell, and A. Russo. (2015).
“IFC Inside: Retrofitting Languages with Dynamic Information Flow
Control”. In: Proc. of the Conference on Principles of Security and
Trust (POST ’15). Springer.

Hirsch, A. K. and E. Cecchetti. (2021). “Giving Semantics to Program-
Counter Labels via Secure Effects”. Proc. ACM Program. Lang.
5(POPL). doi: 10.1145/3434316.

Hritcu, C., M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett.
(2013). “All Your IFCException Are Belong to Us”. In: Proc. of the
2013 IEEE Symposium on Security and Privacy. SP ’13. Washington,
DC, USA: IEEE Computer Society. 3–17. doi: 10.1109/SP.2013.10.

Hunt, S. and D. Sands. (2006). “On flow-sensitive security types”. In:
Conference record of the 33rd ACM SIGPLAN-SIGACT Symp. on
Principles of programming languages. POPL ’06. Charleston, South
Carolina, USA: ACM. 79–90.

Jaskelioff, M. and A. Russo. (2011). “Secure Multi-execution in Haskell”.
In: Proc. Andrei Ershov International Conference on Perspectives
of System Informatics. LNCS. Springer-Verlag.

Full text available at: http://dx.doi.org/10.1561/2500000046

https://doi.org/10.1145/3434291
https://doi.org/10.1145/3434316
https://doi.org/10.1109/SP.2013.10

References 113

Jia, L., J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken, K. Fukushi-
ma, S. Kiyomoto, and Y. Miyake. (2013). “Run-Time Enforcement
of Information-Flow Properties on Android”. In: Proc. of the 18th
European Symposium on Research in Computer Security (ESORICS
’13). Springer.

Jung, R., R. Krebbers, J.-H. Jourdan, A. Bizjak, L. Birkedal, and D.
Dreyer. (2018). “Iris from the ground up: A modular foundation
for higher-order concurrent separation logic”. Journal of Functional
Programming. 28: e20. doi: 10.1017/S0956796818000151.

Kozyri, E., F. B. Schneider, A. Bedford, J. Desharnais, and N. Tawbi.
(2019). “Beyond Labels: Permissiveness for Dynamic Information
Flow Enforcement”. In: 2019 IEEE 32nd Computer Security Founda-
tions Symposium (CSF). 351–35115. doi: 10.1109/CSF.2019.00031.

Krohn, M., A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris. (2007). Information Flow Control for Standard OS
Abstractions. Stevenson, Washington, USA. doi: 10.1145/1294261.1
294293.

Myers, A. C., L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. (2006).
Jif 3.0: Java information flow. url: http://www.cs.cornell.edu/jif.

Nadkarni, A., B. Andow, W. Enck, and S. Jha. (2016). “Practical DIFC
Enforcement on Android.” In: USENIX Security Symposium. 1119–
1136.

Nikiforakis, N., L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna. (2012). “You Are What You
Include: Large-Scale Evaluation of Remote Javascript Inclusions”.
In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security. CCS ’12. Raleigh, North Carolina, USA:
Association for Computing Machinery. 736–747. doi: 10.1145/2382
196.2382274.

Norell, U. (2009). “Dependently Typed Programming in Agda”. In:
Advanced Functional Programming: 6th International School, AFP
2008, Heijen, The Netherlands, May 2008, Revised Lectures. Ed. by
P. Koopman, R. Plasmeijer, and D. Swierstra. Berlin, Heidelberg:
Springer Berlin Heidelberg. 230–266. doi: 10.1007/978-3-642-04652-
0_5.

Full text available at: http://dx.doi.org/10.1561/2500000046

https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1109/CSF.2019.00031
https://doi.org/10.1145/1294261.1294293
https://doi.org/10.1145/1294261.1294293
http://www.cs.cornell.edu/jif
https://doi.org/10.1145/2382196.2382274
https://doi.org/10.1145/2382196.2382274
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0_5

114 References

Pedersen, M. V. and S. Chong. (2019). “Programming with Flow-
Limited Authorization: Coarser is Better”. In: 2019 IEEE European
Symposium on Security and Privacy (EuroS&P). 63–78. doi: 10.110
9/EuroSP.2019.00015.

Pottier, F. and V. Simonet. (2003). “Information Flow Inference for
ML”. ACM Trans. Program. Lang. Syst. 25(1): 117–158. doi: 10.11
45/596980.596983.

Rajani, V., I. Bastys, W. Rafnsson, and D. Garg. (2017). “Type Systems
for Information Flow Control: The Question of Granularity”. ACM
SIGLOG News. 4(1): 6–21. doi: 10.1145/3051528.3051531.

Rajani, V., A. Bichhawat, D. Garg, and C. Hammer. (2015). “Infor-
mation Flow Control for Event Handling and the DOM in Web
Browsers”. In: 2015 IEEE 28th Computer Security Foundations
Symposium. 366–379. doi: 10.1109/CSF.2015.32.

Rajani, V. and D. Garg. (2018). “Types for Information Flow Control:
Labeling Granularity and Semantic Models”. In: Proc. of the IEEE
Computer Security Foundations Symp. CSF ’18. IEEE Computer
Society.

Roy, I., D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel.
(2009). “Laminar: Practical Fine-grained Decentralized Information
Flow Control”. In: Proc. of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI ’09.
Dublin, Ireland: ACM. 63–74. doi: 10.1145/1542476.1542484.

Russo, A. (2015). “Functional Pearl: Two Can Keep a Secret, if One
of Them Uses Haskell”. In: Proc. of the 20th ACM SIGPLAN In-
ternational Conference on Functional Programming. ICFP 2015.
ACM.

Russo, A., K. Claessen, and J. Hughes. (2009). “A library for light-weight
Information-Flow Security in Haskell”. ACM SIGPLAN Notices
(HASKELL ’08). 44(Jan.): 13. doi: 10.1145/1543134.1411289.

Russo, A. and A. Sabelfeld. (2010). “Dynamic vs. Static Flow-Sensitive
Security Analysis”. In: Proc. of the 2010 23rd IEEE Computer
Security Foundations Symp. CSF ’10. IEEE Computer Society. 186–
199.

Full text available at: http://dx.doi.org/10.1561/2500000046

https://doi.org/10.1109/EuroSP.2019.00015
https://doi.org/10.1109/EuroSP.2019.00015
https://doi.org/10.1145/596980.596983
https://doi.org/10.1145/596980.596983
https://doi.org/10.1145/3051528.3051531
https://doi.org/10.1109/CSF.2015.32
https://doi.org/10.1145/1542476.1542484
https://doi.org/10.1145/1543134.1411289

References 115

Sabelfeld, A. and A. Russo. (2009). “From dynamic to static and back:
Riding the roller coaster of information-flow control research”. In:
Proc. Andrei Ershov International Conference on Perspectives of
System Informatics (PSI ’09). LNCS. Springer-Verlag.

Sabelfeld, A. and A. C. Myers. (2006). “Language-based Information-
flow Security”. IEEE J.Sel. A. Commun. 21(1): 5–19. doi: 10.1109
/JSAC.2002.806121.

Sabelfeld, A. and D. Sands. (2001). “A Per Model of Secure Information
Flow in Sequential Programs”. Higher Order Symbol. Comput. 14(1):
59–91. doi: 10.1023/A:1011553200337.

Schmitz, T., M. Algehed, C. Flanagan, and A. Russo. (2018). “Faceted
Secure Multi Execution”. In: Proc. of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’18.
Toronto, Canada: ACM. 1617–1634. doi: 10.1145/3243734.3243806.

Stefan, D., A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D. Mazières.
(2012). “Addressing Covert Termination and Timing Channels in
Concurrent Information Flow Systems”. In: International Conference
on Functional Programming (ICFP). ACM SIGPLAN.

Stefan, D., A. Russo, D. Mazières, and J. C. Mitchell. (2017). “Flexible
Dynamic Information Flow Control in the Presence of Exceptions”.
Journal of Functional Programming. 27.

Stefan, D., A. Russo, J. C. Mitchell, and D. Mazières. (2011). “Flexible
Dynamic Information Flow Control in Haskell”. In: Proc. of the
4th ACM Symposium on Haskell. Haskell ’11. Tokyo, Japan: ACM.
95–106. doi: 10.1145/2034675.2034688.

Stefan, D., E. Z. Yang, P. Marchenko, A. Russo, D. Herman, B. Karp,
and D. Mazières. (2014). “Protecting Users by Confining JavaScript
with COWL”. In: Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation. OSDI’14. Broom-
field, CO: USENIX Association. 131–146. url: http://dl.acm.org/c
itation.cfm?id=2685048.2685060.

Full text available at: http://dx.doi.org/10.1561/2500000046

https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1023/A:1011553200337
https://doi.org/10.1145/3243734.3243806
https://doi.org/10.1145/2034675.2034688
http://dl.acm.org/citation.cfm?id=2685048.2685060
http://dl.acm.org/citation.cfm?id=2685048.2685060

116 References

Surbatovich, M., J. Aljuraidan, L. Bauer, A. Das, and L. Jia. (2017).
“Some Recipes Can Do More Than Spoil Your Appetite: Analyzing
the Security and Privacy Risks of IFTTT Recipes”. In: Proceedings
of the 26th International Conference on World Wide Web. WWW
’17. Perth, Australia: International World Wide Web Conferences
Steering Committee. 1501–1510. doi: 10.1145/3038912.3052709.

Tsai, T.-C., A. Russo, and J. Hughes. (2007). “A Library for Secure
Multi-threaded Information Flow in Haskell”. In: Proc. of the 20th
IEEE Computer Security Foundations Symposium (CSF’07). 187–
202. doi: 10.1109/CSF.2007.6.

Vassena, M. and A. Russo. (2016). “On Formalizing Information-Flow
Control Libraries”. In: Proc. of the 2016 ACM Workshop on Pro-
gramming Languages and Analysis for Security. PLAS ’16. Vienna,
Austria: ACM. 15–28. doi: 10.1145/2993600.2993608.

Vassena, M., A. Russo, P. Buiras, and L. Waye. (2017). “MAC A Verified
Static Information-Flow Control Library”. Journal of Logical and
Algebraic Methods in Programming. doi: https://doi.org/10.1016/j
.jlamp.2017.12.003.

Vassena, M., A. Russo, D. Garg, V. Rajani, and D. Stefan. (2019). “From
Fine- to Coarse-Grained Dynamic Information Flow Control and
Back”. Proc. ACM Program. Lang. 3(POPL). doi: 10.1145/3290389.

Volpano, D., G. Smith, and C. Irvine. (1996). “A Sound Type System
for Secure Flow Analysis”. J. Computer Security. 4(3): 167–187.

Volpano, D. and G. Smith. (1997). “Eliminating Covert Flows with Min-
imum Typings”. In: Proc. of the 10th IEEE workshop on Computer
Security Foundations. CSFW ’97. IEEE Computer Society.

Xiang, J. and S. Chong. (2021). “Co-Inflow: Coarse-grained Information
Flow Control for Java-like Languages”. In: Proceedings of the 2021
IEEE Symposium on Security and Privacy. Piscataway, NJ, USA:
IEEE Press.

Yang, J., K. Yessenov, and A. Solar-Lezama. (2012). “A Language for
Automatically Enforcing Privacy Policies”. In: Proc. of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. POPL ’12. Philadelphia, PA, USA: ACM.
85–96. doi: 10.1145/2103656.2103669.

Full text available at: http://dx.doi.org/10.1561/2500000046

https://doi.org/10.1145/3038912.3052709
https://doi.org/10.1109/CSF.2007.6
https://doi.org/10.1145/2993600.2993608
https://doi.org/https://doi.org/10.1016/j.jlamp.2017.12.003
https://doi.org/https://doi.org/10.1016/j.jlamp.2017.12.003
https://doi.org/10.1145/3290389
https://doi.org/10.1145/2103656.2103669

References 117

Yip, A., N. Narula, M. Krohn, and R. Morris. (2009). “Privacy-preser-
ving Browser-side Scripting with BFlow”. In: Proc. of the 4th ACM
European Conference on Computer Systems. EuroSys ’09. ACM.

Zdancewic, S. A. (2002). “Programming Languages for Information
Security”. PhD thesis. Ithaca, NY, USA.

Zeldovich, N., S. Boyd-Wickizer, E. Kohler, and D. Mazières. (2006).
“Making Information Flow Explicit in HiStar”. In: Proceedings of the
7th USENIX Symposium on Operating Systems Design and Imple-
mentation - Volume 7. OSDI ’06. Seattle, WA: USENIX Association.
19–19. url: http://dl.acm.org/citation.cfm?id=1267308.1267327.

Zeldovich, N., S. Boyd-Wickizer, and D. Mazières. (2008). “Securing
Distributed Systems with Information Flow Control”. In: Proceed-
ings of the 5th USENIX Symposium on Networked Systems Design
and Implementation. NSDI’08. San Francisco, California: USENIX
Association. 293–308. url: http://dl.acm.org/citation.cfm?id=1387
589.1387610.

Full text available at: http://dx.doi.org/10.1561/2500000046

http://dl.acm.org/citation.cfm?id=1267308.1267327
http://dl.acm.org/citation.cfm?id=1387589.1387610
http://dl.acm.org/citation.cfm?id=1387589.1387610

