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ABSTRACT

We survey recent work on neurosymbolic programming, an
emerging area that bridges the areas of deep learning and
program synthesis. Like in classic machine learning, the
goal here is to learn functions from data. However, these
functions are represented as programs that can use neural
modules in addition to symbolic primitives and are induced
using a combination of symbolic search and gradient-based
optimization.

Neurosymbolic programming can offer multiple advantages
over end-to-end deep learning. Programs can sometimes
naturally represent long-horizon, procedural tasks that are
difficult to perform using deep networks. Neurosymbolic
representations are also, commonly, easier to interpret and
formally verify than neural networks. The restrictions of
a programming language can serve as a form of regular-
ization and lead to more generalizable and data-efficient

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-
Lezama and Yisong Yue (2021), “Neurosymbolic Programming”, Foundations
and Trends® in Programming Languages: Vol. 7, No. 3, pp 158–243. DOI:
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2

learning. Compositional programming abstractions can also
be a natural way of reusing learned modules across learning
tasks.

In this monograph, we illustrate these potential benefits
with concrete examples from recent work on neurosymbolic
programming. We also categorize the main ways in which
symbolic and neural learning techniques come together in
this area. We conclude with a discussion of the open technical
challenges in the field.
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1
Introduction

The last decade has seen breathtaking progress in the field of deep
learning. Every few months, the media is abuzz with tales of a deep
neural network conquering yet another milestone in artificial intelligence
(AI). Deep learning systems such as AlphaGo (Silver et al., 2016), the
deep reinforcement learning agent that defeated a world champion in
the game of Go, and GPT-3 (Brown et al., 2020), the neural language
model with 175 billion trainable parameters and the ability to generate
stunningly human-like text, are now part of folklore.

At the same time, concerns remain about the use of deep neural
networks in real-world problem domains (Marcus and Davis, 2019). In
applications such as autonomous robotics and the natural sciences, it
is important for learning models to be interpretable. However, neural
networks are black boxes for most practical purposes. While modern
neural networks are obtained through the composition of many layers, it
is nearly impossible to assign responsibility for a network’s capabilities
to specific layers. This makes it difficult to reuse components of a
network in the way that is possible for traditional, human-written
software. Finally, the training process for neural networks is entirely
data-driven and must learn even the most basic forms of human-held

3
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4 Introduction

knowledge from data. Such training usually takes very large volumes of
data. Also, commonly, their results depend on low-level facets of the
training environment, and the networks they learn can fare poorly on
inputs that fall even slightly outside the training distribution.

More fundamentally, as Bengio argues in his Turing lecture (Bengio,
2019), deep learning primarily automates what Kahneman (Kahneman,
2011) calls System 1 thinking: intuitive, fast, and unconscious pattern
recognition. However, human cognition also includes System 2 thinking,
which is slow, logical, and algorithmic. Bengio points out that AI systems
of the future would need to also automate such thought.

Of course, the symbolic AI tradition, which dominated AI for several
decades, had invested heavily on automating System 2 thought. This tra-
dition modeled the world using symbolic rules and logical assertions and
used symbolic methods like heuristic search and automated deduction
to construct inferences and plans. Unfortunately, capturing the world
entirely using rules and logic proved difficult, not least because it was
difficult to model uncertain and ambiguous knowledge in such notations.
Also, classical symbolic methods did not have a mechanism to handle
sensory inputs. Finally, discrete reasoning is an NP-hard problem, and
algorithms for tasks such as planning and theorem-proving could only
scale so far. As a result, bottom-up, data-driven methods ended up
eclipsing these methods.

However, as integrating System 1 and System 2 thought becomes
more important, an emerging body of work on neurosymbolic machine
learning is seeking to couple classical symbolic algorithms with contem-
porary deep learning techniques. The resulting whole is often greater
than the sum of its parts. For example, the neural component of such
a method can help the method’s symbolic component scale better, by
guiding the latter’s discrete decisions. The neural component can also
handle lower-level sensory processing and allow the symbolic algorithm
to operate on perceptual inputs. Conversely, the symbolic component
can often serve as a regularizer that helps the neural component learn
better, and provide a level of interpretability and trust that would be
impossible with a purely neural method.

In particular, there is an emerging body of work on neurosym-
bolic learning that lies at the interface of deep learning and program
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1.1. What is Neurosymbolic Programming? 5

synthesis (Gulwani et al., 2017). We refer to this literature as Neurosym-
bolic Programming. The purpose of this monograph is to survey recent
developments in this area.

1.1 What is Neurosymbolic Programming?

Neurosymbolic programming, as we define the term, is a generaliza-
tion of classic program synthesis. The goal in program synthesis is
to automatically discover programs from high-level task specifications.
Traditionally, the specifications are hard logical constraints, for example,
tests that need to be satisfied exactly, pre-postcondition pairs, or tem-
poral logic formulas. The programs are structured, symbolic terms that
follow the syntax of a domain-specific language (DSL). The discovery
of programs is based on a combination of combinatorial search and
automated reasoning (Gulwani et al., 2017).

By contrast, programs in neurosymbolic programming can have both
neural and symbolic elements. The synthesis objective may include hard
constraints like in classic program synthesis. However, neurosymbolic
programming also incorporates into the picture the standard objec-
tive of machine learning: finding a function that fits a given dataset
approximately and generalizes to unseen inputs.

Now we delineate the boundaries of neurosymbolic programming
more precisely. Let us define a symbolic component as a function that
comes with a symbolic implementation, or at least, a (possibly incom-
plete) symbolic specification of its functionality. In contrast, a neural
component is a (typically over-)parameterized, differentiable blackbox
function that does not have an a priori specification.

Composition is a fundamental operation in both traditional pro-
gramming and deep learning. However, there is a key difference between
composition in the two settings. In traditional programming, compo-
sition requires that certain requirements hold at the interface of the
components being composed. No such requirement exists at the interface
of different layers in deep learning. Let us designate the former kind of
composition as symbolic. We consider a neurosymbolic program to be a
program that uses neural components and either symbolic components
or symbolic compositions.

Full text available at: http://dx.doi.org/10.1561/2500000049



6 Introduction

A neurosymbolic learning algorithm is a mechanism for program
synthesis that uses deep representations and gradient-based optimization
as well as symbolic methods such as search and automated deduction.
Such an algorithm must discover the program’s discrete structure, or
architecture. In addition, the algorithm must discover the program’s
real-valued parameters (for example, parameters of the program’s neural
modules), if any. The task specification that directs this search could
include hard constraints like in classic program synthesis. Commonly,
however, it also includes a quantitative loss function derived from, for
example, labeled data or reward functions. The goal of the algorithm
is to find a program that optimizes the loss while obeying the hard
constraints.

The sets of methods that target neurosymbolic programs and use
neurosymbolic learning algorithms are overlapping but not identical.
In particular, there are methods that use neurosymbolic algorithms to
discover symbolic programs, and methods that synthesize neurosymbolic
programs using purely symbolic or purely neural methods. In this paper,
we take a broad perspective and consider neurosymbolic programming
to be the study of the union of the two sets.

We leave out of the scope of this paper models such as Neural Turing
Machines (Graves et al., 2014) and Neural Stack Machines (Grefenstette
et al., 2015). These models are inspired by classic models of programming,
such as Turing Machines and stack machines, and have certain program-
like capabilities (for example, Neural Turing Machines can perform
reads and writes to a differentiable memory). However, these models
are not learned using neurosymbolic algorithms. Also, they do not
impose human-comprehensible specifications on the interfaces between
model components and cannot be naturally decomposed into high-level
modules.

Neither do we consider Tensor Product Representations (Smolensky
et al., 2016), which provide a symbolically inspired inductive bias in
neural networks, to be an example of neurosymbolic programming.
This is because such a model cannot be naturally interpreted as a
program even when the network implements a programmatic task. Also
outside our scope are Neural Programmer Interpreters (Reed and De
Freitas, 2015), which are recurrent neural networks that learn to execute
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1.2. Benefits Over Deep Learning 7

programs, and neural models for combinatorial tasks such as MAX-SAT
solving (Wang et al., 2019). That said, all of these models are closely
related to neurosymbolic programming, and future work may integrate
them with approaches that we discuss in this monograph.

1.2 Benefits Over Deep Learning

Neurosymbolic programming has multiple potential benefits over end-
to-end deep learning. In general, by virtue of their modularity and use
of symbolic primitives, neurosymbolic programs are closer to human-
written code than deep networks. Because of this, neurosymbolic pro-
gramming can provide a means for interpretable learning, especially
when the learning algorithm being used is biased towards models that
are “more symbolic” and structurally simpler.

Symbolic abstractions can also simplify the automated analysis of
models. Over the last few years, there have been many efforts on algo-
rithmic analysis of the safety and robustness of neural networks (Katz
et al., 2017; Gehr et al., 2018; Anderson et al., 2019). To a significant
extent, these methods are adaptations of methods for quality assurance
of traditional software. Unfortunately, analyzing even simple proper-
ties of deep neural networks is NP-hard, and scaling these analysis
methods to real-world neural networks is difficult. In contrast, recent
work on certifiable learning reduces (Anderson et al., 2020) the safety
and robustness analysis of certain specialized neurosymbolic models to
the analysis of its (simpler, more compact) symbolic components. The
latter task can be done relatively easily with existing software analysis
techniques.

Neurosymbolic programming gives human users a mechanism to
guide the learning process, and this can lead to more reliable learning.
For example, in recent work in the reinforcement learning setting (Cheng
et al., 2019), a (deep) learning algorithm is given a human-provided
function (program) that performs a task, albeit not optimally, and
tasked with improving the performance of this program. The resulting
learning process has lower statistical variance than one in which the
task is entirely learned from data. If the prior is of reasonable quality,
this strategy can lead to greater overall performance as well.

Full text available at: http://dx.doi.org/10.1561/2500000049



8 Introduction

Also, a key advantage of high-level programming abstractions is that
they tend to be compositional, i.e., allow the structured creation of larger
programs using smaller modules. This enables a principled mechanism
of transferring knowledge (Valkov et al., 2018) across learning tasks:
one can train a model in one task and reuse it in another task in the
way a human programmer would use a library module. This mechanism
is a generalization of a popular family of transfer learning techniques
in deep learning, which commonly reuse network layers with frozen
weights across tasks (Yosinski et al., 2014).

Finally, higher-level programming abstractions can reduce the su-
pervision effort needed for learning. In supervised learning settings
such as image classification, one requires human users to label training
inputs, and this can get expensive. In contrast, in the data programming
paradigm (Ratner et al., 2016), the user writes labeling programs that
can automatically produce labels for inputs. Such programs are easy to
write or automatically synthesize in many domains (Zhan et al., 2020;
Sun et al., 2020). When they are available, they can drastically reduce
the cost of learning.

1.3 Why Now?

The idea of combining neural and symbolic methods has a long his-
tory in AI research (Sun and Alexandre, 2013; Garcez et al., 2002). In
knowledge-based neural networks, an early example of a neurosymbolic
model (Towell et al., 1990), a set of hand-written symbolic rules were
compiled into a neural network, which is then refined using data. It was
shown that such neural networks are more data-efficient and tend to
generalize better than classic neural networks. There were complemen-
tary efforts that extracted symbolic models, such as rules (Towell and
Shavlik, 1993) and finite automata (Giles et al., 1992), out of neural
networks, essentially performing a form of program synthesis. Unifying
these two strands of work, Shavlik, 1994 proposed a general learning
framework in which an initial neural network, constructed using sym-
bolic knowledge, is refined using data, and new symbolic knowledge
is extracted from this refined network. These ideas were embodied,
and taken further, in the Connectionist Inductive Learning and Logic

Full text available at: http://dx.doi.org/10.1561/2500000049



1.4. Algorithmic Approaches 9

Programming system (Garcez and Zaverucha, 1999), which integrated
logic programming and neural networks. These approaches certainly fit
the category of neurosymbolic programming as defined in this paper.

While the first wave of neurosymbolic programming produced many
interesting ideas, the practical impact of this line of work was limited.
However, the current moment feels especially appropriate for resurrect-
ing this area. For one, AI is increasingly deployed in real-world problems
in which safety, reliability, and interpretability are important, and there
is growing awareness about the limitations of pure deep learning in these
problems. This opens up a window of opportunity for neurosymbolic
methods. (Indeed, as we describe in Section 1.5, neurosymbolic methods
are already making inroads into these tasks.)

Second, we now have access to much larger datasets and computa-
tional power than we did in the 1990s. This fact was key to the revival
of neural networks as a research area, and it can help neurosymbolic
programming as well. Finally, in the recent past, there has been signifi-
cant progress on symbolic program synthesis, and new ways of coupling
gradient-based and combinatorial search have emerged. As we show in
this monograph, a new wave of research on neurosymbolic programming
is already beginning to build on this progress.

1.4 Algorithmic Approaches

The fundamental challenge in neurosymbolic programming is that here,
one must search through a combinatorial, and quickly exploding, space
of program architectures. Worse, for each architecture explored in such
a search, one must often perform high-dimensional continuous opti-
mization to find optimal parameters for the neural modules appearing
in the architecture. Nevertheless, over the last few years, researchers
have discovered multiple new lines of attack on this problem, and some
unifying themes are beginning to emerge in this area.

For example, one set of methods for neurosymbolic programming
uses a neural network to learn to synthesize programs, i.e., direct a
search process over program architectures (Balog et al., 2016; Murali
et al., 2018). The network is trained using metalearning, from data that
relates a set of tasks to programs that solve the tasks. Once a program
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architecture is generated, its lower-level parameters can be found using
neural or symbolic methods.

A second category of methods, which we call learning to specify (Ellis
et al., 2018b), determine how to generalize incomplete or ambiguous
task specifications to more complete specifications. These complete spec-
ifications are then used to direct a program synthesis process. A third
category uses neural relaxations of a nonsmooth set of programs (Shah et
al., 2020). This space could consist of programs with completely different
architectures. However, since a program is ultimately a representation of
a function, the parameters of a neural network can (approximately) rep-
resent it. A final body of methods goes in the other direction, distilling
a smooth neural function (Verma et al., 2018) into a discrete program
whose behavior approximately matches the network’s. We discuss all of
these methods in more depth in Section 2 and Section 4.

1.5 Applications

The algorithmic innovations sketched above are already beginning to
impact real-world applications. Now we sketch some of these applications.
Given the increased deployment of machine learning in domains in which
trust and procedural reasoning are important, we expect many more
such applications to emerge in the coming years.

Scientific Discovery. Building learning algorithms that discover new
scientific hypotheses and guide experiments is a grand challenge in
AI. Such algorithms must respect constraints known to hold in the
world and produce outputs that scientists can interpret. This makes
neurosymbolic programming a natural fit to this space.

As a concrete example, Cranmer et al. (2020) propose a method for
symbolic regression — the automatic discovery of symbolic equations
from data — and apply it to a task in cosmology (dark matter predic-
tion). Also, several recent efforts use neurosymbolic programming in
behavior analysis of lab animals. For instance, Sun et al. (2020) use
a neurosymbolic method to embed videos of lab animals into lower-
dimensional representations. Shah et al. (2020) use neurosymbolic pro-
gramming to classify sequential animal behaviors. Zhan et al. (2021)
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1.5. Applications 11

use neurosymbolic representation learning for interpretable clustering of
such behaviors. Tjandrasuwita et al. (2021) learn interpretable programs
that describe divergences between different human experts annotating
behaviors.

Programming Systems. There has been significant recent interest
in machine-learning-based assistants for software developers. Purely
neural tools often struggle with understanding the complex, logical
semantics of software, which are sensitive to even the smallest changes
in syntax. Neurosymbolic programming is a natural way to overcome
this issue given that symbolic methods have long been used successfully
in program analysis.

For example, the Bayou system (Murali et al., 2018) automatically
completes Java methods given a few keywords that appear in the
method. The Patois system (Shin et al., 2019a) uses neurosymbolic
programming to semantically parse text into code. Ellis et al. (2018b)
simplifies graphics programming with a method to synthesize graphics
code from a given picture.

Dialog Systems. Task-oriented dialog systems assist users with specific
goals through a natural language interface. As digital assistants, they
facilitate travel booking, database question answering, scheduling, and
much more. The key challenge of task-oriented dialog is state tracking

— identifying the user’s intent and parameters in each dialog act, and
using them to drive the system’s actions. Fundamentally, dialog state is
an intermediate symbolic representation that depends on complex, high-
dimensional semantic context, namely dialog history and the underlying
knowledge base or API. Thereby, neurosymbolic programming is a
natural choice for modeling dialog state, successfully applied in many
domains. For example, Andreas et al. (2020) design a calendar assistant
in which scheduling actions, dialog corrections, and exceptions are
represented as compositional programs, synthesized by neurosymbolic
models in context.

Process Automation. The field of robotic process automation (RPA)
aims to automate procedural GUI workflows to facilitate business digi-
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12 Introduction

tization and software testing. RPA agents interact with Web browsers,
GUI applications, and APIs to accomplish the user’s parameterized
tasks. They are typically pretrained for each task using natural language
commands, UI-grounded demonstrations, task completion rewards, or
some combination thereof.

In RPA, the agent’s state and action spaces are enormous – the
current screen or Web page defines the state and the action space in-
cludes all possible interactions with its elements. Learning a robust and
interpretable RPA agent is challenging even from grounded demonstra-
tions as supervision. Instead, recent approaches leverage neurosymbolic
programming and model the agent as a neurosymbolic task program.
For example, Srivastava et al. (2020) combine neural language model-
ing with inductive program synthesis Gulwani et al., 2017 to learn a
generative model of programs that both guarantees consistency with
the demonstrations and optimizes natural language alignment.

Robotics and Control. When designing policies or controllers for
autonomous embodied systems, factors such as safety and data efficiency
become paramount. For both low-level control and high-level planning
problems, the standard practice has been to leverage symbolic domain
knowledge (e.g., the governing equations of motion for the system,
or an automaton representation of the high-level states) to design
structured models that have certifiable guarantees, good generalization,
or both (e.g., Verma et al. (2019)). An emerging research direction
is to automatically learn or discover the structure of the symbolic
knowledge (e.g., Xu et al. (2018)), which can be viewed as an instance
of neurosymbolic programming.

1.6 Roadmap

The rest of this monograph is organized as follows. In Section 2, we
give an overview of the landscape of recent research on neurosymbolic
programming. Section 3 describes in some depth the main motivating
goals for research in this area, along with concrete examples of how
recent research is addressing these goals. In Section 4, we discuss some of
the common themes in learning algorithms for neurosymbolic programs.
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We conclude with a discussion of future challenges in the area in Section
5.
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