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ABSTRACT

This tutorial provides a complete and homogeneous account
of the latest advances in fine- and coarse-grained dynamic
information-flow control (IFC) security. Since the 1970s, the
programming language and the operating system commu-
nities proposed different IFC approaches. IFC operating
systems track information flows in a coarse-grained fash-
ion, at the granularity of a process. In contrast, traditional
language-based approaches to IFC are fine-grained: they
track information flows at the granularity of program vari-
ables. For decades, researchers believed coarse-grained IFC
to be strictly less permissive than fine-grained IFC—coarse
grained IFC systems seem inherently less precise because
they track less information—–and so granularity appeared
to be a fundamental feature of IFC systems.

Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani and Deian Stefan
(2023), “From Fine- to Coarse-Grained Dynamic Information Flow Control and
Back”, Foundations and Trends® in Programming Languages: Vol. 8, No. 1, pp 1–117.
DOI: 10.1561/2500000046.
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We show that the granularity of the tracking system does not
fundamentally restrict how precise or permissive dynamic
IFC systems can be. To this end, we mechanize two mostly
standard languages, one with a fine-grained dynamic IFC
system and the other with a coarse-grained dynamic IFC
system, and prove a semantics-preserving translation from
each language to the other. In addition, we derive the stan-
dard security property of non-interference of each language
from that of the other, via our verified translation.

These translations stand to have important implications on
the usability of IFC approaches. The coarse- to fine-grained
direction can be used to remove the label annotation burden
that fine-grained systems impose on developers, while the
fine- to coarse-grained translation shows that coarse-grained
systems—which are easier to design and implement—can
track information as precisely as fine-grained systems and
provides an algorithm for automatically retrofitting legacy
applications to run on existing coarse-grained systems.
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1
Introduction

Dynamic information-flow control (IFC) is a principled approach to
protecting the confidentiality and integrity of data in software systems.
Conceptually, dynamic IFC systems are very simple—they associate
security levels or labels with every bit of data in the system to subse-
quently track and restrict the flow of labeled data throughout the system,
e.g., to enforce a security property such as non-interference (Goguen
and Meseguer, 1982). In practice, dynamic IFC implementations are
considerably more complex—the granularity of the tracking system
alone has important implications for the usage of IFC technology. In-
deed, until somewhat recently (Roy et al., 2009; Stefan et al., 2017),
granularity was the main distinguishing factor between dynamic IFC
operating systems and programming languages. Most IFC operating
systems (e.g., Efstathopoulos et al., 2005; Zeldovich et al., 2006; Krohn
et al., 2007) are coarse-grained, i.e., they track and enforce informa-
tion flow at the granularity of a process or thread. Conversely, most
programming languages with dynamic IFC (e.g., Austin and Flanagan,
2009; Zdancewic, 2002; Hedin et al., 2014; Hritcu et al., 2013; Yang
et al., 2012) track the flow of information in a more fine-grained fashion,
e.g., at the granularity of program variables and references.

3
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4 Introduction

Dynamic coarse-grained IFC systems in the style of LIO (Stefan
et al., 2017; Stefan et al., 2011; Stefan et al., 2012; Heule et al., 2015;
Buiras et al., 2015; Vassena et al., 2017) have several advantages over dy-
namic fine-grained IFC systems. Such coarse-grained systems are often
easier to design and implement—they inherently track less information.
For example, LIO protects against control-flow-based implicit flows by
tracking information at a coarse-grained level—to branch on secrets,
LIO programs must first taint the context where secrets are going to
be observed. Finally, coarse-grained systems often require considerably
fewer programmer annotations—unlike fine-grained ones. More specifi-
cally, developers often only need a single label-annotation to protect
everything in the scope of a thread or process responsible to handle
sensitive data.

Unfortunately, these advantages of coarse-grained systems give up
on the many benefits of fine-grained ones. For instance, one main
drawback of coarse-grained systems is that it requires developers to
compartmentalize their application in order to avoid both false alarms
and the label creep problem, i.e., wherein the program gets too “tainted”
to do anything useful. To this end, coarse-grained systems often create
special abstractions (e.g., event processes (Efstathopoulos et al., 2005),
gates (Zeldovich et al., 2006), and security regions (Roy et al., 2009))
that compensate for the conservative approximations of the coarse-
grained tracking approach. Furthermore, fine-grained systems do not
impose the burden of focusing on avoiding the label creep problem on
developers. By tracking information at fine granularity, such systems
are seemingly more flexible and do not suffer from false alarms and label
creep issues (Austin and Flanagan, 2009) as coarse-grained systems do.
Indeed, fine-grained systems such as JSFlow (Hedin et al., 2014) can
often be used to secure existing, legacy applications; they only require
developers to properly annotate the application.

This tutorial removes the division between fine- and coarse-grained
dynamic IFC systems and the belief that they are fundamentally differ-
ent. In particular, we show that dynamic fine-grained and coarse-grained
IFC are equally expressive. Our work is inspired by the recent work
of Rajani et al. (2017) and Rajani and Garg (2018), who prove similar
results for static fine-grained and coarse-grained IFC systems. Specifi-
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cally, they establish a semantics- and type-preserving translation from a
coarse-grained IFC type system to a fine-grained one and vice-versa. We
complete the picture by showing a similar result for dynamic IFC sys-
tems that additionally allow introspection on labels at run-time. While
label introspection is meaningless in a static IFC system, in a dynamic
IFC system this feature is key to both writing practical applications
and mitigating the label creep problem (Stefan et al., 2017).

Using the Agda proof assistant (Norell, 2009; Bove et al., 2009), we
formalize a traditional fine-grained system (in the style of Austin and
Flanagan, 2009) extended with label introspection primitives, as well
as a coarse-grained system (in the style of Stefan et al., 2017). We then
define and formalize modular semantics-preserving translations between
them. Our translations are macro-expressible in the sense of Felleisen
(1991), i.e., they can be expressed as a pure source program rewriting.

We show that a translation from fine- to coarse-grained is possible
when the coarse-grained system is equipped with a primitive that limits
the scope of tainting (e.g., when reading sensitive data). In practice,
this is not an imposing requirement since most coarse-grained systems
rely on such primitives for compartmentalization. For example, Stefan
et al. (2017) and Stefan et al. (2012), provide toLabeled(·) blocks and
threads for precisely this purpose. Dually, we show that the translation
from coarse- to fine-grained is possible when the fine-grained system has
a primitive taint(·) that relaxes precision to keep the program counter
label synchronized when translating a program to the coarse-grained
language. While this primitive is largely necessary for us to establish
the coarse- to fine-grained translation, extending existing fine-grained
systems with it is both secure and trivial.

The implications of our results are multi-fold. The fine- to coarse-
grained translation formally confirms an old OS-community hypothesis
that it is possible to restructure a system into smaller compartments
to address the label creep problem—indeed our translation is a (naive)
algorithm for doing so. This translation also allows running legacy
fine-grained IFC compatible applications atop coarse-grained systems
like LIO. Dually, the coarse- to fine-grained translation allows devel-
opers building new applications in a fine-grained system to avoid the
annotation burden of the fine-grained system by writing some of the

Full text available at: http://dx.doi.org/10.1561/2500000046



6 Introduction

code in the coarse-grained system and compiling it automatically to the
fine-grained system with our translation. The technical contributions of
this monograph are:

• A pair of semantics-preserving translations between traditional dy-
namic fine-grained and coarse-grained IFC systems equipped with
label introspection and flow-insensitive references (Theorems 5
and 7).

• Two different proofs of termination-insensitive non-interference
(TINI) for each calculus: one is derived directly in the usual way
(Theorems 1 and 3), while the other is recovered via our verified
translation (Theorems 6 and 8).

• Mechanized Agda proofs of our results (~4,000 LOC).

This monograph is based on our conference paper (Vassena et al.,
2019) and extended with:

• A tutorial-style introduction to fine- and coarse-grained dynamic
IFC, which (i) illustrates their specific features and (apparent)
differences through examples, and (ii) supplements our proof
artifacts with general explanations of the proof techniques used.

• Flow-sensitive references, a key feature for boosting the permis-
siveness of dynamic IFC systems (Austin and Flanagan, 2009). We
extend both fine- and coarse-grained language with flow-sensitive
references (Sections 2.3 and 3.3), adapt their security proofs (The-
orems 2 and 4), and the verified translations to each other.

• A discussion and analysis of our extended proof artifact (~6,900
LOC)1. Our analysis finds that the security proofs for fine-grained
languages are between 43% and 74% longer than for coarse-grained
languages. These empirical results suggests that it is indeed easier
to reason about coarse-grained IFC languages than fine-grained
languages.

1The extended artifact is available at https://hub.docker.com/r/marcovassena/
granularity-ftpl and supersedes the artifact archived with the conference paper.
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This tutorial is organized as follows. Our dynamic fine- and coarse-
grained IFC calculi are introduced in Sections 2 and 3, and then ex-
tended with flow-sensitive references in Sections 2.3 and 3.3, respectively.
We prove the soundness guarantees (i.e., termination-insensitive non-
interference) of the original languages (Sections 2.2 and 3.2), and of the
extended languages (Sections 2.3.3 and 3.3.3). In Section 4, we discuss
our mechanized proof artifacts and compare the security proofs of the
two calculi, before and after the extension. In Section 5, we present the
fine- to coarse-grained translation and a proof of non-interference for
the fine-grained calculus recovered from non-interference of the other
calculus through our verified translation. Section 6 presents similar
results in the other direction. Related work is described in Section 7
and Section 8 concludes the tutorial.
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