
Neurosymbolic
Programming

Full text available at: http://dx.doi.org/10.1561/2500000049

Other titles in Foundations and Trends® in Programming Languages

Introduction to Neural Network Verification
Aws Albarghouthi
ISBN: 978-1-68083-910-4

Refinement Types: A Tutorial
Ranjit Jhala and Niki Vazou
ISBN: 978-1-68083-884-8

Shape Analysis
Bor-Yuh Evan Chang, Cezara Drăgoi, Roman Manevich, Noam Rinet-
zky and Xavier Rival
ISBN: 978-1-68083-732-2

Progress of Concurrent Objects
Hongjin Liang and Xinyu Feng
ISBN: 978-1-68083-672-1

QED at Large: A Survey of Engineering of Formally Verified
Software
Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric and
Zachary Tatlock
ISBN: 978-1-68083-594-6

Reconciling Abstraction with High Performance: A MetaOCaml
approach
Oleg Kiselyov
ISBN: 978-1-68083-436-9

Full text available at: http://dx.doi.org/10.1561/2500000049

Neurosymbolic Programming

Swarat Chaudhuri
UT Austin

swarat@cs.utexas.edu

Kevin Ellis
Cornell

kellis@cornell.edu

Oleksandr Polozov
Google

polozov@google.com

Rishabh Singh
Google

rising@google.com

Armando Solar-Lezama
MIT

asolar@csail.mit.edu

Yisong Yue
Caltech

yyue@caltech.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2500000049

Foundations and Trends® in Programming Lan-
guages

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

S. Chaudhuri et al.. Neurosymbolic Programming. Foundations and Trends® in
Programming Languages, vol. 7, no. 3, pp. 158–243, 2021.

ISBN: 978-1-68083-935-7
© 2021 S. Chaudhuri et al.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2500000049

Foundations and Trends® in Programming
Languages

Volume 7, Issue 3, 2021
Editorial Board

Editor-in-Chief
Rupak Majumdari
Max Planck Institute for Software Systems

Editors

Martín Abadi
Google and UC Santa
Cruz

Anindya Banerjee
IMDEA Software Instituet

Patrick Cousot
ENS, Paris and NYU

Oege De Moor
University of Oxford

Matthias Felleisen
Northeastern University

John Field
Google

Cormac Flanagan
UC Santa Cruz

Philippa Gardner
Imperial College

Andrew Gordon
Microsoft Research and
University of Edinburgh

Dan Grossman
University of Washington

Robert Harper
CMU

Tim Harris
Amazon

Fritz Henglein
University of Copenhagen

Rupak Majumdar
MPI and UCLA

Kenneth McMillan
Microsoft Research

J. Eliot B. Moss
University of
Massachusetts, Amherst

Andrew C. Myers
Cornell University

Hanne Riis Nielson
Technical University of
Denmark

Peter O’Hearni
University College London

Benjamin C. Pierce
University of Pennsylvania

Andrew Pittsi
University of Cambridge

Ganesan Ramalingami
Microsoft Research

Mooly Sagiv
Tel Aviv University

Davide Sangiorgi
University of Bologna

David Schmidt
Kansas State University

Peter Sewell
University of Cambridge

Scott Stoller
Stony Brook University

Peter Stuckey
University of Melbourne

Jan Vitek
Northeastern University

Philip Wadler
University of Edinburgh

David Walker
Princeton University

Stephanie Weiric
University of Pennsylvania

Full text available at: http://dx.doi.org/10.1561/2500000049

Editorial Scope
Topics

Foundations and Trends® in Programming Languages publishes survey and
tutorial articles in the following topics:

• Abstract Interpretation
• Compilation and Interpretation

Techniques
• Domain Specific Languages
• Formal Semantics, including

Lambda Calculi, Process
Calculi, and Process Algebra

• Language Paradigms
• Mechanical Proof Checking
• Memory Management
• Partial Evaluation
• Program Logic
• Programming Language

Implementation
• Programming Language

Security

• Programming Languages for
Concurrency

• Programming Languages for
Parallelism

• Program Synthesis

• Program Transformations and
Optimizations

• Program Verification

• Runtime Techniques for
Programming Languages

• Software Model Checking

• Static and Dynamic Program
Analysis

• Type Theory and Type
Systems

Information for Librarians

Foundations and Trends® in Programming Languages, 2021, Volume 7,
4 issues. ISSN paper version 2325-1107. ISSN online version 2325-1131.
Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2500000049

Contents

1 Introduction 3
1.1 What is Neurosymbolic Programming? 5
1.2 Benefits Over Deep Learning 7
1.3 Why Now? . 8
1.4 Algorithmic Approaches 9
1.5 Applications . 10
1.6 Roadmap . 12

2 The Landscape of Neurosymbolic Programming 14
2.1 Neurosymbolic Learning Algorithms 14
2.2 Neurosymbolic Representations 21

3 Motivating Goals 25
3.1 Generalization and Sample Efficiency 25
3.2 Transfer and Abstraction 28
3.3 Interpretability . 30
3.4 Safety . 34
3.5 Procedural Reasoning . 37

4 Learning Algorithms 41
4.1 Symbolic Search . 41
4.2 Gradient-Based Search 47

Full text available at: http://dx.doi.org/10.1561/2500000049

4.3 Learning to Synthesize 50
4.4 Distillation . 55
4.5 Neural Relaxations . 58
4.6 Transfer of Neural Modules 60
4.7 Transferring Symbolic Code 62
4.8 Programmatic Weak Supervision 67

5 Conclusion 69

References 72

Full text available at: http://dx.doi.org/10.1561/2500000049

Neurosymbolic Programming
Swarat Chaudhuri1, Kevin Ellis2, Oleksandr Polozov3, Rishabh Singh4,
Armando Solar-Lezama5 and Yisong Yue6

1The University of Texas at Austin; swarat@cs.utexas.edu
2Cornell University; kellis@cornell.edu
3Google; Work authored while at Microsoft Research;
polozov@google.com
4Google; rising@google.com
5Massachusetts Institute of Technology (MIT); asolar@csail.mit.edu
6The California Institute of Technology (Caltech); yyue@caltech.edu

ABSTRACT

We survey recent work on neurosymbolic programming, an
emerging area that bridges the areas of deep learning and
program synthesis. Like in classic machine learning, the
goal here is to learn functions from data. However, these
functions are represented as programs that can use neural
modules in addition to symbolic primitives and are induced
using a combination of symbolic search and gradient-based
optimization.

Neurosymbolic programming can offer multiple advantages
over end-to-end deep learning. Programs can sometimes
naturally represent long-horizon, procedural tasks that are
difficult to perform using deep networks. Neurosymbolic
representations are also, commonly, easier to interpret and
formally verify than neural networks. The restrictions of
a programming language can serve as a form of regular-
ization and lead to more generalizable and data-efficient

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-
Lezama and Yisong Yue (2021), “Neurosymbolic Programming”, Foundations
and Trends® in Programming Languages: Vol. 7, No. 3, pp 158–243. DOI:
10.1561/2500000049.
©2021 S. Chaudhuri et al.

Full text available at: http://dx.doi.org/10.1561/2500000049

2

learning. Compositional programming abstractions can also
be a natural way of reusing learned modules across learning
tasks.

In this monograph, we illustrate these potential benefits
with concrete examples from recent work on neurosymbolic
programming. We also categorize the main ways in which
symbolic and neural learning techniques come together in
this area. We conclude with a discussion of the open technical
challenges in the field.

Full text available at: http://dx.doi.org/10.1561/2500000049

1
Introduction

The last decade has seen breathtaking progress in the field of deep
learning. Every few months, the media is abuzz with tales of a deep
neural network conquering yet another milestone in artificial intelligence
(AI). Deep learning systems such as AlphaGo (Silver et al., 2016), the
deep reinforcement learning agent that defeated a world champion in
the game of Go, and GPT-3 (Brown et al., 2020), the neural language
model with 175 billion trainable parameters and the ability to generate
stunningly human-like text, are now part of folklore.

At the same time, concerns remain about the use of deep neural
networks in real-world problem domains (Marcus and Davis, 2019). In
applications such as autonomous robotics and the natural sciences, it
is important for learning models to be interpretable. However, neural
networks are black boxes for most practical purposes. While modern
neural networks are obtained through the composition of many layers, it
is nearly impossible to assign responsibility for a network’s capabilities
to specific layers. This makes it difficult to reuse components of a
network in the way that is possible for traditional, human-written
software. Finally, the training process for neural networks is entirely
data-driven and must learn even the most basic forms of human-held

3

Full text available at: http://dx.doi.org/10.1561/2500000049

4 Introduction

knowledge from data. Such training usually takes very large volumes of
data. Also, commonly, their results depend on low-level facets of the
training environment, and the networks they learn can fare poorly on
inputs that fall even slightly outside the training distribution.

More fundamentally, as Bengio argues in his Turing lecture (Bengio,
2019), deep learning primarily automates what Kahneman (Kahneman,
2011) calls System 1 thinking: intuitive, fast, and unconscious pattern
recognition. However, human cognition also includes System 2 thinking,
which is slow, logical, and algorithmic. Bengio points out that AI systems
of the future would need to also automate such thought.

Of course, the symbolic AI tradition, which dominated AI for several
decades, had invested heavily on automating System 2 thought. This tra-
dition modeled the world using symbolic rules and logical assertions and
used symbolic methods like heuristic search and automated deduction
to construct inferences and plans. Unfortunately, capturing the world
entirely using rules and logic proved difficult, not least because it was
difficult to model uncertain and ambiguous knowledge in such notations.
Also, classical symbolic methods did not have a mechanism to handle
sensory inputs. Finally, discrete reasoning is an NP-hard problem, and
algorithms for tasks such as planning and theorem-proving could only
scale so far. As a result, bottom-up, data-driven methods ended up
eclipsing these methods.

However, as integrating System 1 and System 2 thought becomes
more important, an emerging body of work on neurosymbolic machine
learning is seeking to couple classical symbolic algorithms with contem-
porary deep learning techniques. The resulting whole is often greater
than the sum of its parts. For example, the neural component of such
a method can help the method’s symbolic component scale better, by
guiding the latter’s discrete decisions. The neural component can also
handle lower-level sensory processing and allow the symbolic algorithm
to operate on perceptual inputs. Conversely, the symbolic component
can often serve as a regularizer that helps the neural component learn
better, and provide a level of interpretability and trust that would be
impossible with a purely neural method.

In particular, there is an emerging body of work on neurosym-
bolic learning that lies at the interface of deep learning and program

Full text available at: http://dx.doi.org/10.1561/2500000049

1.1. What is Neurosymbolic Programming? 5

synthesis (Gulwani et al., 2017). We refer to this literature as Neurosym-
bolic Programming. The purpose of this monograph is to survey recent
developments in this area.

1.1 What is Neurosymbolic Programming?

Neurosymbolic programming, as we define the term, is a generaliza-
tion of classic program synthesis. The goal in program synthesis is
to automatically discover programs from high-level task specifications.
Traditionally, the specifications are hard logical constraints, for example,
tests that need to be satisfied exactly, pre-postcondition pairs, or tem-
poral logic formulas. The programs are structured, symbolic terms that
follow the syntax of a domain-specific language (DSL). The discovery
of programs is based on a combination of combinatorial search and
automated reasoning (Gulwani et al., 2017).

By contrast, programs in neurosymbolic programming can have both
neural and symbolic elements. The synthesis objective may include hard
constraints like in classic program synthesis. However, neurosymbolic
programming also incorporates into the picture the standard objec-
tive of machine learning: finding a function that fits a given dataset
approximately and generalizes to unseen inputs.

Now we delineate the boundaries of neurosymbolic programming
more precisely. Let us define a symbolic component as a function that
comes with a symbolic implementation, or at least, a (possibly incom-
plete) symbolic specification of its functionality. In contrast, a neural
component is a (typically over-)parameterized, differentiable blackbox
function that does not have an a priori specification.

Composition is a fundamental operation in both traditional pro-
gramming and deep learning. However, there is a key difference between
composition in the two settings. In traditional programming, compo-
sition requires that certain requirements hold at the interface of the
components being composed. No such requirement exists at the interface
of different layers in deep learning. Let us designate the former kind of
composition as symbolic. We consider a neurosymbolic program to be a
program that uses neural components and either symbolic components
or symbolic compositions.

Full text available at: http://dx.doi.org/10.1561/2500000049

6 Introduction

A neurosymbolic learning algorithm is a mechanism for program
synthesis that uses deep representations and gradient-based optimization
as well as symbolic methods such as search and automated deduction.
Such an algorithm must discover the program’s discrete structure, or
architecture. In addition, the algorithm must discover the program’s
real-valued parameters (for example, parameters of the program’s neural
modules), if any. The task specification that directs this search could
include hard constraints like in classic program synthesis. Commonly,
however, it also includes a quantitative loss function derived from, for
example, labeled data or reward functions. The goal of the algorithm
is to find a program that optimizes the loss while obeying the hard
constraints.

The sets of methods that target neurosymbolic programs and use
neurosymbolic learning algorithms are overlapping but not identical.
In particular, there are methods that use neurosymbolic algorithms to
discover symbolic programs, and methods that synthesize neurosymbolic
programs using purely symbolic or purely neural methods. In this paper,
we take a broad perspective and consider neurosymbolic programming
to be the study of the union of the two sets.

We leave out of the scope of this paper models such as Neural Turing
Machines (Graves et al., 2014) and Neural Stack Machines (Grefenstette
et al., 2015). These models are inspired by classic models of programming,
such as Turing Machines and stack machines, and have certain program-
like capabilities (for example, Neural Turing Machines can perform
reads and writes to a differentiable memory). However, these models
are not learned using neurosymbolic algorithms. Also, they do not
impose human-comprehensible specifications on the interfaces between
model components and cannot be naturally decomposed into high-level
modules.

Neither do we consider Tensor Product Representations (Smolensky
et al., 2016), which provide a symbolically inspired inductive bias in
neural networks, to be an example of neurosymbolic programming.
This is because such a model cannot be naturally interpreted as a
program even when the network implements a programmatic task. Also
outside our scope are Neural Programmer Interpreters (Reed and De
Freitas, 2015), which are recurrent neural networks that learn to execute

Full text available at: http://dx.doi.org/10.1561/2500000049

1.2. Benefits Over Deep Learning 7

programs, and neural models for combinatorial tasks such as MAX-SAT
solving (Wang et al., 2019). That said, all of these models are closely
related to neurosymbolic programming, and future work may integrate
them with approaches that we discuss in this monograph.

1.2 Benefits Over Deep Learning

Neurosymbolic programming has multiple potential benefits over end-
to-end deep learning. In general, by virtue of their modularity and use
of symbolic primitives, neurosymbolic programs are closer to human-
written code than deep networks. Because of this, neurosymbolic pro-
gramming can provide a means for interpretable learning, especially
when the learning algorithm being used is biased towards models that
are “more symbolic” and structurally simpler.

Symbolic abstractions can also simplify the automated analysis of
models. Over the last few years, there have been many efforts on algo-
rithmic analysis of the safety and robustness of neural networks (Katz
et al., 2017; Gehr et al., 2018; Anderson et al., 2019). To a significant
extent, these methods are adaptations of methods for quality assurance
of traditional software. Unfortunately, analyzing even simple proper-
ties of deep neural networks is NP-hard, and scaling these analysis
methods to real-world neural networks is difficult. In contrast, recent
work on certifiable learning reduces (Anderson et al., 2020) the safety
and robustness analysis of certain specialized neurosymbolic models to
the analysis of its (simpler, more compact) symbolic components. The
latter task can be done relatively easily with existing software analysis
techniques.

Neurosymbolic programming gives human users a mechanism to
guide the learning process, and this can lead to more reliable learning.
For example, in recent work in the reinforcement learning setting (Cheng
et al., 2019), a (deep) learning algorithm is given a human-provided
function (program) that performs a task, albeit not optimally, and
tasked with improving the performance of this program. The resulting
learning process has lower statistical variance than one in which the
task is entirely learned from data. If the prior is of reasonable quality,
this strategy can lead to greater overall performance as well.

Full text available at: http://dx.doi.org/10.1561/2500000049

8 Introduction

Also, a key advantage of high-level programming abstractions is that
they tend to be compositional, i.e., allow the structured creation of larger
programs using smaller modules. This enables a principled mechanism
of transferring knowledge (Valkov et al., 2018) across learning tasks:
one can train a model in one task and reuse it in another task in the
way a human programmer would use a library module. This mechanism
is a generalization of a popular family of transfer learning techniques
in deep learning, which commonly reuse network layers with frozen
weights across tasks (Yosinski et al., 2014).

Finally, higher-level programming abstractions can reduce the su-
pervision effort needed for learning. In supervised learning settings
such as image classification, one requires human users to label training
inputs, and this can get expensive. In contrast, in the data programming
paradigm (Ratner et al., 2016), the user writes labeling programs that
can automatically produce labels for inputs. Such programs are easy to
write or automatically synthesize in many domains (Zhan et al., 2020;
Sun et al., 2020). When they are available, they can drastically reduce
the cost of learning.

1.3 Why Now?

The idea of combining neural and symbolic methods has a long his-
tory in AI research (Sun and Alexandre, 2013; Garcez et al., 2002). In
knowledge-based neural networks, an early example of a neurosymbolic
model (Towell et al., 1990), a set of hand-written symbolic rules were
compiled into a neural network, which is then refined using data. It was
shown that such neural networks are more data-efficient and tend to
generalize better than classic neural networks. There were complemen-
tary efforts that extracted symbolic models, such as rules (Towell and
Shavlik, 1993) and finite automata (Giles et al., 1992), out of neural
networks, essentially performing a form of program synthesis. Unifying
these two strands of work, Shavlik, 1994 proposed a general learning
framework in which an initial neural network, constructed using sym-
bolic knowledge, is refined using data, and new symbolic knowledge
is extracted from this refined network. These ideas were embodied,
and taken further, in the Connectionist Inductive Learning and Logic

Full text available at: http://dx.doi.org/10.1561/2500000049

1.4. Algorithmic Approaches 9

Programming system (Garcez and Zaverucha, 1999), which integrated
logic programming and neural networks. These approaches certainly fit
the category of neurosymbolic programming as defined in this paper.

While the first wave of neurosymbolic programming produced many
interesting ideas, the practical impact of this line of work was limited.
However, the current moment feels especially appropriate for resurrect-
ing this area. For one, AI is increasingly deployed in real-world problems
in which safety, reliability, and interpretability are important, and there
is growing awareness about the limitations of pure deep learning in these
problems. This opens up a window of opportunity for neurosymbolic
methods. (Indeed, as we describe in Section 1.5, neurosymbolic methods
are already making inroads into these tasks.)

Second, we now have access to much larger datasets and computa-
tional power than we did in the 1990s. This fact was key to the revival
of neural networks as a research area, and it can help neurosymbolic
programming as well. Finally, in the recent past, there has been signifi-
cant progress on symbolic program synthesis, and new ways of coupling
gradient-based and combinatorial search have emerged. As we show in
this monograph, a new wave of research on neurosymbolic programming
is already beginning to build on this progress.

1.4 Algorithmic Approaches

The fundamental challenge in neurosymbolic programming is that here,
one must search through a combinatorial, and quickly exploding, space
of program architectures. Worse, for each architecture explored in such
a search, one must often perform high-dimensional continuous opti-
mization to find optimal parameters for the neural modules appearing
in the architecture. Nevertheless, over the last few years, researchers
have discovered multiple new lines of attack on this problem, and some
unifying themes are beginning to emerge in this area.

For example, one set of methods for neurosymbolic programming
uses a neural network to learn to synthesize programs, i.e., direct a
search process over program architectures (Balog et al., 2016; Murali
et al., 2018). The network is trained using metalearning, from data that
relates a set of tasks to programs that solve the tasks. Once a program

Full text available at: http://dx.doi.org/10.1561/2500000049

10 Introduction

architecture is generated, its lower-level parameters can be found using
neural or symbolic methods.

A second category of methods, which we call learning to specify (Ellis
et al., 2018b), determine how to generalize incomplete or ambiguous
task specifications to more complete specifications. These complete spec-
ifications are then used to direct a program synthesis process. A third
category uses neural relaxations of a nonsmooth set of programs (Shah et
al., 2020). This space could consist of programs with completely different
architectures. However, since a program is ultimately a representation of
a function, the parameters of a neural network can (approximately) rep-
resent it. A final body of methods goes in the other direction, distilling
a smooth neural function (Verma et al., 2018) into a discrete program
whose behavior approximately matches the network’s. We discuss all of
these methods in more depth in Section 2 and Section 4.

1.5 Applications

The algorithmic innovations sketched above are already beginning to
impact real-world applications. Now we sketch some of these applications.
Given the increased deployment of machine learning in domains in which
trust and procedural reasoning are important, we expect many more
such applications to emerge in the coming years.

Scientific Discovery. Building learning algorithms that discover new
scientific hypotheses and guide experiments is a grand challenge in
AI. Such algorithms must respect constraints known to hold in the
world and produce outputs that scientists can interpret. This makes
neurosymbolic programming a natural fit to this space.

As a concrete example, Cranmer et al. (2020) propose a method for
symbolic regression — the automatic discovery of symbolic equations
from data — and apply it to a task in cosmology (dark matter predic-
tion). Also, several recent efforts use neurosymbolic programming in
behavior analysis of lab animals. For instance, Sun et al. (2020) use
a neurosymbolic method to embed videos of lab animals into lower-
dimensional representations. Shah et al. (2020) use neurosymbolic pro-
gramming to classify sequential animal behaviors. Zhan et al. (2021)

Full text available at: http://dx.doi.org/10.1561/2500000049

1.5. Applications 11

use neurosymbolic representation learning for interpretable clustering of
such behaviors. Tjandrasuwita et al. (2021) learn interpretable programs
that describe divergences between different human experts annotating
behaviors.

Programming Systems. There has been significant recent interest
in machine-learning-based assistants for software developers. Purely
neural tools often struggle with understanding the complex, logical
semantics of software, which are sensitive to even the smallest changes
in syntax. Neurosymbolic programming is a natural way to overcome
this issue given that symbolic methods have long been used successfully
in program analysis.

For example, the Bayou system (Murali et al., 2018) automatically
completes Java methods given a few keywords that appear in the
method. The Patois system (Shin et al., 2019a) uses neurosymbolic
programming to semantically parse text into code. Ellis et al. (2018b)
simplifies graphics programming with a method to synthesize graphics
code from a given picture.

Dialog Systems. Task-oriented dialog systems assist users with specific
goals through a natural language interface. As digital assistants, they
facilitate travel booking, database question answering, scheduling, and
much more. The key challenge of task-oriented dialog is state tracking

— identifying the user’s intent and parameters in each dialog act, and
using them to drive the system’s actions. Fundamentally, dialog state is
an intermediate symbolic representation that depends on complex, high-
dimensional semantic context, namely dialog history and the underlying
knowledge base or API. Thereby, neurosymbolic programming is a
natural choice for modeling dialog state, successfully applied in many
domains. For example, Andreas et al. (2020) design a calendar assistant
in which scheduling actions, dialog corrections, and exceptions are
represented as compositional programs, synthesized by neurosymbolic
models in context.

Process Automation. The field of robotic process automation (RPA)
aims to automate procedural GUI workflows to facilitate business digi-

Full text available at: http://dx.doi.org/10.1561/2500000049

12 Introduction

tization and software testing. RPA agents interact with Web browsers,
GUI applications, and APIs to accomplish the user’s parameterized
tasks. They are typically pretrained for each task using natural language
commands, UI-grounded demonstrations, task completion rewards, or
some combination thereof.

In RPA, the agent’s state and action spaces are enormous – the
current screen or Web page defines the state and the action space in-
cludes all possible interactions with its elements. Learning a robust and
interpretable RPA agent is challenging even from grounded demonstra-
tions as supervision. Instead, recent approaches leverage neurosymbolic
programming and model the agent as a neurosymbolic task program.
For example, Srivastava et al. (2020) combine neural language model-
ing with inductive program synthesis Gulwani et al., 2017 to learn a
generative model of programs that both guarantees consistency with
the demonstrations and optimizes natural language alignment.

Robotics and Control. When designing policies or controllers for
autonomous embodied systems, factors such as safety and data efficiency
become paramount. For both low-level control and high-level planning
problems, the standard practice has been to leverage symbolic domain
knowledge (e.g., the governing equations of motion for the system,
or an automaton representation of the high-level states) to design
structured models that have certifiable guarantees, good generalization,
or both (e.g., Verma et al. (2019)). An emerging research direction
is to automatically learn or discover the structure of the symbolic
knowledge (e.g., Xu et al. (2018)), which can be viewed as an instance
of neurosymbolic programming.

1.6 Roadmap

The rest of this monograph is organized as follows. In Section 2, we
give an overview of the landscape of recent research on neurosymbolic
programming. Section 3 describes in some depth the main motivating
goals for research in this area, along with concrete examples of how
recent research is addressing these goals. In Section 4, we discuss some of
the common themes in learning algorithms for neurosymbolic programs.

Full text available at: http://dx.doi.org/10.1561/2500000049

1.6. Roadmap 13

We conclude with a discussion of future challenges in the area in Section
5.

Full text available at: http://dx.doi.org/10.1561/2500000049

References

Achiam, J., D. Held, A. Tamar, and P. Abbeel. (2017). “Constrained
Policy Optimization”. In: Proceedings of the 34th International
Conference on Machine Learning, ICML 2017. Ed. by D. Precup
and Y. W. Teh. Vol. 70. Proceedings of Machine Learning Research.
PMLR. 22–31.

Alet, F., T. Lozano-Perez, and L. P. Kaelbling. (2018a). “Modular
meta-learning”. In: Proceedings of The 2nd Conference on Robot
Learning. Ed. by A. Billard, A. Dragan, J. Peters, and J. Morimoto.
Vol. 87. Proceedings of Machine Learning Research. PMLR. 856–868.
url: http://proceedings.mlr.press/v87/alet18a.html.

Alet, F., T. Lozano-Pérez, and L. P. Kaelbling. (2018b). “Modular
meta-learning”. Conference on Robot Learning.

Alshiekh, M., R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu. (2018). “Safe Reinforcement Learning via Shielding”. In:
Proceedings of the Thirty-Second AAAI Conference on Artificial In-
telligence, (AAAI-18). Ed. by S. A. McIlraith and K. Q. Weinberger.
AAAI Press. 2669–2678.

Alur, R., R. Bodík, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H.
Kress-Gazit, P. Madhusudan, M. M. K. Martin, M. Raghothaman,
S. Saha, S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A.
Udupa. (2015). “Syntax-Guided Synthesis”. In: Dependable Software
Systems Engineering. 1–25. doi: 10.3233/978-1-61499-495-4-1.

72

Full text available at: http://dx.doi.org/10.1561/2500000049

http://proceedings.mlr.press/v87/alet18a.html
https://doi.org/10.3233/978-1-61499-495-4-1

References 73

Amini, A., S. Gabriel, P. Lin, R. Koncel-Kedziorski, Y. Choi, and H.
Hajishirzi. (2019). “MathQA: Towards interpretable math word
problem solving with operation-based formalisms”. arXiv preprint
arXiv:1905.13319.

Amizadeh, S., H. Palangi, O. Polozov, Y. Huang, and K. Koishida.
(2020). “Neuro-Symbolic Visual Reasoning: Disentangling “Visual”
from “Reasoning””. In: International Conference on Machine Learn-
ing.

Anderson, G., S. Pailoor, I. Dillig, and S. Chaudhuri. (2019). “Optimiza-
tion and abstraction: a synergistic approach for analyzing neural
network robustness”. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation.
ACM. 731–744.

Anderson, G., A. Verma, I. Dillig, and S. Chaudhuri. (2020). “Neurosym-
bolic Reinforcement Learning with Formally Verified Exploration”.
In: Neural Information Processesing Systems (NeurIPS).

Andreas, J., J. Bufe, D. Burkett, C. Chen, J. Clausman, J. Craw-
ford, K. Crim, J. DeLoach, L. Dorner, J. Eisner, and et al. (2020).
“Task-Oriented Dialogue as Dataflow Synthesis”. Transactions of
the Association for Computational Linguistics. 8(Dec.): 556–571.

Andreas, J., M. Rohrbach, T. Darrell, and D. Klein. (2016a). “Learning
to Compose Neural Networks for Question Answering”. In: Pro-
ceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies. San Diego, California. 1545–1554.

Andreas, J., M. Rohrbach, T. Darrell, and D. Klein. (2016b). “Neu-
ral module networks”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 39–48.

Balog, M., A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tar-
low. (2016). “DeepCoder: Learning to Write Programs”. CoRR.
abs/1611.01989. arXiv: 1611.01989.

Barnat, J., L. Brim, M. Češka, and P. Ročkai. (2010). “Divine: Parallel
distributed model checker”. In: Ninth international workshop on
parallel and distributed methods in verification, and second interna-
tional workshop on high performance computational systems biology.
IEEE. 4–7.

Full text available at: http://dx.doi.org/10.1561/2500000049

https://arxiv.org/abs/1611.01989

74 References

Barrett, C., P. Fontaine, and C. Tinelli. (2010). The SMT-LIB Standard
Version 2.6.

Bastani, O., Y. Pu, and A. Solar-Lezama. (2018). “Verifiable Rein-
forcement Learning via Policy Extraction”. In: Advances in Neural
Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada. Ed. by S. Bengio, H. M. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. 2499–
2509.

Beery, S., G. Van Horn, and P. Perona. (2018). “Recognition in Terra
Incognita”. In: Proceedings of the European Conference on Computer
Vision (ECCV). 456–473.

Bengio, Y. (2019). “From System 1 Deep Learning to System 2 Deep
Learning”. Neural Information Processing Systems.

Bickel, S., M. Brückner, and T. Scheffer. (2009). “Discriminative learning
under covariate shift.” Journal of Machine Learning Research. 10(9).

Bingham, E., J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan,
T. Karaletsos, R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman.
(2019). “Pyro: Deep Universal Probabilistic Programming”. J. Mach.
Learn. Res. 20(1): 973–978. issn: 1532-4435.

Brown, T. B., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A.
Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei. (2020). “Language Models are Few-
Shot Learners”. CoRR. abs/2005.14165. arXiv: 2005.14165. url:
https://arxiv.org/abs/2005.14165.

Bunel, R., M. J. Hausknecht, J. Devlin, R. Singh, and P. Kohli. (2018).
“Leveraging Grammar and Reinforcement Learning for Neural Pro-
gram Synthesis”. In: 6th International Conference on Learning Rep-
resentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net.

Full text available at: http://dx.doi.org/10.1561/2500000049

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165

References 75

Carpenter, B., A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M.
Betancourt, M. Brubaker, J. Guo, P. Li, and A. Riddell. (2017).
“Stan: A probabilistic programming language”. Journal of statistical
software. 76(1).

Chaudhuri, S., M. Clochard, and A. Solar-Lezama. (2014). “Bridging
boolean and quantitative synthesis using smoothed proof search”.
In: The 41st Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014. 207–220.

Chaudhuri, S. and A. Solar-Lezama. (2010). “Smooth interpretation”.
In: PLDI. 279–291.

Chen, T., S. Kornblith, M. Norouzi, and G. Hinton. (2020a). “A simple
framework for contrastive learning of visual representations”. In:
International Conference on Machine Learning.

Chen, X., M. Monfort, A. Liu, and B. D. Ziebart. (2016). “Robust
covariate shift regression”. In: Artificial Intelligence and Statistics.
1270–1279.

Chen, X., C. Liang, A. W. Yu, D. Zhou, D. Song, and Q. V. Le. (2019).
“Neural symbolic reader: Scalable integration of distributed and sym-
bolic representations for reading comprehension”. In: International
Conference on Learning Representations.

Chen, Y., C. Wang, O. Bastani, I. Dillig, and Y. Feng. (2020b). “Program
Synthesis Using Deduction-Guided Reinforcement Learning”. In:
International Conference on Computer Aided Verification. Springer.
587–610.

Cheng, R., A. Verma, G. Orosz, S. Chaudhuri, Y. Yue, and J. W. Burdick.
(2019). “Control regularization for reduced variance reinforcement
learning”. In: ICML.

Cheung, A., A. Solar-Lezama, and S. Madden. (2012). “Using program
synthesis for social recommendations”. In: 21st ACM International
Conference on Information and Knowledge Management, CIKM’12,
Maui, HI, USA, October 29 - November 02, 2012. Ed. by X. Chen,
G. Lebanon, H. Wang, and M. J. Zaki. ACM. 1732–1736.

Chow, Y., O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh.
(2018). “A Lyapunov-based approach to safe reinforcement learning”.
In: Advances in neural information processing systems. 8092–8101.

Full text available at: http://dx.doi.org/10.1561/2500000049

76 References

Cranmer, M., A. Sanchez-Gonzalez, P. Battaglia, R. Xu, K. Cranmer, D.
Spergel, and S. Ho. (2020). “Discovering symbolic models from deep
learning with inductive biases”. In: Neural Information Processing
Systems.

Cui, G. and H. Zhu. (2021). “Differentiable Synthesis of Program Ar-
chitectures”. Advances in Neural Information Processing Systems.
34.

Dal Palù, A., A. Dovier, A. Formisano, and E. Pontelli. (2015). “Cud@
sat: Sat solving on gpus”. Journal of Experimental & Theoretical
Artificial Intelligence. 27(3): 293–316.

Daumé III, H. (2008). “Cross-Task Knowledge-Constrained Self Train-
ing”. In: Proceedings of the 2008 Conference on Empirical Methods
in Natural Language Processing. 680–688.

De Raedt, L., A. Kimmig, and H. Toivonen. (2007). “ProbLog: A
Probabilistic Prolog and Its Application in Link Discovery.” In:
IJCAI. Vol. 7. Hyderabad. 2462–2467.

Dechter, E., J. Malmaud, R. P. Adams, and J. B. Tenenbaum. (2013).
“Bootstrap learning via modular concept discovery”. In: Proceedings
of the International Joint Conference on Artificial Intelligence. AAAI
Press/International Joint Conferences on Artificial Intelligence.

Dennis, L., M. Fisher, M. Slavkovik, and M. Webster. (2016). “Formal
verification of ethical choices in autonomous systems”. Robotics and
Autonomous Systems. 77: 1–14.

Devlin, J., J. Uesato, S. Bhupatiraju, R. Singh, A. Mohamed, and P.
Kohli. (2017). “RobustFill: Neural Program Learning under Noisy
I/O”. In: ICML.

Dua, D., Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gardner.
(2019). “DROP: A reading comprehension benchmark requiring dis-
crete reasoning over paragraphs”. arXiv preprint arXiv:1903.00161.

Dudík, M., D. Erhan, J. Langford, L. Li, et al. (2014). “Doubly robust
policy evaluation and optimization”. Statistical Science. 29(4): 485–
511.

Ellis, K., L. Morales, M. Sablé-Meyer, A. Solar-Lezama, and J. Tenen-
baum. (2018a). “Learning libraries of subroutines for neurally–guided
Bayesian program induction”. In: Advances in Neural Information
Processing Systems. 7805–7815.

Full text available at: http://dx.doi.org/10.1561/2500000049

References 77

Ellis, K., D. Ritchie, A. Solar-Lezama, and J. Tenenbaum. (2018b).
“Learning to infer graphics programs from hand-drawn images”. In:
Advances in neural information processing systems. 6059–6068.

Ellis, K., C. Wong, M. Nye, M. Sable-Meyer, L. Cary, L. Morales, L. He-
witt, A. Solar-Lezama, and J. B. Tenenbaum. (2020). “Dreamcoder:
Growing generalizable, interpretable knowledge with wake-sleep
Bayesian program learning”. arXiv preprint arXiv:2006.08381.

Fichte, J. K., M. Hecher, and M. Zisser. (2019). “An improved GPU-
based SAT model counter”. In: International Conference on Princi-
ples and Practice of Constraint Programming. Springer. 491–509.

Finn, C., P. Abbeel, and S. Levine. (2017). “Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks”. In: ICML.

Fulton, N. and A. Platzer. (2018). “Safe reinforcement learning via
formal methods: Toward safe control through proof and learning”.
In: Thirty-Second AAAI Conference on Artificial Intelligence.

Garcez, A. S. d., K. B. Broda, and D. M. Gabbay. (2002). Neural-
symbolic learning systems: foundations and applications. Springer
Science & Business Media.

Garcez, A. S. d’Avila and G. Zaverucha. (1999). “The Connectionist
Inductive Learning and Logic Programming System”. Appl. Intell.
11(1): 59–77. doi: 10.1023/A:1008328630915.

Garcıa, J. and F. Fernández. (2015). “A comprehensive survey on safe
reinforcement learning”. Journal of Machine Learning Research.
16(1): 1437–1480.

Gaunt, A. L., M. Brockschmidt, R. Singh, N. Kushman, P. Kohli, J. Tay-
lor, and D. Tarlow. (2016). “Terpret: A probabilistic programming
language for program induction”. arXiv preprint arXiv:1608.04428.

Gaunt, A. L., M. Brockschmidt, N. Kushman, and D. Tarlow. (2017).
“Differentiable Programs with Neural Libraries”. In: Proceedings
of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017. 1213–1222.

Gehr, T., M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri,
and M. Vechev. (2018). “AI2: Safety and robustness certification
of neural networks with abstract interpretation”. In: 2018 IEEE
Symposium on Security and Privacy (SP). IEEE. 3–18.

Full text available at: http://dx.doi.org/10.1561/2500000049

https://doi.org/10.1023/A:1008328630915

78 References

Giles, C. L., C. B. Miller, D. Chen, H.-H. Chen, G.-Z. Sun, and Y.-C.
Lee. (1992). “Learning and extracting finite state automata with
second-order recurrent neural networks”. Neural Computation. 4(3):
393–405.

Graves, A., G. Wayne, and I. Danihelka. (2014). “Neural turing ma-
chines”. arXiv preprint arXiv:1410.5401.

Grefenstette, E., K. M. Hermann, M. Suleyman, and P. Blunsom. (2015).
“Learning to transduce with unbounded memory”. Advances in
neural information processing systems. 28: 1828–1836.

Gulwani, S., O. Polozov, and R. Singh. (2017). “Program synthesis”.
Foundations and Trends in Programming Languages. 4(1-2): 1–119.

Hamadi, Y. and C. Wintersteiger. (2012). “Seven challenges in parallel
SAT solving”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 26. No. 1.

Harnad, S. (1990). “The symbol grounding problem”. Physica D: Non-
linear Phenomena. 42(1-3): 335–346.

Hendrycks, D., M. Mazeika, S. Kadavath, and D. Song. (2019). “Using
self-supervised learning can improve model robustness and uncer-
tainty”. In: Advances in Neural Information Processing Systems.
15663–15674.

Herzig, J., P. K. Nowak, T. Müller, F. Piccinno, and J. M. Eisenschlos.
(2020). “TAPAS: Weakly Supervised Table Parsing via Pre-training”.
arXiv preprint arXiv:2004.02349.

Hewitt, L. B., T. A. Le, and J. B. Tenenbaum. (2020). “Learning to
learn generative programs with Memoised Wake-Sleep”. UAI.

Hinton, G. E., O. Vinyals, and J. Dean. (2015). “Distilling the Knowledge
in a Neural Network”. CoRR. abs/1503.02531. arXiv: 1503.02531.
url: http://arxiv.org/abs/1503.02531.

Hu, R., J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko. (2017).
“Learning to reason: End-to-end module networks for visual question
answering”. In: Proceedings of the IEEE International Conference
on Computer Vision. 804–813.

Full text available at: http://dx.doi.org/10.1561/2500000049

https://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531

References 79

Hutter, F., D. Babic, H. H. Hoos, and A. J. Hu. (2007). “Boosting Veri-
fication by Automatic Tuning of Decision Procedures”. In: Formal
Methods in Computer-Aided Design, 7th International Conference,
FMCAD 2007, Austin, Texas, USA, November 11-14, 2007, Pro-
ceedings. IEEE Computer Society. 27–34.

Iyer, A., M. Jonnalagedda, S. Parthasarathy, A. Radhakrishna, and
S. K. Rajamani. (2019). “Synthesis and machine learning for het-
erogeneous extraction”. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation.
301–315.

James, S., P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan,
J. Ibarz, S. Levine, R. Hadsell, and K. Bousmalis. (2019). “Sim-to-
real via sim-to-sim: Data-efficient robotic grasping via randomized-
to-canonical adaptation networks”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 12627–
12637.

Jha, S., S. Gulwani, S. A. Seshia, and A. Tiwari. (2010). “Oracle-guided
component-based program synthesis”. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering -
Volume 1. ICSE ’10. Cape Town, South Africa: ACM. 215–224.

Ji, R., Y. Sun, Y. Xiong, and Z. Hu. (2020). “Guiding Dynamic Pro-
graming via Structural Probability for Accelerating Programming
by Example”. Proc. ACM Program. Lang. 4(OOPSLA).

Kahneman, D. (2011). Thinking, fast and slow. Macmillan.
Kalyan, A., A. Mohta, O. Polozov, D. Batra, P. Jain, and S. Gulwani.

(2018). “Neural-Guided Deductive Search for Real-Time Program
Synthesis from Examples”. In: 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings.

Karimi, A. and P. S. Duggirala. (2020). “Formalizing traffic rules for
uncontrolled intersections”. In: 2020 ACM/IEEE 11th International
Conference on Cyber-Physical Systems (ICCPS). IEEE. 41–50.

Katz, G., C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer.
(2017). “Reluplex: An Efficient SMT Solver for Verifying Deep Neural
Networks”. CoRR. abs/1702.01135.

Full text available at: http://dx.doi.org/10.1561/2500000049

80 References

Keysers, D., N. Schärli, N. Scales, H. Buisman, D. Furrer, S. Kashubin,
N. Momchev, D. Sinopalnikov, L. Stafiniak, T. Tihon, D. Tsarkov,
X. Wang, M. van Zee, and O. Bousquet. (2020). “Measuring Com-
positional Generalization: A Comprehensive Method on Realistic
Data”. In: International Conference on Learning Representations.

Kim, B., M. Wattenberg, J. Gilmer, C. J. Cai, J. Wexler, F. B. Viégas,
and R. Sayres. (2018). “Interpretability Beyond Feature Attribution:
Quantitative Testing with Concept Activation Vectors (TCAV)”.
In: Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018. Ed. by J. G. Dy and A. Krause. Vol. 80. Proceedings
of Machine Learning Research. PMLR. 2673–2682.

Kingma, D. P. and M. Welling. (2013). “Auto-encoding variational
Bayes”. arXiv preprint arXiv:1312.6114.

Krawiec, K. (2016). Behavioral program synthesis with genetic program-
ming. Vol. 618. Springer.

Le Goues, C., T. Nguyen, S. Forrest, and W. Weimer. (2011). “Genprog:
A generic method for automatic software repair”. IEEE transactions
on software engineering. 38(1): 54–72.

Lerda, F. and R. Sisto. (1999). “Distributed-memory model checking
with SPIN”. In: International SPIN Workshop on Model Checking
of Software. Springer. 22–39.

Levine, S. and V. Koltun. (2013). “Guided policy search”. In: Interna-
tional Conference on Machine Learning. 1–9.

Liang, P., M. I. Jordan, and D. Klein. (2010). “Learning programs: A
hierarchical Bayesian approach”. In: Proceedings of the 27th Inter-
national Conference on Machine Learning (ICML-10). 639–646.

Liu, A., G. Shi, S.-J. Chung, A. Anandkumar, and Y. Yue. (2020).
“Robust regression for safe exploration in control”. In: Learning for
Dynamics and Control. PMLR. 608–619.

Liu, D., H. Zhang, F. Wu, and Z.-J. Zha. (2019a). “Learning to Assemble
Neural Module Tree Networks for Visual Grounding”. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision
(ICCV).

Full text available at: http://dx.doi.org/10.1561/2500000049

References 81

Liu, H., K. Simonyan, and Y. Yang. (2019b). “DARTS: Differentiable
Architecture Search”. In: 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net. url: https://openreview.net/forum?id=
S1eYHoC5FX.

Liu, Y., Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan. (2021).
“A survey on evolutionary neural architecture search”. IEEE Trans-
actions on Neural Networks and Learning Systems.

Manhaeve, R., S. Dumancic, A. Kimmig, T. Demeester, and L. De Raedt.
(2018). “DeepProbLog: Neural probabilistic logic programming”.
Advances in Neural Information Processing Systems. 31: 3749–3759.

Manna, Z. and R. J. Waldinger. (1971). “Toward Automatic Program
Synthesis”. Communications of the ACM. 14(3): 151–165.

Mao, J., X. Zhang, Y. Li, W. T. Freeman, J. B. Tenenbaum, and J. Wu.
(2019). “Program-guided image manipulators”. In: Proceedings of
the IEEE International Conference on Computer Vision. 4030–4039.

Marcus, G. and E. Davis. (2019). Rebooting AI: Building artificial
intelligence we can trust. Pantheon.

Moldovan, T. M. and P. Abbeel. (2012). “Safe Exploration in Markov
Decision Processes”. In: Proceedings of the 29th International Con-
ference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK,
June 26 - July 1, 2012. icml.cc / Omnipress. url: http://icml.cc/
2012/papers/838.pdf.

Mooney, R. J. (2008). “Learning to Connect Language and Perception.”
In: AAAI. 1598–1601.

Moura, L. M. de and N. Bjørner. (2008). “Z3: An Efficient SMT Solver”.
In: TACAS. 337–340.

Murali, A. and P. Madhusudan. (2019). “Augmenting Neural Nets with
Symbolic Synthesis: Applications to Few-Shot Learning”. CoRR.
abs/1907.05878. arXiv: 1907.05878. url: http://arxiv.org/abs/1907.
05878.

Murali, V., L. Qi, S. Chaudhuri, and C. Jermaine. (2018). “Neural
Sketch Learning for Conditional Program Generation”. ICLR.

Neal, R. M. (2011). “MCMC Using Hamiltonian Dynamics”. In: Hand-
book of Markov Chain Monte Carlo. CRC Press. Chap. 5. doi:
10.1201/b10905-7.

Full text available at: http://dx.doi.org/10.1561/2500000049

https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
http://icml.cc/2012/papers/838.pdf
http://icml.cc/2012/papers/838.pdf
https://arxiv.org/abs/1907.05878
http://arxiv.org/abs/1907.05878
http://arxiv.org/abs/1907.05878
https://doi.org/10.1201/b10905-7

82 References

Parisotto, E., A. Mohamed, R. Singh, L. Li, D. Zhou, and P. Kohli.
(2017). “Neuro-Symbolic Program Synthesis”. In: 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net.

Polozov, O. and S. Gulwani. (2015). “FlashMeta: a framework for
inductive program synthesis”. In: ACM SIGPLAN Notices. Vol. 50.
No. 10. ACM. 107–126.

Ratner, A. J., C. M. De Sa, S. Wu, D. Selsam, and C. Ré. (2016). “Data
programming: Creating large training sets, quickly”. In: Advances
in neural information processing systems. 3567–3575.

Real, E., C. Liang, D. So, and Q. Le. (2020). “Automl-zero: Evolv-
ing machine learning algorithms from scratch”. In: International
Conference on Machine Learning. PMLR. 8007–8019.

Reed, S. and N. De Freitas. (2015). “Neural programmer-interpreters”.
arXiv preprint arXiv:1511.06279.

Riedel, S., M. Bosnjak, and T. Rocktäschel. (2016). “Programming with
a differentiable Forth interpreter”. CoRR, abs/1605.06640.

Sachan, M. and E. Xing. (2018). “Self-training for jointly learning to ask
and answer questions”. In: Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers).
629–640.

Sahoo, S. S., S. Venugopalan, L. Li, R. Singh, and P. F. Riley. (2020).
“Scaling Symbolic Methods using Gradients for Neural Model Ex-
planation”. CoRR. abs/2006.16322. url: https://arxiv.org/abs/
2006.16322.

Shah, A., E. Zhan, J. J. Sun, A. Verma, Y. Yue, and S. Chaudhuri.
(2020). “Learning Differentiable Programs with Admissible Neural
Heuristics”. In: Advances in Neural Information Processing Systems.

Shavlik, J. W. (1994). “Combining symbolic and neural learning”. Ma-
chine Learning. 14(3): 321–331.

Shin, R., M. Allamanis, M. Brockschmidt, and O. Polozov. (2019a).
“Program synthesis and semantic parsing with learned code idioms”.
In: Advances in Neural Information Processing Systems. 10825–
10835.

Full text available at: http://dx.doi.org/10.1561/2500000049

https://arxiv.org/abs/2006.16322
https://arxiv.org/abs/2006.16322

References 83

Shin, R., N. Kant, K. Gupta, C. Bender, B. Trabucco, R. Singh, and D.
Song. (2019b). “Synthetic Datasets for Neural Program Synthesis”.
In: 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net. url:
https://openreview.net/forum?id=ryeOSnAqYm.

Si, X., M. Raghothaman, K. Heo, and M. Naik. (2019). “Synthesizing
datalog programs using numerical relaxation”. In: IJCAI.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M.
Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I.
Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis. (2016). “Mastering the Game of Go with Deep
Neural Networks and Tree Search”. Nature. 529(7587): 484–489. doi:
10.1038/nature16961.

Smolensky, P., M. Lee, X. He, W. Yih, J. Gao, and L. Deng. (2016).
“Basic Reasoning with Tensor Product Representations”. CoRR.
abs/1601.02745. arXiv: 1601.02745. url: http://arxiv.org/abs/1601.
02745.

Solar-Lezama, A. (2009). “The Sketching Approach to Program Synthe-
sis”. In: Programming Languages and Systems, 7th Asian Symposium,
APLAS 2009, Seoul, Korea, December 14-16, 2009. Proceedings. 4–
13. doi: 10.1007/978-3-642-10672-9_3.

Solar-Lezama, A., L. Tancau, R. Bodík, S. A. Seshia, and V. A. Saraswat.
(2006). “Combinatorial sketching for finite programs”. In: ASPLOS.
404–415.

Srivastava, S., O. Polozov, N. Jojic, and C. Meek. (2020). “Learning
Web-based Procedures by Reasoning over Explanations and Demon-
strations in Context”. In: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. 7652–7662.

Sun, J. J., A. Kennedy, E. Zhan, D. J. Anderson, Y. Yue, and P.
Perona. (2021). “Task programming: Learning data efficient behavior
representations”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2876–2885.

Sun, J. J., A. Kennedy, E. Zhan, Y. Yue, and P. Perona. (2020). “Task
Programming: Learning Data Efficient Behavior Representations”.
arXiv preprint arXiv:2011.13917.

Full text available at: http://dx.doi.org/10.1561/2500000049

https://openreview.net/forum?id=ryeOSnAqYm
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1601.02745
http://arxiv.org/abs/1601.02745
http://arxiv.org/abs/1601.02745
https://doi.org/10.1007/978-3-642-10672-9_3

84 References

Sun, R. and F. Alexandre. (2013). Connectionist-symbolic integration:
From unified to hybrid approaches. Psychology Press.

Sundararajan, M., A. Taly, and Q. Yan. (2017). “Axiomatic Attribu-
tion for Deep Networks”. In: Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017. Ed. by D. Precup and Y. W. Teh. Vol. 70.
Proceedings of Machine Learning Research. PMLR. 3319–3328.

Sutton, R. S., D. Precup, and S. Singh. (1999). “Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement
learning”. Artificial intelligence. 112(1-2): 181–211.

Taori, R., A. Dave, V. Shankar, N. Carlini, B. Recht, and L. Schmidt.
(2020). “Measuring robustness to natural distribution shifts in image
classification”. Advances in Neural Information Processing Systems.
33.

Tavares, Z., J. Burroni, E. Minasyan, A. Solar-Lezama, and R. Ran-
ganath. (2019). “Predicate Exchange: Inference with Declarative
Knowledge”. In: Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA. Ed. by K. Chaudhuri and R. Salakhutdinov. Vol. 97.
Proceedings of Machine Learning Research. PMLR. 6186–6195. url:
http://proceedings.mlr.press/v97/tavares19a.html.

Taylor, L. and G. Nitschke. (2017). “Improving deep learning using
generic data augmentation”. arXiv preprint arXiv:1708.06020.

Tjandrasuwita, M., J. J. Sun, A. Kennedy, S. Chaudhuri, and Y. Yue.
(2021). “Interpreting Expert Annotation Differences in Animal Be-
havior”. CoRR. abs/2106.06114. arXiv: 2106.06114. url: https:
//arxiv.org/abs/2106.06114.

Torlak, E. and R. Bodik. (2013). “Growing solver-aided languages with
Rosette”. In: Proceedings of the 2013 ACM international symposium
on New ideas, new paradigms, and reflections on programming &
software. ACM. 135–152.

Towell, G. G. and J. W. Shavlik. (1993). “Extracting refined rules from
knowledge-based neural networks”. Machine learning. 13(1): 71–101.

Full text available at: http://dx.doi.org/10.1561/2500000049

http://proceedings.mlr.press/v97/tavares19a.html
https://arxiv.org/abs/2106.06114
https://arxiv.org/abs/2106.06114
https://arxiv.org/abs/2106.06114

References 85

Towell, G. G., J. W. Shavlik, and M. O. Noordewier. (1990). “Refine-
ment of approximate domain theories by knowledge-based neural
networks”. In: Proceedings of the eighth National conference on
Artificial intelligence. Vol. 861866. Boston, MA.

Udrescu, S.-M. and M. Tegmark. (2020). “AI Feynman: A physics-
inspired method for symbolic regression”. Science Advances. 6(16):
eaay2631.

Udupa, A., A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M.
Martin, and R. Alur. (2013). “TRANSIT: specifying protocols with
concolic snippets”. ACM SIGPLAN Notices. 48(6): 287–296.

Valiant, L. G. (1984). “A theory of the learnable”. Communications of
the ACM. 27(11): 1134–1142.

Valkov, L., D. Chaudhari, A. Srivastava, C. Sutton, and S. Chaudhuri.
(2018). “HOUDINI: Lifelong Learning as Program Synthesis”. In:
Advances in Neural Information Processing Systems. 8701–8712.

Vedantam, R., K. Desai, S. Lee, M. Rohrbach, D. Batra, and D. Parikh.
(2019). “Probabilistic Neural-symbolic Models for Interpretable Vi-
sual Question Answering”. In: ICML.

Verma, A., H. M. Le, Y. Yue, and S. Chaudhuri. (2019). “Imitation-
Projected Programmatic Reinforcement Learning”. In: Neural In-
formation Processing Systems (NeurIPS).

Verma, A., V. Murali, R. Singh, P. Kohli, and S. Chaudhuri. (2018).
“Programmatically Interpretable Reinforcement Learning”. In: Pro-
ceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018. 5052–5061.

Wang, P., P. L. Donti, B. Wilder, and J. Z. Kolter. (2019). “SATNet:
Bridging deep learning and logical reasoning using a differentiable
satisfiability solver”. In: Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA. 6545–6554.

Wang, X. and J. Schneider. (2014). “Flexible transfer learning under sup-
port and model shift”. Advances in Neural Information Processing
Systems. 27: 1898–1906.

Full text available at: http://dx.doi.org/10.1561/2500000049

86 References

Xu, D., S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese.
(2018). “Neural task programming: Learning to generalize across
hierarchical tasks”. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 3795–3802.

Yosinski, J., J. Clune, Y. Bengio, and H. Lipson. (2014). “How transfer-
able are features in deep neural networks?” In: Advances in neural
information processing systems. 3320–3328.

Young, H., O. Bastani, and M. Naik. (2019). “Learning neurosym-
bolic generative models via program synthesis”. arXiv preprint
arXiv:1901.08565.

Zhan, E., J. J. Sun, A. Kennedy, Y. Yue, and S. Chaudhuri.
(2021). “Unsupervised Learning of Neurosymbolic Encoders”. CoRR.
abs/2107.13132. arXiv: 2107.13132. url: https://arxiv.org/abs/
2107.13132.

Zhan, E., A. Tseng, Y. Yue, A. Swaminathan, and M. Hausknecht.
(2020). “Learning Calibratable Policies using Programmatic Style-
Consistency”. In: International Conference on Machine Learning.
PMLR. 11001–11011.

Zhang, X., A. Solar-Lezama, and R. Singh. (2018). “Interpreting Neural
Network Judgments via Minimal, Stable, and Symbolic Correc-
tions”. In: Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada. Ed. by S.
Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett. 4879–4890.

Zhu, H., Z. Xiong, S. Magill, and S. Jagannathan. (2019). “An inductive
synthesis framework for verifiable reinforcement learning”. In: Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, Phoenix, AZ,
USA, June 22-26, 2019. Ed. by K. S. McKinley and K. Fisher. ACM.
686–701.

Full text available at: http://dx.doi.org/10.1561/2500000049

https://arxiv.org/abs/2107.13132
https://arxiv.org/abs/2107.13132
https://arxiv.org/abs/2107.13132

