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ABSTRACT

Deep learning has transformed the way we think of software
and what it can do. But deep neural networks are fragile
and their behaviors are often surprising. In many settings,
we need to provide formal guarantees on the safety, security,
correctness, or robustness of neural networks. This mono-
graph covers foundational ideas from formal verification and
their adaptation to reasoning about neural networks and
deep learning.

The author’s name in native alphabet is

Aws Albarghouthi (2021), “Introduction to Neural Network Verification”, Founda-
tions and Trends® in Programming Languages: Vol. 7, No. 1-2, pp 1–157. DOI:
10.1561/2500000051.
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About This Monograph

Why This Monograph?
Over the past decade, a number of hardware and software advances
have conspired to thrust deep learning and neural networks to the
forefront of computing. Deep learning has created a qualitative shift
in our conception of what software is and what it can do: Every day
we’re seeing new applications of deep learning, from healthcare to art,
and it feels like we’re only scratching the surface of a universe of new
possibilities.

It is thus safe to say that deep learning is here to stay, in one form or
another. The line between software 1.0 (that is, manually written code)
and software 2.0 (learned neural networks) is getting fuzzier and fuzzier,
and neural networks are participating in safety-critical, security-critical,
and socially critical tasks. Think, for example, healthcare, self-driving
cars, malware detection, etc. But neural networks are fragile and so
we need to prove that they are well-behaved when applied in critical
settings.

Over the past few decades, the formal methods community has
developed a plethora of techniques for automatically proving properties
of programs, and, well, neural networks are programs. So there is a
great opportunity to port verification ideas to the software 2.0 setting.
This monograph offers the first introduction of foundational ideas from
automated verification as applied to deep neural networks and deep

i

Full text available at: http://dx.doi.org/10.1561/2500000051



ii

learning. I hope that it will inspire verification researchers to explore
correctness in deep learning and deep learning researchers to adopt
verification technologies.

Who Is This Monograph For?
Given that the monograph’s subject matter sits at the intersection of
two pretty much disparate areas of computer science, one of my main
design goals was to make it as self-contained as possible. This way
the monograph can serve as an introduction to the field for first-year
graduate students or senior undergraduates, even if they have not been
exposed to deep learning or verification. For a comprehensive survey of
verification algorithms for neural networks, along with implementations,
I direct the reader to Liu et al. (2021).

What Does This Monograph Cover?
The monograph is divided into three parts:

Part 1 defines neural networks as data-flow graphs of operators
over real-valued inputs. This formulation will serve as our basis for
the rest of the monograph. Additionally, we will survey a number
of correctness properties that are desirable of neural networks and
place them in a formal framework.

Part 2 discusses constraint-based techniques for verification. As the
name suggests, we construct a system of constraints and solve it to
prove (or disprove) that a neural network satisfies some properties
of interest. Constraint-based verification techniques are also referred
to as complete verification in the literature.

Part 3 discusses abstraction-based techniques for verification. In-
stead of executing a neural network on a single input, we can actually
execute it on an infinite set and show that all of those inputs satisfy
desirable correctness properties. Abstraction-based techniques are
also referred to as approximate verification in the literature.

Parts 2 and 3 are disjointed; the reader may go directly from Part 1 to
Part 3 without losing context.
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1
A New Beginning

He had become so caught up in building sentences that he
had almost forgotten the barbaric days when thinking was
like a splash of color landing on a page.

—Edward St. Aubyn, Mother’s Milk

1.1 It Starts With Turing
This monograph is about verifying that a neural network behaves accord-
ing to some set of desirable properties. These fields of study, verification
and neural networks, have been two distinct areas of computing research
with almost no bridges connecting them, until very recently. Intriguingly,
however, both fields trace their genesis to a two-year period of Alan
Turing’s tragically short life.

In 1949, Turing wrote a little-known paper titled Checking a Large
Routine (Turing, 1949). It was a truly forward-looking piece of work.
In it, Turing asks how can we prove that the programs we write do
what they are supposed to do? Then, he proceeds to provide a proof of

Quote found in William Finnegan’s Barbarian Days.

2
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1.2. The Rise of Deep Learning 3

correctness of a program implementing the factorial function. Specifically,
Turing proved that his little piece of code always terminates and always
produces the factorial of its input. The proof is elegant; it breaks
down the program into single instructions, proves a lemma for every
instruction, and finally stitches the lemmas together to prove correctness
of the full program. Until this day, proofs of programs very much follow
Turing’s proof style from 1949. And, as we shall see in this monograph,
proofs of neural networks will, too.

Just a year before Turing’s proof of correctness of factorial, in 1948,
Turing wrote a perhaps even more farsighted paper, Intelligent Ma-
chinery, in which he proposed unorganized machines.1 These machines,
Turing argued, mimic the infant human cortex, and he showed how
they can learn using what we now call a genetic algorithm. Unorga-
nized machines are a very simple form of what we now know as neural
networks.

1.2 The Rise of Deep Learning
The topic of training neural networks continued to be studied since
Turing’s 1948 paper. But it has only exploded in popularity over the
past decade, thanks to a combination algorithmic insights, hardware
developments, and a flood of data for training.

Modern neural networks are called deep neural networks, and the
approach to training these neural networks is deep learning. Deep learn-
ing has enabled incredible improvements in complex computing tasks,
most notably in computer vision and natural-language processing, for
example, in recognizing objects and people in an image and translat-
ing between languages. Everyday, a growing research community is
exploring ways to extend and apply deep learning to more challenging
problems, from music generation to proving mathematical theorems
and beyond.

The advances in deep learning have changed the way we think
of what software is, what it can do, and how we build it. Modern
software is increasingly becoming a menagerie of traditional, manually

1Intelligent Machinery is reprinted in Turing (1969).
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4 A New Beginning

written code and automatically trained—sometimes constantly learning—
neural networks. But deep neural networks can be fragile and produce
unexpected results. As deep learning becomes used more and more in
sensitive settings, like autonomous cars, it is imperative that we verify
these systems and provide formal guarantees on their behavior. Luckily,
we have decades of research on program verification that we can build
upon, but what exactly do we verify?

1.3 What do We Expect of Neural Networks?
In Turing’s proof of correctness of his factorial program, Turing was
concerned that we will be programming computers to perform mathe-
matical operations, but we could be getting them wrong. So in his proof
he showed that his implementation of factorial is indeed equivalent
to the mathematical definition. This notion of program correctness is
known as functional correctness, meaning that a program is a faithful
implementation of some mathematical function. Functional correctness
is incredibly important in many settings—think of the disastrous effects
of a buggy implementation of a cryptographic primitive or an aircraft
controller.

In the land of deep learning, proving functional correctness is an
unrealistic task. What does it mean to correctly recognize cats in an
image or correctly translate English to Hindi? We cannot mathematically
define such tasks. The whole point of using deep learning to do tasks like
translation or image recognition is because we cannot mathematically
capture what exactly they entail.

So what now? Is verification out of the question for deep neural
networks? No! While we cannot precisely capture what a deep neural
network should do, we can often characterize some of its desirable or
undesirable properties. Let’s look at some examples of such properties.

Robustness
The most-studied correctness property of neural networks is robustness,
because it is generic in nature and deep learning models are infamous
for their fragility (Szegedy et al., 2014). Robustness means that small

Full text available at: http://dx.doi.org/10.1561/2500000051



1.3. What do We Expect of Neural Networks? 5

perturbations to inputs should not result in changes to the output of the
neural network. For example, changing a small number of pixels in my
photo should not make the network think that I am a cupboard instead
of a person, or adding inaudible noise to a recording of my lecture should
not make the network think it is a lecture about the Ming dynasty in the
15th century. Funny examples aside, lack of robustness can be a safety
and security risk. Take, for instance, an autonomous vehicle following
traffic signs using cameras. It has been shown that a light touch of
vandalism to a stop sign can cause the vehicle to miss it, potentially
causing an accident (Eykholt et al., 2018). Or consider the case of a
neural network for detecting malware. We do not want a minor tweak
to the malware’s binary to cause the detector to suddenly deem it safe
to install.

Safety
Safety is a broad class of correctness properties stipulating that a pro-
gram should not get to a bad state. The definition of bad depends on
the task at hand. Consider a neural-network-operated robot working
in some kind of plant. We might be interested in ensuring that the
robot does not exceed certain speed limits, to avoid endangering human
workers, or that it does not go to a dangerous part of the plant. Another
well-studied example is a neural network implementing a collision avoid-
ance system for aircrafts (Katz et al., 2017). One property of interest
is that if an intruding aircraft is approaching from the left, the neural
network should decide to turn the aircraft right.

Consistency
Neural networks learn about our world via examples, like images. As
such, they may sometimes miss basic axioms, like physical laws, and
assumptions about realistic scenarios. For instance, a neural network
recognizing objects in an image and their relationships might say that
object A is on top of object B, B is on top of C, and C is on top of A.
But this cannot be! (At least not in the world as we know it.)

For another example, consider a neural network tracking players
on the soccer field using a camera. It should not in one frame of video

Full text available at: http://dx.doi.org/10.1561/2500000051



6 A New Beginning

say that Ronaldo is on the right side of the pitch and then in the next
frame say that Ronaldo is on the left side of the pitch—Ronaldo is fast,
yes, but he has slowed down in the last couple of seasons.

Looking Ahead
I hope that I have convinced you of the importance of verifying properties
of neural networks. In the next two sections, we will formally define
what neural networks look like (spoiler: they are ugly programs) and
then build a language for formally specifying correctness properties of
neural networks, paving the way for verification algorithms to prove
these properties.

Full text available at: http://dx.doi.org/10.1561/2500000051



2
Neural Networks as Graphs

There is no rigorous definition of what deep learning is and what it
is not. In fact, at the time of writing this, there is a raging debate
in the artificial intelligence community about a clear definition. In
this section, we will define neural networks generically as graphs of
operations over real numbers. In practice, the shape of those graphs,
called the architecture, is not arbitrary: Researchers and practitioners
carefully construct new architectures to suit various tasks. For example,
at the time of writing, neural networks for image recognition typically
look different from those for natural language tasks.

First, we will informally introduce graphs and look at some popular
architectures. Then, we will formally define graphs and their semantics.

2.1 The Neural Building Blocks
A neural network is a graph where each node performs an operation.
Overall, the graph represents a function from vectors of real numbers
to vectors of real numbers, that is, a function in Rn → Rm. Consider
the following very simple graph.
The red node is an input node; it just passes input x, a real number,
to node v. Node v performs some operation on x and spits out a value

7
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8 Neural Networks as Graphs

x v y

Figure 2.1: A very simple neural network

that goes to the output node y. For example, v might simply return
2x + 1, which we will denote as the function fv : R→ R:

fv(x) = 2x + 1

In our model, the output node may also perform some operation, for
example,

fy(x) = max(0, x)

Taken together, this simple graph encodes the following function f :
R→ R:

f(x) = fy(fv(x)) = max(0, 2x + 1)

Transformations and Activations
The function fv in our example above is affine: simply, it multiplies
inputs by constant values (in this case, 2x) and adds constant values (in
this case, 1). The function fy is an activation function, because it turns
on or off depending on its input. When its input is negative, fy outputs
0 (off), otherwise it outputs its input (on). Specifically, fy, illustrated
in Figure 2.2, is called a rectified linear unit (ReLU), and it is a very
popular activation function in modern deep neural networks (Nair and
Hinton, 2010). Activation functions are used to add non-linearity into a
neural network.

There are other popular activation functions, for example, sigmoid,

σ(x) = 1
1 + exp(−x)

whose output is bounded between 0 and 1, as shown in Figure 2.3.
Often, in the literature and practice, the affine functions and the

activation function are composed into a single operation. Our graph
model of neural networks can capture that, but we usually prefer to
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2.1. The Neural Building Blocks 9

x

relu(x)

Figure 2.2: Rectified linear unit

−4 −2 2 4

0.5

Figure 2.3: Sigmoid function

separate the two operations on to two different nodes of the graph, as
it will simplify our life in later sections when we start analyzing those
graphs.

Universal Approximation
What is so special about these activation functions? The short answer
is they work in practice, in that they result in neural networks that are
able to learn complex tasks. It is also very interesting to point out that
you can construct a neural network comprised of ReLUs or sigmoids
and affine functions to approximate any continuous function. This is
known as the universal approximation theorem (Hornik et al., 1989),
and in fact the result is way more general than ReLUs and sigmoids—
nearly any activation function you can think of works, as long as it is
not polynomial! (Leshno et al., 1993) For an interactive illustration of
universal approximation, I highly recommend Nielsen (2018, Ch.4).
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10 Neural Networks as Graphs

2.2 Layers and Layers and Layers
In general, a neural network can be a crazy graph, with nodes and
arrows pointing all over the place. In practice, networks are usually
layered. Take the graph in Figure 2.4. Here we have 3 inputs and 3

x1

x2

x3

a1

a2

a3

y1

y2

y3

Figure 2.4: A multilayer perceptron

outputs, denoting a function in R3 → R3. Notice that the nodes of the
graph form layers, the input layer, the output layer, and the layer in
the middle which is called the hidden layer. This form of graph—or
architecture—has the grandiose name of multilayer perceptron (mlp).
Usually, we have a bunch of hidden layers in an mlp; Figure 2.5 shows a
mlp with two hidden layers. Layers in an mlp are called fully connected

x1

x2

x3

v1

v2

v3

v4

v5

v6

y1

y2

y3

Figure 2.5: A multilayer perceptron with two hidden layers

layers, since each node receives all outputs from the preceding layer.
Neural networks are typically used as classifiers: they take an input,

e.g., pixels of an image, and predict what the image is about (the
image’s class). When we are doing classification, the output layer of
the mlp represents the probability of each class, for example, y1 is the
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2.3. Convolutional Layers 11

probability of the input being a chair, y2 is the probability of a TV,
and y3 of a couch. To ensure that the probabilities are normalized, that
is, between 0 and 1 and sum up to 1, the final layer employs a softmax
function. Softmax, generically, looks like this for an output node yi,
where n is the number of classes:

fyi(x1, . . . , xn) = exp(xi)∑n
k=1 exp(xk)

Why does this work? Imagine that we have two classes, i.e., n = 2.
First, we can verify that

fy1 , fy2 ∈ [0, 1]

This is because the numerators and denominators are both positive,
and the numerator is ⩽ than the denominator. Second, we can see that
fy1(x1, x2) + fy2(x1, x2) = 1, because

fy1(x1, x2) + fy2(x1, x2) = ex1

ex1 + ex2
+ ex2

ex1 + ex2
= 1

Together, these two facts mean that we have a probability distribution.
For an interactive visualization of softmax, please see the excellent
online book by Nielsen (2018, Chapter 3).

Given some outputs (y1, . . . , yn) of the neural network, we will use

class(y1, . . . , yn)

to denote the index of the largest element (we assume no ties), i.e., the
class with the largest probability. For example, class(0.8, 0.2) = 1, while
class(0.3, 0.7) = 2.

2.3 Convolutional Layers
Another kind of layer that you will find in a neural network is a convo-
lutional layer. This kind of layer is widely used in computer-vision tasks,
but also has uses in natural-language processing. The rough intuition
is that if you are looking at an image, you want to scan it looking for
patterns. The convolutional layer gives you that: it defines an operation,
a kernel, that is applied to every region of pixels in an image or every
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12 Neural Networks as Graphs

sequence of words in a sentence. For illustration, let’s consider an input
layer of size 4, perhaps each input defines a word in a 4-word sentence,
as shown in Figure 2.6. Here we have a kernel, nodes {v1, v2, v3}, that is
applied to every pair of consecutive words, (x1, x2), (x2, x3), and (x3, x4).
We say that this kernel has size 2, since it takes an input in R2. This
kernel is 1-dimensional, since its input is a vector of real numbers. In
practice, we work with 2-dimensional kernels or more; for instance, to
scan blocks of pixels of a gray-scale image where every pixel is a real
number, we can use kernels that are functions in R10×10 → R, meaning
that the kernel is applied to every 10× 10 sub-image in the input.

x1

x2

x3

x4

v1

v2

v3

y1

y2

y3

Figure 2.6: 1-dimensional convolution

Typically, a convolutional neural network (cnn) will apply a bunch
of kernels to an input—and many layers of them—and aggregate (pool)
the information from each kernel. We will meet these operations in later
sections when we verify properties of such networks.1

2.4 Where are the Loops?
All of the neural networks we have seen so far seem to be a composition
of a number mathematical functions, one after the other. So what about
loops? Can we have loops in neural networks? In practice, neural network

1Note that there are many parameters that are used to construct a cnn, e.g.,
how many kernels are applied, how many inputs a kernel applies to, the stride or
step size of a kernel, etc. These are not of interest to us in this monograph. We’re
primarily concerned with the core building blocks of the neural network, which will
dictate the verification challenges.
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2.4. Where are the Loops? 13

graphs are really just directed acyclic graphs (dag). This makes training
the neural network possible using the backpropagation algorithm.

That said, there are popular classes of neural networks that appear
to have loops, but they are very simple, in the sense that the number
of iterations of the loop is just the size of the input. Recurrent neural
networks (rnn) is the canonical class of such networks, which are usually
used for sequence data, like text. You will often see the graph of an
rnn rendered as follows, with the self loop on node v.

x

v

y

Figure 2.7: Recurrent neural network

Effectively, this graph represents an infinite family of acyclic graphs
that unroll this loop a finite number of times. For example, Figure 2.8
is an unrolling of length 3. Notice that this is an acyclic graph that
takes 3 inputs and produces 3 outputs. The idea is that if you receive a
sentence, say, with n words, you unroll the rnn to length n and apply
it to the sentence.

x1

v1

y1

x2

v2

y2

x3

v3

y3

Figure 2.8: Unrolled recurrent neural network
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14 Neural Networks as Graphs

Thinking of it through a programming lens, given an input, we can
easily statically determine—i.e., without executing the network—how
many loop iterations it will require. This is in contrast to, say, a program
where the number of loop iterations is a complex function of its input,
and therefore we do not know how many loop iterations it will take
until we actually run it. That said, in what follows, we will formalize
neural networks as acyclic graphs.

2.5 Structure and Semantics of Neural Networks
We’re done with looking at pretty graphs. Let’s now look at pretty
symbols. We will now formally define neural networks as directed acyclic
graphs and discuss some of their properties.

Neural Networks as DAGs
A neural network is a directed acyclic graph G = (V, E), where

• V is a finite set of nodes,

• E ⊆ V × V is a set of edges,

• V in ⊂ V is a non-empty set of input nodes,

• V o ⊂ V is a non-empty set of output nodes, and

• each non-input node v is associated with a function fv : Rnv → R,
where nv is the number of edges whose target is node v. The vector
of real values Rnv that v takes as input is all of the outputs of nodes
v′ such that (v′, v) ∈ E. Notice that we assume, for simplicity but
without loss of generality, that a node v only outputs a single real
value.

To make sure that a graph G does not have any dangling nodes
and that semantics are clearly defined, we will assume the following
structural properties:

• All nodes are reachable, via directed edges, from some input node.

• Every node can reach an output node.
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2.5. Structure and Semantics of Neural Networks 15

• There is fixed total ordering on edges E and another one on nodes
V .

We will use x ∈ Rn to denote an n-ary (row) vector, which we
represent as a tuple of scalars (x1, . . . , xn), where xi is the ith element
of x.

Semantics of DAGs
A neural network G = (V, E) defines a function in Rn → Rm where

n = |V in| and m = |V o|

That is, G maps the values of the input nodes to those of the output
nodes.

Specifically, for every non-input node v ∈ V , we recursively define
the value in R that it produces as follows. Let (v1, v), . . . , (vnv , v) be an
ordered sequence of all edges whose target is node v (remember that
we’ve assumed an order on edges). Then, we define the output of node
v as

out(v) = fv(x1, . . . , xnv )
where xi = out(vi), for i ∈ {1, . . . , nv}.

The base case of the above definition (of out) is input nodes, since
they have no edges incident on them. Suppose that we’re given an input
vector x ∈ Rn. Let v1, . . . , vn be an ordered sequence of all input nodes.
Then,

out(vi) = xi

A Simple Example
Let’s look at an example graph G:

v1

v2

v3

We have V in = {v1, v2} and V o = {v3}. Now assume that

fv3(x1, x2) = x1 + x2
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16 Neural Networks as Graphs

and that we’re given the input vector (11, 79) to the network, where
node v1 gets the value 11 and v2 the value 79. Then, we have

out(v1) = 11
out(v2) = 79
out(v3) = fv3(out(v1),out(v2)) = 11 + 79 = 90

Data Flow and Control Flow
The graphs we have defined are known in the field of compilers and
program analysis as data-flow graphs; this is in contrast to control-flow
graphs.2 Control-flow graphs dictate the order in which operations need
be performed—the flow of who has control of the cpu. Data-flow graphs,
on the other hand, only tell us what node needs what data to perform
its computation, but not how to order the computation. This is best
seen through a small example.

Consider the following graph

v1

v2

v3

v4

v5

Viewing this graph as an imperative program, one way to represent it
is as follows, where ← is the assignment symbol.

out(v3)← fv3(out(v1))
out(v4)← fv4(out(v2))
out(v5)← fv5(out(v3),out(v4))

This program dictates that the output value of node v3 is computed
before that of node v4. But this need not be, as the output of v3 does
not depend on that of v4. Therefore, an equivalent implementation of
the same graph can swap the first two operations:

2In deep learning frameworks like TensorFlow, they call data-flow graphs compu-
tation graphs.
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2.5. Structure and Semantics of Neural Networks 17

out(v4)← fv4(out(v2))
out(v3)← fv3(out(v1))
out(v5)← fv5(out(v3),out(v4))

Formally, we can compute the values out(·) in any topological order-
ing of graph nodes. This ensures that all inputs of a node are computed
before its own operation is performed.

Properties of Functions
So far, we have assumed that a node v can implement any function fv it
wants over real numbers. In practice, to enable efficient training of neural
networks, these functions need be differentiable or differentiable almost
everywhere. The sigmoid activation function, which we met earlier in
Figure 2.3, is differentiable. However, the ReLU activation function,
Figure 2.2, is differentiable almost everywhere, since at x = 0, there is
a sharp turn in the function and the gradient is undefined.

Many of the functions we will be concerned with are linear or
piecewise linear. Formally, a function f : Rn → R is linear if it can be
defined as follows:

f(x) =
n∑

i=1
cixi + b

where ci, b ∈ R. A function is piecewise linear if it can be written in the
form

f(x) =


∑

i c1
i xi + b1, x ∈ S1

...∑
i cm

i xi + bm, x ∈ Sm

where Si are mutually disjoint subsets of Rn and ∪iSi = Rn. ReLU, for
instance, is a piecewise linear function, as it is of the form:

relu(x) =
{

0, x < 0
x, x ⩾ 0

Another important property that we will later exploit is monotonic-
ity. A function f : R→ R is monotonically increasing if for any x ⩾ y,
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18 Neural Networks as Graphs

we have f(x) ⩾ f(y). Both activation functions we saw earlier in the
section, ReLUs and sigmoids, are monotonically increasing. You can
verify this in Figures 2.2 and 2.3: the functions never decrease with
increasing values of x.

Looking Ahead
Now that we have formally defined neural networks, we’re ready to pose
questions about their behavior. In the next section, we will formally
define a language for posing those questions. Then, in the sections that
follow, we will look at algorithms for answering those questions.

Most discussions of neural networks in the literature use the language
of linear algebra—see, for instance, the comprehensive book of Goodfel-
low et al. (2016). Linear algebra is helpful because we can succinctly
represent the operation of many nodes in a single layer as a matrix A

that applies to the output of the previous layer. Also, in practice, we
use fast, parallel implementations of matrix multiplication to evaluate
neural networks. Here, we choose a lower-level presentation, where each
node is a function in Rn → R. While this view is non-standard, it will
help make our presentation of different verification techniques much
cleaner, as we can decompose the problem into smaller ones that have
to do with individual nodes.

The graphs of neural networks we presented are lower-level versions
of the computation graphs of deep-learning frameworks like Tensor-
flow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019)

Neural networks are an instance of a general class of programs called
differentiable programs. As their name implies, differentiable programs
are ones for which we can compute derivatives, a property that is needed
for standard techniques for training neural networks. Recently, there
have been interesting studies of what it means for a program to be
differentiable (Abadi and Plotkin, 2020; Sherman et al., 2021). In the
near future, it is likely that people will start using arbitrary differentiable
programs to define and train neural networks. Today, this is not the
case, most neural networks have one of a few prevalent architectures
and operations.
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3
Correctness Properties

In this section, we will come up with a language for specifying properties
of neural networks. The specification language is a formulaic way of
making statements about the behavior of a neural network (or sometimes
multiple neural networks). Our concerns in this section are solely about
specifying properties, not about automatically verifying them. So we
will take liberty in specifying complex properties, ridiculous ones, and
useless ones. In later parts of the monograph, we will constrain the
properties of interest to fit certain verification algorithms—for now, we
have fun.

3.1 Properties, Informally
Remember that a neural network defines a function f : Rn → Rm. The
properties we will consider here are of the form:

for any input x, the neural network produces an output
that ...

In other words, properties dictate the input–output behavior of the
network, but not the internals of the network—how it comes up with
the answer.

19
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20 Correctness Properties

Sometimes, our properties will be more involved, talking about
multiple inputs, and perhaps multiple networks:

for any inputs x, y, ... that ... the neural networks pro-
duce outputs that ...

The first part of these properties, the one talking about inputs,
is called the precondition; the second part, talking about outputs, is
called the postcondition. In what follows, we will continue our informal
introduction to properties using examples.

Image Recognition
Let’s say we have a neural network f that takes in an image and predicts
a label from dog, zebra, etc. An important property that we may be
interested in ensuring is robustness of such classifier. A classifier is robust
if its prediction does not change with small variations (or perturbations)
of the input. For example, changing the brightness slightly or damaging
a few pixels should not change classification.

Let’s fix some image c that is classified as dog by f . To make sure
that c is not an adversarial image of a dog that is designed to fool the
neural network, we will check—prove or verify—the following property:

for any image x that is slightly brighter or darker than c,
f(x) predicts dog

Notice here that the precondition specifies a set of images x that are
brighter or darker than c, and the postcondition specifies that the
classification by f remains unchanged.

Robustness is a desirable property: you don’t want classification to
change with a small movement in the brightness slider. But there are
many other properties you desire—robustness to changes in contrast,
rotations, Instagram filters, white balance, and the list goes on. This
hits at the crux of the specification problem: we often cannot specify
every possible thing that we desire, so we have to choose some. (More
on this later.)

For a concrete example, see Figure 3.1. The mnist dataset (LeCun
et al., 2010) is a standard dataset for recognizing handwritten digits.
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3.1. Properties, Informally 21

The figure shows a handwritten 7 along with two modified versions, one
where brightness is increased and one where a spurious dot is added—
perhaps a drip of ink. We would like our neural network to classify all
three images as 7.

Figure 3.1: Left: Handwritten 7 from mnist dataset. Middle: Same digit with
increased brightness. Right: Same digit but with a dot added in the top left.

Natural-Language Processing
Suppose now that f takes an English sentence and decides whether it
represents a positive or negative sentiment. This problem arises, for
example, in automatically analyzing online reviews or tweets. We’re
also interested in robustness in this setting. For example, say we have
fixed a sentence c with positive sentiment, then we might specify the
following property:

for any sentence x that is c with a few spelling mistakes
added, f(x) should predict positive sentiment

For another example, instead of spelling mistakes, imagine replacing
words with synonyms:

for any sentence x that is c with some words replaced by
synonyms, then f(x) should predict positive sentiment

For instance, a neural network should classify both of these movie
reviews as positive reviews:

This movie is delightful
This movie is enjoyable
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22 Correctness Properties

We could also combine the two properties above to get a stronger
property specifying that prediction should not change in the presence
of synonyms or spelling mistakes.

Source Code
Say that our neural network f is a malware classifier, taking a piece
of code and deciding whether it is malware or not. A malicious entity
may try to modify a malware to sneak it past the neural network
by fooling it into thinking that it’s a benign program. One trick the
attacker may use is adding a piece of code that does not change the
malware’s operation but that fools the neural network. We can state
this property as follows: Say we have piece of malware c, then we can
state the following property:

for any program x that is equivalent to c and syntactically
similar, then f(x) predicts malware

Controllers
All of our examples so far have been robustness problems. Let’s now
look at a slightly different property. Say you have a controller deciding
on the actions of a robot. The controller looks at the state of the world
and decides whether to move left, right, forward, or backward. We, of
course, do not want the robot to move into an obstacle, whether it is a
wall, a human, or another robot. As such, we might specify the following
property:

for any state x, if there is an obstacle to the right of the
robot, then f(x) should not predict right

We can state one such property per direction.

3.2 A Specification Language
Our specifications are going to look like this:

{ precondition }
r ← f(x)

{ postcondition }
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The precondition is a Boolean function (predicate) that evaluates to true
or false. The precondition is defined over a set of variables which will
be used as inputs to the neural networks we’re reasoning about. We will
use xi to denote those variables. The middle portion of the specification
is a number of calls to functions defined by neural networks; in this
example, we only see one call to f , and the return value is stored in a
variable r. Generally, our specification language allows a sequence of
such assignments, e.g.:

{ precondition }
r1 ← f(x1)
r2 ← g(x2)

...
{ postcondition }

Finally, the postcondition is a Boolean predicate over the variables
appearing in the precondition xi and the assigned variables rj .

The way to read a specification, informally, is as follows:

for any values of x1, . . . , xn that make the precondition true,
let r1 = f(x1), r2 = g(x2), . . .. Then the postcondition is
true.

If a correctness property is not true, i.e., the postcondition yields false,
we will also say that the property does not hold.

Example 3.1. Recall our image brightness example from the previous
section, and say c is an actual grayscale image, where each element of
c is the intensity of a pixel, from 0 to 1 (black to white). For example,
in our mnist example in Figure 3.1, each digit is represented by 784
pixels (28× 28), where each pixel is a number between 0 and 1. Then,
we can state the following specification, which informally says that
changing the brightness of c should not change the classification (recall
the definition of class from Section 2.2):

{ |x− c| ⩽ 0.1 }
r1 ← f(x)
r2 ← f(c)

{ class(r1) = class(r2) }
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Let’s walk through this specification:

Precondition Take any image x where each pixel is at most 0.1
away from its counterpart in c. Here, both x and c are assumed to
be the same size, and the ⩽ is defined pointwise.1

Assignments Let r1 be the result of computing f(x) and r2 be
the result of computing f(c).

Postcondition Then, the predicted labels in vectors r1 and r2 are
the same. Recall that in a classification setting, each element of
vector ri refers to the probability of a specific label. We use class as
a shorthand to extract the index of the largest element of the vector.

Counterexamples
A counterexample to a property is a valuation of the variables in the
precondition (the xis) that falsifies the postcondition. In Example 3.1,
a counterexample would be an image x whose classification by f is
different than that of image c and whose distance from c, i.e., |x− c|,
is less than 0.1.

Example 3.2. Here’s a concrete example (not about image recognition,
just a simple function that adds 1 to the input):

{ x ⩽ 0.1 }
r ← x + 1
{ r ⩽ 1 }

This property does not hold. Consider replacing x with the value 0.1.
Then, r ← 1 + 0.1 = 1.1. Therefore, the postcondition is falsified. So,
setting x to 0.1 is a counterexample.

A Note on Hoare Logic
Our specification language looks like specifications written in Hoare
logic (Hoare, 1969). Specifications in Hoare logic are called Hoare triples,

1The pointwise operation | · | is known as the ℓ∞ norm, which we formally discuss
in Section 11 and compare it to other norms.

Full text available at: http://dx.doi.org/10.1561/2500000051



3.3. More Examples of Properties 25

as they are composed of three parts, just like our specifications. Hoare
logic comes equipped with deduction rules that allows one to prove the
validity of such specifications. For our purposes in this monograph, we
will not define the rules of Hoare logic, but many of them will crop up
implicitly throughout the monograph.

3.3 More Examples of Properties
We will now go through a bunch of example properties and write them
in our specification language.

Equivalence of Neural Networks
Say you have a neural network f for image recognition and you want
to replace it with a new neural network g. Perhaps g is smaller and
faster, and since you’re interested in running the network on a stream
of incoming images, efficiency is very important. One thing you might
want to prove is that f and g are equivalent; here’s how to write this
property:

{ true }
r1 ← f(x)
r2 ← g(x)

{ class(r1) = class(r2) }
Notice that the precondition is true, meaning that for any image x,
we want the predicted labels of f and g to be the same. The true
precondition indicates that the inputs to the neural networks (x in this
case) are unconstrained. This specification is very strong: the only way
it can be true is if f and g agree on the classification on every possible
input, which is highly unlikely in practice.

One possible alternative is to state that f and g return the same
prediction on some subset of images, plus or minus some brightness, as
in our above example. Say S is a finite set of images, then:

{ x1 ∈ S, |x1 − x3| ⩽ 0.1, |x1 − x2| ⩽ 0.1 }
r1 ← f(x2)
r2 ← g(x3)

{ class(r1) = class(r2) }
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This says the following: Pick an image x1 and generate two variants,
x2 and x3, whose brightness differs a little bit from x1. Then, f and g

should agree on the classification of the two images.
This is a more practical notion of equivalence than our first attempt.

Our first attempt forced f and g to agree on all possible inputs, but keep
in mind that most images (combinations of pixels) are meaningless noise,
and therefore we don’t care about their classification. This specification,
instead, constrains equivalence to an infinite set of images that look like
those in the set S.

Collision Avoidance
Our next example is one that has been a subject of study in the
verification literature, beginning with the pioneering work of Katz et al.
(2017). Here we have a collision avoidance system that runs on an
autonomous aircraft. The system detects intruder aircrafts and decides
what to do. The reason the system is run on a neural network is due to
its complexity: The trained neural network is much smaller than a very
large table of rules. In a sense, the neural network compresses the rules
into an efficiently executable program.

The inputs to the neural network are the following:

• vown: the aircraft’s velocity

• vint: the intruder aircraft’s velocity

• aint: the angle of the intruder with respect to the current flying
direction

• aown: the angle of the aircraft with respect to the intruder.

• d: the distance between the two aircrafts

• prev: the previous action taken.

Given the above values, the neural network decides how to steer: left-
/right, strong left/right, or nothing. Specifically, the neural network
assigns a score to every possible action, and the action with the lowest
score is taken.
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As you can imagine, many things can go wrong here, and if they
do—disaster! Katz et al. (2017) identify a number of properties that
they verify. These properties do not account for all possible scenarios,
but they are important to check. Let’s take a look at one that says if
the intruder aircraft is far away, then the score for doing nothing should
be below some threshold.

{ d ⩾ 55947, vown ⩾ 1145, vint ⩽ 60 }
r ← f(d, vown, vint, . . .)

{ score of nothing in r is below 1500 }

Notice that the precondition specifies that the distance between the two
aircrafts is more than 55947 feet, that the aircraft’s velocity is high, and
the intruder’s velocity is low. The postcondition specifies that doing
nothing should have a low score, below some threshold. Intuitively, we
should not panic if the two aircrafts are quite far apart and have moving
at very different velocities.

Katz et al. (2017) explore a number of such properties, and also
consider robustness properties in the collision-avoidance setting. But how
do we come up with such specific properties? It’s not straightforward.
In this case, we really need a domain expert who knows about collision-
avoidance systems, and even then, we might not cover all corner cases.
A number of people in the verification community, the author included,
argue that specification is harder than verification—that is, the hard
part is asking the right questions!

Physics Modeling
Here is another example due to Qin et al. (2019). We want the neural
network to internalize some physical laws, such as the movement of a
pendulum. At any point in time, the state of the pendulum is a triple
(v, h, w), its vertical position v, its horizontal position h, and its angular
velocity w. Given the state of the pendulum, the neural network is
to predict the state in the next time instance, assuming that time is
divided into discrete steps.

A natural property we may want to check is that the neural net-
work’s understanding of how the pendulum moves adheres to the law of
conservation of energy. At any point in time, the energy of the pendulum
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is the sum of its potential energy and its kinetic energy. (Were you
paying attention in high school physics?) As the pendulum goes up, its
potential energy increases and kinetic energy decreases; as it goes down,
the opposite happens. The sum of the kinetic and potential energies
should only decrease over time. We can state this property as follows:

{ true }
v′, h′, w′ ← f(v, h, w)
{ E(h′, w′) ⩽ E(h, w) }

The expression E(h, w) is the energy of the pendulum, which is its
potential energy mgh, where m is the mass of the pendulum and g is
the gravitational constant, plus its kinetic energy 0.5ml2w2, where l is
the length of the pendulum.

Natural-Language Processing
Let’s recall the natural language example from earlier in this section,
where we wanted to classify a sentence into whether it expresses a posi-
tive or negative sentiment. We decided that we want the classification
not to change if we replaced a word by a synonym. We can express this
property in our language: Let c be a fixed sentence of length n. We
assume that each element of vector c is a real number representing a
word—called an embedding of the word. We also assume that we have a
thesaurus T , which given a word gives us a set of equivalent words.

{ 1 ⩽ i ⩽ n, w ∈ T (ci), x = c[i 7→ w] }
r1 ← f(x)
r2 ← f(c)

{ class(r1) = class(r2) }

The precondition specifies that variable x is just like the sentence c,
except that some element i is replaced by a word w from the thesaurus.
We use the notation c[i 7→ w] to denote c with the ith element replaced
with w and ci to denote the ith element of c.

The above property allows a single word to be replaced by a synonym.
We can extend it to two words as follows (I know, it’s very ugly, but it
works):
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{ 1 ⩽ i, j ⩽ n , i ̸= j , wi ∈ T (ci) , wj ∈ T (cj) , x = c[i 7→ wi, j 7→ wj ] }
r1 ← f(x)
r2 ← f(c)

{ class(r1) = class(r2) }

Monotonicity
A standard mathematical property that we may desire of neural networks
is monotonicity (Sivaraman et al., 2020), meaning that larger inputs
should lead to larger outputs. For example, imagine you’re one of those
websites that predict house prices using machine learning. You’d expect
the machine-learning model used is monotonic with respect to square
footage—if you increase the square footage of a house, its price should
not decrease, or perhaps increase. Or imagine a model that estimates
the risk of complications during surgery. You’d expect that increasing
the age of the patient should not decrease the risk. (I’m not a physician,
but I like this example.) Here’s how you could encode monotonicity in
our language:

{ x > x′ }
r ← f(x)
r′ ← f(x′)
{ r′ ⩾ r′ }

In other words, pick any pair of inputs such that x > x′, we want
f(x) ⩾ f(x′). Of course, we can strengthen the property by making
the postcondition a strict inequality—that completely depends on the
problem domain we’re working with.

Looking Ahead
We’re done with the first part of the monograph. We have defined neural
networks and how to specify their properties. In what follows, we will
discuss different ways of verifying properties automatically.

There has been an insane amount of work on robustness problems,
particularly for image recognition. Lack of robustness was first observed
by Szegedy et al. (2014), and since then many approaches to discover
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and defend against robustness violations (known as adversarial exam-
ples) have been proposed. We will survey those later. The robustness
properties for natural-language processing we have defined follow those
of Ebrahimi et al. (2018) and Huang et al. (2019).
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Neural Interval Abstraction

In the previous part of the monograph, we described how to precisely
capture the semantics of a neural network by encoding it, along with
a correctness property, as a formula in first-order logic. Typically, this
means that we’re solving an NP-complete problem, like satisfiability
modulo linear real arithmetic (equivalently, mixed integer linear pro-
gramming). While we have fantastic algorithms and tools that surpris-
ingly work well for such hard problems, scaling to large neural networks
remains an issue.

In this part of the monograph, we will look at approximate tech-
niques for neural-network verification. By approximate, we mean that
they overapproximate—or abstract—the semantics of a neural-network,
and therefore can produce proofs of correctness, but when they fail, we
do not know whether a correctness property holds or not. The approach
we use is based on abstract interpretation (Cousot and Cousot, 1977),
a well-studied framework for defining program analyses. Abstract in-
terpretation is a very rich theory, and the math can easily make you
want to quit computer science and live a monastic life in the woods,
away from anything that can be considered technology. But fear not, it
is a very simple idea, and we will take a pragmatic approach here in
defining it and using it for neural-network verification.

83
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8.1 Set Semantics and Verification
Let’s focus on the following correctness property, defining robustness of
a neural network f : Rn → Rm on an input grayscale image c whose
classification label is 1.

{ |x− c| ⩽ 0.1 }
r ← f(x)

{ class(r) = 1 }

Concretely, this property makes the following statement: Pick any image
x that is like c but is slightly brighter or darker by at most 0.1 per
pixel, assuming each pixel is some real number encoding its brightness.
Now, execute the network on x. The network must predict that x is of
class 1.

The issue in checking such statement is that there are infinitely many
possible images x. Even if there are finitely many images—because, at
the end of the day, we’re using bits—the number is still enormous, and
we cannot conceivably run all those images through the network and
ensure that each and every one of them is assigned class 1. But let’s
just, for the sake of argument, imagine that we can lift the function f

to work over sets of images. That is, we will define a version of f of the
form:

fs : P(Rn)→ P(Rm)

where P(S) is the powerset of set S. Specifically,

fs(X) = {y | x ∈ X, y = f(x)}

Armed with f s, we can run it with the following input set:

X = {x | |x− c| ⩽ 0.1}

which is the set of all images x defined above in the precondition of our
correctness property. By computing fs(X), we get the predictions of
the neural network f for all images in X. To verify our property, we
simply check that

fs(X) ⊆ {y | class(y) = 1}

Full text available at: http://dx.doi.org/10.1561/2500000051



8.2. The Interval Domain 85

In other words, all runs of f on every image x ∈ X result in the network
predicting class 1.

The above discussion may sound like crazy talk: we cannot simply
take a neural network f and generate a version f s that takes an infinite
set of images. In this section, we will see that we actually can, but we
will often have to lose precision: we will define an abstract version of
our theoretical fs that may return more answers. The trick is to define
infinite sets of inputs using data structures that we can manipulate,
called abstract domains.

In this section, we will meet the interval abstract domain. We will
focus our attention on the problem of executing the neural network on
an infinite set. Later, in Section 11, we come back to the verification
problem.

8.2 The Interval Domain
Let’s begin by considering a very simple function

f(x) = x + 1

I would like to evaluate this function on a set of inputs X; that is, I
would like to somehow evaluate

fs(X) = {x + 1 | x ∈ X}

We call fs the concrete transformer of f .
Abstract interpretation simplifies this problem by only considering

sets X that have a nice form. Specifically, the interval abstract domain
considers an interval of real numbers written as [l, u], where l, u ∈ R
and l ⩽ u. An interval [l, u] denotes the potentially infinite set

{x | l ⩽ x ⩽ u}

So we can now define a version of our function fs that operates over an
interval, as follows:

fa([l, u]) = [l + 1, u + 1]

We call fa an abstract transformer of f . In other words, fa takes a
set of real numbers and returns a set of real numbers, but the sets are
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l u

l + 1 u + 1

Figure 8.1: Illustration of an abstract transformer of f(x) = x + 1.

restricted to those that can be defined as intervals. Observe how we can
mechanically evaluate this abstract transformer on an arbitrary interval
[l, u]: add 1 to l and add 1 to u, arriving at the interval [l + 1, u + 1].
Geometrically, if we have an interval on the number line from l to u,
and we add 1 to every point in this interval, then the whole interval
shifts to the right by 1. This is illustrated in Figure 8.1. Note that the
interval [l, u] is an infinite set (assuming l < u), and so fa adds 1 to an
infinite set of real numbers!

Example 8.1. Continuing our example,

fa([0, 10]) = [1, 11]

If we pass a singleton interval, e.g., [1, 1], we get fa([1, 1]) = [2, 2]—
exactly the behavior of f .

Generally, we will use the notation ([l1, u1], . . . , [ln, un]) to denote
an n-dimensional interval, or a hyperrectangular region in Rn, i.e., the
set of all n-ary vectors

{x ∈ Rn | li ⩽ xi ⩽ ui}

Soundness
Whenever we design an abstract transformer fa, we need to ensure
that it is a sound approximation of fs. This means that its output is a
superset of that of the concrete transformer, fs. The reason is that we
will be using fa for verification, so to declare that a property holds, we
cannot afford to miss any behavior of the neural network.

Formally, we define soundness as follows: For any interval [l, u], we
have

fs([l, u]) ⊆ fa([l, u])
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Equivalently, we can say that for any x ∈ [l, u], we have

f(x) ∈ fa([l, u])

In practice, we will often find that

fs([l, u]) ⊂ fa([l, u])

for many functions and intervals of interest. This is expected, as our
goal is to design abstract transformers that are easy to evaluate, and so
we will often lose precision, meaning overapproximate the results of fs.
We will see some simple examples shortly.

The Interval Domain is Non-relational
The interval domain is non-relational, meaning that it cannot capture
the relations between different dimensions. We illustrate this fact with
an example.

Example 8.2. Consider the set

X = {(x, x) | 0 ⩽ x ⩽ 1}

We cannot represent this set precisely in the interval domain. The
best we can do is the square between (0, 0) and (1, 1), denoted as the
2-dimensional interval

([0, 1], [0, 1])
and illustrated as the gray region below:

The set X defines points where higher values of the x coordinate
associate with higher values of the y coordinate. But our abstract
domain can only represent rectangles whose faces are parallel to the
axes. This means that we can’t capture the relation between the two
dimensions: we simply say that any value of x in [0, 1] can associate
with any value of y in [0, 1].
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8.3 Basic Abstract Transformers
We now look at examples of abstract transformers for basic arithmetic
operations.

Addition
Consider the binary function: f(x, y) = x + y. The concrete transformer
fs : P(R2)→ P(R) is defined as follows:

fs(X) = {x + y | (x, y) ∈ X}

We define fa as a function that takes two intervals, i.e., a rectangle, one
representing the range of values of x1 and the other of x2:

fa([l, u], [l′, u′]) = [l + l′, u + u′]

The definition looks very much like f , except that we perform addition
on the lower bounds and the upper bounds of the two input intervals.

Example 8.3. Consider

fa([1, 5], [100, 200]) = [101, 205]

The lower bound, 101, results from adding the lower bounds of x and y

(1 + 100); the upper bound, 205, results from adding the upper bounds
of x and y (5 + 200).

It is simple to prove soundness of our abstract transformer fa. Take
any

(x, y) ∈ ([l, u], [l′, u′])

By definition, l ⩽ x ⩽ u and l′ ⩽ y ⩽ u′. So we have

l + l′ ⩽ x + y ⩽ u + u′

By definition of an interval, we have

x + y ∈ [l + l′, u + u′]
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Multiplication
Multiplication is a bit trickier. The reason is that the signs might flip,
making the lower bound an upper bound. So we have to be a bit more
careful.

Let f(x, y) = x ∗ y. If we only consider positive inputs, then we can
define fa just like we did for addition:

fa([l, u], [l′, u′]) = [l ∗ l′, u ∗ u′]

But consider
fa([−1, 1], [−3,−2]) = [3,−2]

We’re in trouble: [3,−2] is not even an interval as per our definition—the
upper bound is less than the lower bound!

To fix this issue, we need to consider every possible combination of
lower and upper bounds as follows:

fa([l, u], [l′, u′]) = [min(B), max(B)]

where
B = {l ∗ l′, l ∗ u′, u ∗ l′, u ∗ u′}

Example 8.4. Consider the following abstract multiplication of two
intervals:

fa([−1, 1], [−3,−2]) = [min(B), max(B)]
= [−3, 3]

where B = {3, 2,−3,−2}.

8.4 General Abstract Transformers
We will now define general abstract transformers for classes of operations
that commonly appear in neural networks.

Affine Functions
For an affine function

f(x1, . . . , xn) =
∑

i

cixi
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l = 3 u = 5

relu(l) = 3

relu(u) = 5

x

relu(x)

Figure 8.2: ReLU function over an interval of inputs [l, u]

where ci ∈ R, we can define the abstract transformer as follows:

fa([l1, u1], . . . , [ln, un]) =
[∑

i

l′i,
∑

i

u′
i

]
where l′i = min(cili, ciui) and u′

i = max(cili, ciui).
Notice that the definition looks pretty much like addition: sum up

the lower bounds and the upper bounds. The difference is that we also
have to consider the coefficients, ci, which may result in flipping an
interval’s bounds when ci < 0.

Example 8.5. Consider f(x, y) = 3x + 2y. Then,

f([5, 10], [20, 30]) = [3 · 5 + 2 · 20, 3 · 10 + 2 · 30]
= [55, 90]

Monotonic Functions Most activation functions used in neural net-
works are monotonically increasing, e.g., ReLU and sigmoid. It turns out
that it’s easy to define an abstract transformer for any monotonically
increasing function f : R→ R, as follows:

fa([l, u]) = [f(l), f(u)]

Simply, we apply f to the lower and upper bounds.

Example 8.6. Figure 8.2 illustrates how to apply ReLU to an interval
[3, 5]. The shaded region shows that any value y in the interval [3, 5]
results in a value

relu(3) ⩽ relu(y) ⩽ relu(5)
that is, a value in the interval [relu(3), relu(5)].
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Composing Abstract Transformers
Say we have a function composition f ◦ g—this notation means (f ◦
g)(x) = f(g(x)). We don’t have to define an abstract transformer for
the composition: we can simply compose the two abstract transformers
of f and g, as fa ◦ ga, and this will be a sound abstract transformer of
f ◦ g.

Composition is very important, as neural networks are a composition
of many operations.

Example 8.7. Let

g(x) = 3x

f(x) = relu(x)
h(x) = f(g(x))

The function h represents a very simple neural network, one that
applies an affine function followed by a ReLU on an input in R.

We define
ha([l, u]) = fa(ga([l, u]))

where fa and ga are as defined earlier for monotonic functions and
affine functions, respectively. For example, on the input interval [2, 3],
we have

ha([2, 3]) = fa(ga([2, 3]))
= fa([6, 9])
= [6, 9]

8.5 Abstractly Interpreting Neural Networks
We have seen how to construct abstract transformers for a range of
functions and how to compose abstract transformers. We now direct our
attention to constructing an abstract transformer for a neural network.

Recall that a neural network is defined as a graph G = (V, E), giving
rise to a function fG : Rn → Rm, where n = |V in| and m = |V o|. Recall
that V in are input nodes and V o are output nodes of G. We would
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like to construct an abstract transformer fa
G that takes n intervals and

outputs m intervals.
We define fa

G([l1, u1], . . . , [ln, un]) as follows:

• First, for every input node vi, we define

outa(vi) = [li, ui]

Recall that we assume a fixed ordering of nodes.

• Second, for every non-input node v, we define

outa(v) = fa
v (outa(v1), . . . ,outa(vk))

where fa
v is the abstract transformer of fv, and v has the incoming

edges (v1, v), . . . , (vk, v),

• Finally, the output of fa
G is the set of intervals outa(v1), . . . ,outa(vm),

where v1, . . . , vm are the output nodes.

Example 8.8. Consider the following simple neural network G:

v1

v2

v3 v4

Assume that fv3(x) = 2x1 + x2 and fv4(x) = relu(x).
Say we want to evaluate fa

G([0, 1], [2, 3]). We can do this as follows,
where fa

v3 and fa
v4 follow the definitions we discussed above for affine

and monotonically increasing functions, respectively.

outa(v1) = [0, 1]
outa(v2) = [2, 3]
outa(v3) = [2 ∗ 0 + 2, 2 ∗ 1 + 3] = [2, 5]
outa(v4) = [relu(2), relu(5)] = [2, 5]

It’s nice to see the outputs of every node written on the edges of
the graph as follows:

v1

v2

v3 v4

[0, 1]

[2, 3]

[2, 5]
[2, 5]
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Limitations of the Interval Domain
The interval domain, as described, seems infallible. We will now see how
it can, and often does, overshoot: compute wildly overapproximating
solutions. The primary reason for this is that the interval domain is non-
relational, meaning it cannot keep track of relations between different
values, e.g., the inputs and outputs of a function.

Example 8.9. Consider the following, admittedly bizarre, neural net-
work:

v1

v2
v3

[0, 1]

[0, 1]

[−1, 0]
[−1, 1]

where

fv2(x) = −x

fv3(x) = x1 + x2

Clearly, for any input x, fG(x) = 0. Therefore, ideally, we can define
our abstract transformer simply as fa

G([l, u]) = [0, 0] for any interval
[l, u].

Unfortunately, if we follow the recipe above, we get a much bigger
interval than [0, 0]. For example, on the input [0, 1], fa

G returns [−1, 1],
as illustrated on the graph above. The reason this happens is because
the output node, v3, receives two intervals as input, not knowing that
one is the negation of the other. In other words, it doesn’t know the
relation between, or provenance of, the two intervals.

Example 8.10. Here’s another simple network, G, where fv2 and fv3

are ReLUs. Therefore, fG(x) = (x, x) for any positive input x.

v1

v2

v3

[0, 1]

[0, 1]

[0, 1]

[0, 1]
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Following our recipe, we have fa
G([0, 1]) = ([0, 1], [0, 1]). In other

words, the abstract transformer tells us that, for inputs between 0 and
1, the neural network can output any pair (x, y) where 0 ⩽ x, y ⩽ 1. But
that’s too loose an approximation: we should expect to see only outputs
(x, x) where 0 ⩽ x ⩽ 1. Again, we have lost the relation between the
two output nodes. They both should return the same number, but the
interval domain, and our abstract transformers, are not strong enough
to capture that fact.

Looking Ahead
We’ve seen how interval arithmetic can be used to efficiently evaluate a
neural network on a set of inputs, paying the price of efficiency with
precision. Next, we will see more precise abstract domains.

The abstract interpretation framework was introduced by Cousot
and Cousot (1977) in their seminal paper. Abstract interpretation is a
general framework, based on lattice theory, for defining and reasoning
about program analyses. In our exposition, we avoided the use of lattices,
because we do not aim for generality—we just want to analyze neural
networks. Nonetheless, the lattice-based formalization allows us to easily
construct the most-precise abstract transformers for any operation.

Interval arithmetic is an old idea that predates program analysis,
even computer science: it is a standard tool in the natural sciences
for measuring accumulated measurement errors. For neural-network
verification, interval arithmetic first appeared in a number of papers
starting in 2018 (Gehr et al., 2018; Gowal et al., 2018; Wang et al., 2018).
To implement interval arithmetic for real neural networks efficiently,
one needs to employ parallel matrix operations (e.g., using a gpu).
Intuitively, an operation like matrix addition can be implemented with
two matrix additions for interval arithmetic, one for upper bounds and
one for lower bounds.

There are also powerful techniques that employ the interval domain
(or any means to bound the output of various nodes of the network) with
search. We did not cover this combination here but I would encourage
you to check out FastLin approach (Weng et al., 2018) and its successor,
crown (Zhang et al., 2018a). (Both are nicely summarized by Li et al.,
2019).
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One interesting application of the interval domain is as a quick-
and-dirty way for speeding up constraint-based verification. Tjeng et
al., 2019b propose using something like the interval domain to bound
the interval of values taken by a ReLU for a range of inputs to the
neural network. If the interval of inputs of a ReLU is above or below
0, then we can replace the ReLU with a linear function, f(x) = x or
f(x) = 0, respectively. This simplifies the constraints for constraint-
based verification, as there’s no longer a disjunction.
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9
Neural Zonotope Abstraction

In the previous section, we defined the interval abstract domain, which
allows us to succinctly capture infinite sets in Rn by defining lower and
upper bounds per dimension. In R2, an interval defines a rectangle; in R3,
an interval defines a box; in higher dimensions, it defines hyperrectangles.

The issue with the interval domain is that it does not relate the values
of various dimensions—it just bounds each dimension. For example, in
R2, we cannot capture the set of points where x = y and 0 ⩽ x ⩽ 1. The
best we can do is the square region ([0, 1], [0, 1]). Syntactically speaking,
an abstract element in the interval domain is captured by constraints
of the form: ∧

i

li ⩽ xi ⩽ ui

where every inequality involves a single variable, and therefore no
relationships between variables are captured. So the interval domain
is called non-relational. In this section, we will look at a relational
abstract domain, the zonotope domain, and discuss its application to
neural networks.

96
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9.1 What the Heck is a Zonotope?
Let’s begin with defining a 1-dimensional zonotope. We assume we
have a set of m real-valued generator variables, denoted ϵ1, . . . , ϵm. A
1-dimensional zonotope is the set of all points{

c0 +
m∑

i=1
ci · ϵi

∣∣∣∣∣ ϵi ∈ [−1, 1]
}

where ci ∈ R.
If you work out a few examples of the above definition, you’ll notice

that a 1-dimensional zonotope is just a convoluted way of defining
an interval. For example, if we have one generator variable, ϵ, then a
zonotope is the set

{c0 + c1ϵ | ϵ ∈ [−1, 1]}
which is the interval [c0 − c1, c0 + c1], assuming c1 ⩾ 0. Note that c0 is
the center of the interval.

Zonotopes start being more expressive than intervals in R2 and
beyond. In n-dimensions, a zonotope with m generators is the set of all
points 

c10 +
m∑

i=1
c1i · ϵi︸ ︷︷ ︸

first dimension

. . . , cn0 +
m∑

i=1
cni · ϵi︸ ︷︷ ︸

nth dimension


∣∣∣∣∣∣∣∣∣∣

ϵi ∈ [−1, 1]


This is best illustrated through a series of examples in R2.1

Example 9.1. Consider the following two-dimensional zonotope with
two generators.

(1 + ϵ1, 2 + ϵ2)
where we drop the set notation for clarity. Notice that in the first
dimension the coefficient of ϵ2 is 0, and in the second dimension the
coefficient of ϵ1 is 0. Since the two dimensions do not share generators,
we get the following box shape whose center is (1, 2).

1In the VR edition of the monograph, I take the reader on a guided 3D journey
of zonotopes; since you cheaped out and just downloaded the free pdf, we’ll have to
do with R2.
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1 2

1
2

Observe that the center of the zonotope is the vector of constant
coefficients of the two dimensions, (1, 2), as illustrated below:

( 1︸︷︷︸+ ϵ1, 2︸︷︷︸+ ϵ2)

Example 9.2. Now consider the following zonotope with 1 generator:

(2 + ϵ1, 2 + ϵ1)

Since the two dimensions share the same expression, this means that
two dimensions are equal, and so we get we get a line shape centered at
(2, 2):

1 2 3

1
2
3

The reason ϵ1 is called a generator is because we can think of it as
a constructor of a zonotope. In this example, starting from the center
point (2,2), the generator ϵ1 stretches the point (2,2) to (3,3), by adding
(1,1) (the two coefficients of ϵ1) and stretches the center to (1,1) by
subtracting (1,1). See the following illustration:

1 2 3

1
2
3
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Example 9.3. Now consider the following zonotope with 2 generators,

(2 + ϵ1, 3 + ϵ1 + ϵ2)

which is visualized as follows, with the center point (2,3) in red.

1 2 3 4

1
2
3
4
5

Let’s see how this zonotope is generated in two steps, by considering
one generator at a time. The coefficients of ϵ1 are (1,1), so it stretches
the center point (2,3) along the (1,1) vector, generating a line:

1 2 3 4

1
2
3
4
5

Next, the coefficients of ϵ2 are (0,1), so it stretches all points along
the (0, 1) vector, resulting in the zonotope we plotted earlier:

1 2 3 4

1
2
3
4
5
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You may have deduced by now that adding more generators adds
more faces to the zonotope. For example, the right-most zonotope in
Figure 9.1 uses three generators to produce the three pairs of parallel
faces.

Figure 9.1: Examples of zonotopes in R2

A Compact Notation
Going forward, we will use a compact notation to describe an n-
dimensional zonotope with m generator variables:{(

c10 +
m∑

i=1
c1i · ϵi, . . . , cn0 +

m∑
i=1

cni · ϵi

)∣∣∣∣∣ ϵi ∈ [−1, 1]
}

Specifically, we will define it as a tuple of vectors of coefficients:

(⟨c10, . . . , c1m⟩, . . . , ⟨cn0, . . . , cnm⟩)

For an even more compact presentation, will also use

(⟨c1i⟩i, . . . , ⟨cni⟩i)

where i ranges from 0 to m, the number of generators; we drop the
index i when it’s clear from context.

We can compute the upper bound of the zonotope (the largest
possible value) in the j dimension by solving the following optimization
problem:

max cj0 +
m∑

i=1
cjiϵi

s.t. ϵi ∈ [−1, 1]

This can be easily solved by setting ϵi to 1 if cji > 0 and −1 otherwise.
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Similarly, we can compute the lower bound of the zonotope in the
jth dimension by minimizing instead of maximizing, and solving the
optimization problem by setting ϵi to −1 if cji > 0 and 1 otherwise.

Example 9.4. Recall our parallelogram from Example 9.3:

(2 + ϵ1, 3 + ϵ1 + ϵ2)

In our compact notation, we write this as

(⟨2, 1, 0⟩, ⟨3, 1, 1⟩)

The upper bound in the vertical dimension, 3 + ϵ1 + ϵ2, is

3 + 1 + 1 = 5

where ϵ1 and ϵ2 are set to 1.

9.2 Basic Abstract Transformers
Now that we have seen zonotopes, let’s define some abstract transformers
over zonotopes.

Addition
For addition, f(x, y) = x + y, we will define the abstract transformer
fa that takes a two-dimensional zonotope defining a set of values of
(x, y). We will assume a fixed number of generators m. So, for addition,
its abstract transformer is of the form

fa(⟨c10, . . . , c1m⟩, ⟨c20, . . . , c2m⟩)

Compare this to the interval domain, where fa([l1, u1], [l2, u2])
It turns out that addition over zonotopes is straightforward: we just

sum up the coefficients:

fa(⟨c10, . . . , c1m⟩, ⟨c20, . . . , c2m⟩) = ⟨c10 + c20, . . . , c1m + c2m⟩

Example 9.5. Consider the simple zonotope (0 + ϵ1, 1 + ϵ2). This repre-
sents the following box:
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−1 1

1
2

The set of possible values we can get by adding the x and y di-
mensions in this box is the interval between −1 and 3. Following the
definition of the abstract transformer for addition:

fa(⟨0, 1, 0⟩, ⟨1, 0, 1⟩) = ⟨1, 1, 1⟩

That is the output zonotope is the set

{1 + ϵ1 + ϵ2 | ϵ1, ϵ2 ∈ [−1, 1]}

which is the interval [−1, 3].

Affine Functions
For an affine function

f(x1, . . . , xn) =
∑

j

ajxj

where aj ∈ R, we can define the abstract transformer as follows:

fa(⟨c1i⟩, . . . ⟨cni⟩) =
〈∑

j

ajcj0, . . . ,
∑

j

ajcjm

〉

Intuitively, we apply f to the center point and coefficients of ϵ1, ϵ2, etc.

Example 9.6. Consider f(x, y) = 3x + 2y. Then,

fa(⟨1, 2, 3⟩, ⟨0, 1, 1⟩) = ⟨f(1, 0), f(2, 1), f(3, 1)⟩
= ⟨3, 8, 11⟩

9.3 Abstract Transformers of Activation Functions
We now discuss how to construct an abstract transformer for the ReLU
activation function.
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Limitations of the Interval Domain
Let’s first recall the interval abstract transformer of ReLU:

relua([l, u]) = [relu(l), relu(u)]

The issue with the interval domain is we don’t know how points in the
output interval relua([l, u]) relate to the input interval [l, u]—i.e., which
inputs are responsible for which outputs.

Geometrically, we think of the interval domain as approximating
the ReLU function with a box as follows:

ul

relu(u)

ul

relu(u)

relu(l)

The figure on the left shows the case where the lower bound is negative
and the upper bound is positive; the right figure shows the case where
the lower bound is positive.

A Zonotope Transformer for ReLU
Let’s slowly build the ReLU abstract transformer for zonotopes. We’re
given a 1-dimensional zonotope ⟨ci⟩i as input. We will use u to denote
the upper bound of the zonotope and l the lower bound.

relua(⟨ci⟩i) =


⟨ci⟩i for l ⩾ 0
⟨0⟩i for u ⩽ 0
? otherwise

If l ⩾ 0, then we simply return the input zonotope back; if u ⩽ 0,
then the answer is 0; when the zonotope has both negative and positive
values, there are many ways to define the output, and so I’ve left it as
a question mark. The easy approach is to simply return the interval
[l, u] encoded as a zonotope. But it turns out that we can do better:
since zonotopes allow us to relate inputs and outputs, we can shear a
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ul

relu(u)

ul

relu(u)

box into a parallelogram that fits the shape of ReLU more tightly, as
follows:

The approximation on the right has a smaller area than the approx-
imation afforded by the interval domain on the left. The idea is that a
smaller area results in a better approximation, albeit an incomparable
one, as the parallelogram returns negative values, while the box doesn’t.
Let’s try to describe this parallelogram as a zonotope.

The bottom face of the zonotope is the line

y = λx

for some slope λ. It follows that the top face must be

y = λx + u(1− λ)

If we set λ = 0, we get two horizontal faces, i.e., the interval ap-
proximation shown above. The higher we crank up λ, the tighter the
parallelogram gets. But, we can’t increase λ past u/(u− l); this ensures
that the parallelogram covers the ReLU along the input range [l, u]. So,
we will set

λ = u

u− l

It follows that the distance between the top and bottom faces of the
parallelogram is u(1− λ),. Therefore, the center of the zonotope (in the
vertical axis) must be the point

η = u(1− λ)
2

With this information, we can complete the definition of relua as
follows:
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relua(⟨c1, . . . , cm⟩) =


⟨ci⟩i, for l ⩾ 0
⟨0⟩i, for u ⩽ 0
⟨λc1, . . . , λcm, 0⟩+ ⟨η, 0, 0, . . . , η⟩ otherwise

There are two non-trivial things we do here:

• First, we add a new generator, ϵm+1, in order to stretch the
parallelogram in the vertical axis; its coefficient is η, which is half
the hight of the parallelogram.

• Second, we add the input zonotope scaled by λ with coefficient 0
for the new generator; this ensures that we capture the relation
between the input and output.

Let’s look at an example for clarity:

Example 9.7. Say we invoke relua with the interval between l = −1
and u = 1, i.e.,

relua(⟨0, 1⟩)
Here, λ = 0.5 and η = 0.25. So the result of relua is the following
zonotope:

⟨0, 0.5, 0⟩+ ⟨0.25, 0, 0.25⟩ = ⟨0.25, 0.5, 0.25⟩

The 2-dimensional zonotope composed of the input and output zono-
topes of relua is

(⟨0, 1, 0⟩, ⟨0.25, 0.5, 0.25⟩)
or, explicitly,

(0 + ϵ1, 0.25 + 0.5ϵ1 + 0.25ϵ2)
This zonotope, centered at (0, 0.25), is illustrated below:

1−1

1

η = 0.25
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Other Abstract Transformers
We saw how to design an abstract transformer for ReLU. We can follow a
similar approach to design abstract transformers for sigmoid. It is indeed
a good exercise to spend some time designing a zonotope transformer
for sigmoid or tanh—and don’t look at the literature! (Singh et al.,
2018)

It is interesting to note that as the abstract domain gets richer—
allowing crazier and crazier shapes—the more incomparable abstract
transformers you can derive (Sharma et al., 2014). With the interval
abstract domain, which is the simplest you can go without being trivial,
the best you can do is a box to approximate a ReLU or a sigmoid. But
with zonotopes, there are infinitely many shapes that you can come up
with. So designing abstract transformers becomes an art, and it’s hard
to predict which transformers will do well in practice.

9.4 Abstractly Interpreting Neural Networks with Zonotopes
We can now use our zonotope abstract transformers to abstractly inter-
pret an entire neural network in precisely the same way we did intervals.
We review the process here for completeness.

Recall that a neural network is defined as a graph G = (V, E),
giving rise to a function fG : Rn → Rm, where n = |V in| and m = |V o|.
We would like to construct an abstract transformer fa

G that takes an
n-dimensional zonotope and outputs an m-dimensional zonotope.

We define fa
G(⟨c1j⟩, . . . ⟨cnj⟩) as follows:

• First, for every input node vi, we define

outa(vi) = ⟨cij⟩j

Recall that we assume a fixed ordering of nodes.

• Second, for every non-input node v, we define

outa(v) = fa
v (outa(v1), . . . ,outa(vk))

where fa
v is the abstract transformer of fv, and v has the incoming

edges (v1, v), . . . , (vk, v),
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• Finally, the output of fa
G is the m-dimensional zonotope

(outa(v1), . . . ,outa(vm))

where v1, . . . , vm are the output nodes.

One thing to note is that some abstract transformers (for activation
functions) add new generators. We can assume that all of these gen-
erators are already in the input zonotope but with coefficients set to
0, and they only get non-zero coefficients in the outputs of activation
function nodes.

Example 9.8. Consider the following neural network, which we saw in
the last section,

v1

v2
v3

where

fv2(x) = −x

fv3(x) = x1 + x2

Clearly, for any input x, fG(x) = 0. Consider any input zonotope ⟨ci⟩.
The output node, v3, receives the two-dimensional zonotope

(⟨−ci⟩, ⟨ci⟩)

The two dimensions cancel each other out, resulting in the zonotope
⟨0⟩, which is the singleton set {0}.

In contrast, with the interval domain, given input interval [0, 1], you
get the output interval [−1, 1].

Looking Ahead
We’ve seen the zonotope domain, an efficient extension beyond simple
interval arithmetic. Next, we will look at full-blown polyhedra.

To my knowledge, the zonotope domain was first introduced by
Girard (2005) in the context of hybrid-system model checking. In the
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context of neural-network verification, Gehr et al. (2018) were the first
to use zonotopes, and introduced precise abstract transformers (Singh
et al., 2018), one of which we covered here. In practice, we try to limit
the number of generators to keep verification fast. This can be done by
occasionally projecting out some of the generators heuristically as we’re
abstractly interpreting the neural network.

A standard optimization in program analysis is to combine program
operations and construct more precise abstract transformers for the
combination. This allows us to extract more relational information. In
the context of neural networks, this amounts to combining activation
functions in a layer of the network. Singh et al. (2019a) showed how to
elegantly do this for zonotopes.
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In the previous section, we saw the zonotope abstract domain, which is
more expressive than the interval domain. Specifically, instead of approx-
imating functions using a hyperrectangle, the zonotope domain allows
us to approximate functions using a zonotope, e.g., a parallelogram,
capturing relations between different dimensions.

In this section, we look at an even more expressive abstract domain,
the polyhedron domain. Unlike the zonotope domain, the polyhedron
domain allows us to approximate functions using arbitrary convex
polyhedra. A polyhedron in Rn is a region made of straight (as opposed
to curved) faces; a convex shape is one where the line between any
two points in the shape is completely contained in the shape. Convex
polyhedra can be specified as a set of linear inequalities. Using convex
polyhedra, we approximate a ReLU as follows:

109
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ul

relu(u)

This is the smallest convex polyhedron that approximates ReLU.
You can visually check that it is convex. This approximation is clearly
more precise than that afforded by the interval and zonotope domains,
as it is fully contained in the approximations of ReLU in those domains:

ul

relu(u)

ul

relu(u)

10.1 Convex Polyhedra
We will define a polyhedron in a manner analogous to a zonotope, using a
set of m generator variables, ϵ1, . . . , ϵm. With zonotopes the generators
are bounded in the interval [−1, 1]; with polyhedra, generators are
bounded by a set of linear inequalities.

Let’s first revisit and generalize the definition of a zonotope. A
zonotope in Rn is a set of points defined as follows:{(

c10 +
m∑

i=1
c1i · ϵi, . . . , cn0 +

m∑
i=1

cni · ϵi

)∣∣∣∣∣ F (ϵ1, . . . , ϵm)
}

where F is a Boolean function that evaluates to true iff all of its
arguments are between −1 and 1.
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With polyhedra, we will define F as a set (conjunction) of linear
inequalities over the generator variables, e.g.,

0 ⩽ ϵ1 ⩽ 5 ∧ ϵ1 = ϵ2

(equalities are defined as two inequalities). We will always assume that
F defines a bounded polyhedron, i.e., gives a lower and upper bound for
each generator; e.g., ϵ1 ⩽ 0 is not allowed, because it does not enforce a
lower bound on ϵ1.

In the 1-dimensional case, a polyhedron is simply an interval. Let’s
look at higher dimensional examples:

Example 10.1. Consider the following 2-dimensional polyhedron:

{(ϵ1, ϵ2) | F (ϵ1, ϵ2)}

where
F ≡ 0 ⩽ ϵ1 ⩽ 1 ∧ ϵ2 ⩽ ϵ1 ∧ ϵ2 ⩾ 0

This polyhedron is illustrated as follows:

Clearly, this shape is not a zonotope, because its faces are not parallel.

Example 10.2. In 3 dimensions, a polyhedron may look something like
this1

1Adapted from Westburg (2017).
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One can add more faces by adding more linear inequalities to F .

From now on, given a polyhedron{(
c10 +

m∑
i=1

c1i · ϵi, . . . , cn0 +
m∑

i=1
cni · ϵi

)∣∣∣∣∣ F (ϵ1, . . . , ϵm)
}

we will abbreviate it as the tuple:

(⟨c1i⟩i, . . . ⟨cni⟩i, F )

10.2 Computing Upper and Lower Bounds
Given a polyhedron (⟨c1i⟩i, . . . ⟨cni⟩i, F ), we will often want to compute
the lower and upper bounds of one of the dimensions. Unlike with
the interval and zonotope domains, this process is not straightforward.
Specifically, it involves solving a linear program, which takes polynomial
time in the number of variables and constraints.

To compute the lower bound of the jth dimension, we solve the
following linear programming problem:

min cj0 +
m∑

i=1
cjiϵi

s.t. F

Similarly, we compute the upper bound of the jth dimension by maxi-
mizing instead of minimizing.

Example 10.3. Take our triangle shape from Example 10.1, defined
using two generators:

(⟨0, 1, 0⟩, ⟨0, 0, 1⟩, F )

where
F ≡ 0 ⩽ ϵ1 ⩽ 1 ∧ ϵ2 ⩽ ϵ1 ∧ ϵ2 ⩾ 0

To compute the upper bound of first dimension, we solve

max ϵ1

s.t. F

The answer here is 1, which is obvious from the constraints.
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10.3 Abstract Transformers for Polyhedra
We’re now ready to go over some abstract transformers for polyhedra.

Affine Functions
For affine functions, it is really the same transformer as the one for
the zonotope domain, except that we carry around the set of linear
inequalities F—for the zonotope domain, F is fixed throughout.

Specifically, for an affine function

f(x1, . . . , xn) =
∑

j

ajxj

where aj ∈ R, we can define the abstract transformer as follows:

fa(⟨c1i⟩, . . . ⟨cni⟩, F ) =

〈∑
j

ajcj0, . . . ,
∑

j

ajcjm

〉
, F


Notice that the set of linear inequalities does not change between

the input and output of the function—i.e., there are no new constraints
added.

Example 10.4. Consider f(x, y) = 3x + 2y . Then,

fa(⟨1, 2, 3⟩, ⟨0, 1, 1⟩, F ) = (⟨3, 8, 11⟩, F )

Rectified Linear Unit
Let’s now look at the abstract transformer for ReLU, which we illus-
trated earlier in the section:

ul

relu(u)
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This is the tightest convex polyhedron we can use to approximate
the ReLU function. We can visually verify that tightening the shape any
further will either make it not an approximation or not convex—e.g.,
by bending the top face downwards, we get a better approximation but
lose convexity.

Let’s see how to formally define relua. The key point is that the top
face is the line

y = u(x− l)
u− l

This is easy to check using vanilla geometry. Now, our goal is to define
the shaded region, which is bounded by y = 0 from below, y = x from
the right, and y = u(x−l)

u−l from above.
We therefore define relua as follows:

relua(⟨ci⟩i, F ) = (⟨0, 0, . . . , 0︸ ︷︷ ︸
m

, 1⟩, F ′)

where

F ′ ≡ F ∧ ϵm+1 ⩽
u(⟨ci⟩ − l)

(u− l)
∧ ϵm+1 ⩾ 0
∧ ϵm+1 ⩾ ⟨ci⟩

There are a number of things to note here:

• l and u are the lower and upper bounds of the input polyhedron,
which can be computed using linear programming.

• ⟨ci⟩i is used to denote the full term c0 +
∑m

i=1 ciϵi.

• Observe that we’ve added a new generator, ϵm+1. The new set of
constraints F ′ relate this new generator to the input, effectively
defining the shaded region.

Example 10.5. Consider the 1-dimensional polyhedron

(⟨0, 1⟩, −1 ⩽ ϵ1 ⩽ 1)

which is the interval between −1 and 1. Invoking

relua(⟨0, 1⟩,−1 ⩽ ϵ1 ⩽ 1)
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results in (⟨0, 0, 1⟩, F ′), where

F ′ ≡− 1 ⩽ ϵ1 ⩽ 1

∧ ϵ2 ⩽
ϵ1 + 1

2
∧ ϵ2 ⩾ 0
∧ ϵ2 ⩾ ϵ1

If we plot the region defined by F ′, using ϵ1 as the x-axis and ϵ2 as the
y-axis, we get the shaded region

1−1

1

Other Activation Functions
For ReLU, the transformer we presented is the most precise. For other
activation functions, like sigmoid, there are many ways to define abstract
transformers for the polyhedron domain. Intuitively, one can keep
adding more and more faces to the polyhedron to get a more precise
approximation of the sigmoid curve.

10.4 Abstractly Interpreting Neural Networks with Polyhedra
We can now use our abstract transformers to abstractly interpret an
entire neural network, in precisely the same way we did for zonotopes,
except that we’re now carrying around a set of constraints. We review
the process here for completeness.

Recall that a neural network is defined as a graph G = (V, E),
giving rise to a function fG : Rn → Rm, where n = |V in| and m = |V o|.
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We would like to construct an abstract transformer fa
G that takes an

n-dimensional polyhedron and outputs an m-dimensional polyhedron.
We define fa

G(⟨c1j⟩, . . . ⟨cnj⟩, F ) as follows:

• First, for every input node vi, we define

outa(vi) = (⟨cij⟩j , F )

Recall that we assume a fixed ordering of nodes.

• Second, for every non-input node v, we define

outa(v) = fa
v

(
p1, . . . , pk,

k∧
i=1

Fk

)

where fa
v is the abstract transformer of fv, v has the incoming

edges (v1, v), . . . , (vk, v), and

outa(vi) = (pi, Fi)

Observe what is happening here: we’re combining (with ∧) the
constraints from the incoming edges. This ensures that we capture
the relations between incoming values.

• Finally, the output of fa
G is the m-dimensional polyhedron(
p1, . . . , pm,

m∧
i=1

Fi

)

where v1, . . . , vm are the output nodes and outa(vi) = (pi, Fi)

Some abstract transformers (for activation functions) add new gen-
erators. We can assume that all of these generators are already in
the input polyhedron but with coefficients set to 0, and they only get
non-zero coefficients in the outputs of activation function nodes.

Looking Ahead
We looked at the polyhedron abstract domain, which was first intro-
duced by Cousot and Halbwachs (1978). To minimize the size of the
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constraints, Singh et al. (2019b) use a specialized polyhedron restriction
that limits the number of constraints, and apply it to neural-network ver-
ification. Another representation of polyhedra, with specialized abstract
transformers for convolutional neural networks, is ImageStars (Tran
et al., 2020a). For a good description of efficient polyhedron domain op-
erations and representations, for general programs, please consult Singh
et al. (2017).
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Verifying with Abstract Interpretation

We have seen a number of abstract domains that allow us to evaluate
a neural network on an infinite set of inputs. We will now see how
to use this idea for verification of specific properties. While abstract
interpretation can be used, in principle, to verify any property in our
language of correctness properties, much of the work in the literature is
restricted to specific properties of the form:

{ precondition }
r ← f(x)

{ postcondition }

where the precondition defines a set of possible values for x, the inputs
of the neural network, and the postcondition defines a set of possible
correct values of r, the outputs of the neural network. To verify such
properties with abstract interpretation, we need to perform three tasks:

1. Soundly represent the set of values of x in the abstract domain.

2. Abstractly interpret the neural network f on all values of x,
resulting in an overapproximation of values of r.

3. Check that all values of r satisfy the postcondition.

118
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We’ve seen how to do (2), abstractly interpreting the neural network.
We will now see how to do (1) and (3) for specific correctness properties
from the literature.

11.1 Robustness in Image Recognition
In image recognition, we’re often interested in ensuring that all images
similar to some image c have the same prediction as the label of c. Let’s
say that the label of c is y. Then we can define robustness using the
following property:

{ ∥x− c∥p ⩽ ϵ }
r ← f(x)

{ class(r) = y }
where ∥x∥p is the ℓp norm of a vector and ϵ > 0. Typically we use the ℓ2
(Euclidean) or the ℓ∞ norm as the distance metric between two images:

∥z∥2 =
√∑

i

|zi|2

∥z∥∞ = max
i
|zi|

Intuitively, the ℓ2 norm is the length of the straight-line between
two images in Rn, while ℓ∞ is the largest discrepancy between two
images. For example, if each element of an image’s vector represents
one pixel, then the ℓ∞ norm tells us the biggest difference between two
corresponding pixels.

Example 11.1.
∥(1, 2)− (2, 4)∥2 = ∥(−1,−2)∥2

=
√

3
∥(1, 2)− (2, 4)∥∞ = ∥(−1,−2)∥∞

= 2

Example 11.2. Consider an image c where every element of c represents
the brightness of a grayscale pixel, from black to white, say from 0 to 1.
If we want to represent the set of all images that are like c but where
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each pixel differs by a brightness amount of 0.2, then we can use the
ℓ∞ norm in the precondition, i.e., the set of images x where

∥x− c∥∞ ⩽ 0.2

This is because the ℓ∞ norm captures the maximum discrepancy a pixel
in c can withstand. As an example, consider the handwritten 7 digit on
the left and a version of it on the right where each pixel’s brightness
was changed by up to 0.2 randomly:

Now consider the case where we want to represent all images that
are like c but where a small region has a very different brightness. For
example, on the left we see the handwritten 7 and on the right we see
the same handwritten digit but with a small bright dot:

To characterize a set of images that have such noise, like the dot
above, we shouldn’t use ℓ∞ norm, because ℓ∞ bounds the brightness
difference for all pixels, but not some pixels, and here the brightness
difference that results in the white dot is extreme—from 0 (black) to
white (1). Instead, we can use the ℓ2 norm. For the above pair of images,
their ℓ∞-norm distance is 1; their ℓ2-norm distance is also 1, but the
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precondition
{∥x− c∥∞ ⩽ 1}

includes the images that are all black or all white, which are clearly not
the digit 7. The precondition

{∥x− c∥2 ⩽ 1}

on the other hand, only allows a small number of pixels to significantly
differ in brightness.

For verification, we will start by focusing on the ℓ∞-norm case and
the interval domain.

Abstracting the Precondition
Our first goal is to represent the precondition in the interval domain.
The precondition is the set of the following images:

{x | ∥x− c∥∞ ⩽ ϵ}

Example 11.3. Say c = (0, 0) and ϵ = 1. Then the above set is the
following region:

1
−1

1

As the illustration above hints, it turns out that we can represent
the set {x | ∥x− c∥∞ ⩽ ϵ} precisely in the interval domain as

I = ([c1 − ϵ, c1 + ϵ], . . . , [cn − ϵ, cn + ϵ])

Informally, this is because the ℓ∞ norm allows us to take any element
of c and change it by ϵ independently of other dimensions.
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Checking the Postcondition
Now that we have represented the set of values that x can take in
the interval domain as I, we can go ahead and evaluate the abstract
transformer fa(I), resulting in an output of the form

I ′ = ([l1, u1], . . . , [lm, um])

representing all possible values of r, and potentially more.
The postcondition specifies that class(r) = y. Recall that class(r) is

the index of the largest element of r. To prove the property, we have to
show that for all r ∈ I ′, class(r) = y. We make the observation that

if ly > ui for all i ̸= y,

then for all r ∈ I ′, class(r) = y

In other words, if the yth interval is larger than all others, then we know
that the classification is always y. Notice that this is a one-sided check:
if ly ⩽ ui for some i ̸= y, then we can’t disprove the property. This
is because the set I ′ overapproximates the set of possible predictions
of the neural network on the precondition. So I ′ may include spurious
predictions.

Example 11.4. Suppose that

fa(I) = I ′ = ([0.1, 0.2], [0.3, 0.4])

Then, class(r) = 2 for all r ∈ I ′. This is because the second interval is
strictly larger than the first interval.

Now suppose that

I ′ = ([0.1, 0.2], [0.15, 0.4])

These two intervals overlap in the region 0.15 to 0.2. This means that
we cannot conclusively say that class(r) = 2 for all r ∈ I ′, and so
verification fails.

Verifying Robustness with Zonotopes
Let’s think of how to check the ℓ∞-robustness property using the
zonotope domain. Since the precondition is a hyperrectangular set,
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we can precisely represent it as a zonotope Z. Then, we evaluate the
abstract transformer fa(Z), resulting in a zonotope Z ′.

The fun bit is checking the postcondition. We want to make sure
that dimension y is greater than all others. The problem boils down
to checking if a 1-dimensional zonotope is always > 0. Consider the
zonotope

Z ′ = (⟨c1i⟩, . . . ⟨cmi⟩)
To check that dimension y is greater than dimension j, we check if the
lower bound of the 1-dimensional zonotope

⟨cyi⟩ − ⟨cji⟩

is > 0.

Example 11.5. Suppose that

Z ′ = (2 + ϵ1, 4 + ϵ1 + ϵ2)

which is visualized as follows, with the center point (2,4) in red:

1 2 3 4

1
2
3
4
5

Clearly, for any point (x, y) in this region, we have y > x. To check that
y > x mechanically, we subtract the x dimension from the y dimension:

(4 + ϵ1 + ϵ2)− (2 + ϵ1) = 2 + ϵ2

The resulting 1-dimensional zonotope (2 + ϵ2) denotes the interval [1, 3],
which is greater than zero.

Verifying Robustness with Polyhedra
With the polyhedron domain, the story is analogous to zonotopes but
requires invoking a linear-program solver. We represent the precondition
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as a hyperrectangular polyhedron Y . Then, we evaluate the abstract
transformer, fa(Y ), resulting in the polyhedron

Y ′ = (⟨c1i⟩, . . . ⟨cmi⟩, F )

To check if dimension y is greater than dimension j, we ask a linear-
program solver if the following constraints are satisfiable

F ∧ ⟨cyi⟩ > ⟨cji⟩

Robustness in ℓ2 Norm
Let’s now consider the precondition with the set of images within an ℓ2
norm of c:

{x | ∥x− c∥2 ⩽ ϵ}

Example 11.6. Say c = (0, 0) and ϵ = 1. Then the above set is the
following circular region:

1
−1

1

This set cannot be represented precisely in the interval domain. To
ensure that we can verify the property, we need to overapproximate the
circle with a box. The best we can do is using the tightest box around
the circle, i.e., ([−1, 1], [−1, 1]), shown below in red:

1
−1

1

The zonotope and polyhedron domains also cannot represent the
circular set precisely. However, there isn’t a tightest zonotope or poly-
hedron that overapproximates the circle. For example, with polyhedra,
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one can keep adding more and more faces, getting a better and better
approximation, as illustrated below:

In practice, there is, of course, a precision–scalability tradeoff: more
faces mean more complex constraints and therefore slower verification.

11.2 Robustness in Natural-Language Processing
We will now take a look at another robustness property from natural-
language processing. The goal is to show that replacing words with
synonyms does not change the prediction of the neural network. For
instance, a common task is sentiment analysis, where the neural network
predicts whether, say, a movie review is positive or negative. Replacing
“amazing” with “outstanding” should not fool the neural network into
thinking a positive review is a negative one.

We assume that the input to the neural network is a vector where
element i is a numerical representation of the ith word in the sentence,
and that each word w has a finite set of possible synonyms Sw, where
we assume w ∈ Sw. Just as with images, we assume a fixed sentence c

with label y for which we want to show robustness. We therefore define
the correctness property as follows:

{ xi ∈ Sci for all i }
r ← f(x)

{ class(r) = y }

Intuitively, the precondition defines all vectors x that are like c but
where some words are replaced by synonyms.

The set of possible vectors x is finite, but it is exponentially large in
the length of the input sentence. So it is not wise to verify the property
by evaluating the neural network on every possible x. We can, however,
represent an overapproximation of the set of possible sentences in the
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interval domain. The idea is to take interval between the largest and
smallest possible numerical representations of the synonyms of every
word, as follows:

([min Sc1 , max Sc1 ], . . . , [min Scn , max Scn ])

This set contains all the values of x, and more, but it is easy to construct,
since we need only go through every set of synonyms Sci individually,
avoiding an exponential explosion.

The rest of the verification process follows that of image robustness.
In practice, similar words tend to have close numerical representations,
thanks to the power of word embeddings (Mikolov et al., 2013). This
ensures that the interval is pretty tight. If words received arbitrary
numerical representations, then our abstraction can be arbitrarily bad.

Looking Ahead
We saw examples of how to verify properties via abstract interpretation.
The annoying thing is that for every abstract domain and every property
of interest, we may need custom operations. Most works that use abstract
interpretation so far have focused on the properties I covered in this
section. Other properties from earlier in the monograph can also be
verified via the numerical domains we’ve seen. For example, the aircraft
controller from Section 3 has properties of the form:

{ d ⩾ 55947, vown ⩾ 1145, vint ⩽ 60 }
r ← f(d, vown, vint, . . .)

{ score of nothing in r is below 1500 }

Note that the precondition can be captured precisely in the interval
domain.

At the time of writing, abstraction-based techniques have been
applied successfully to relatively large neural networks, with up to a
million neurons along more than thirty layers (Müller et al., 2020; Tran
et al., 2020b). Achieving such results requires performant implementa-
tions, particularly for more complicated domains like the zonotope and
polyhedron domain. For instance, Müller et al. (2020) come up with
data-parallel implementations of polyhedron abstract transformers that
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run on a gpu. Further, there are heuristics that can be employed to
minimize the number of generators in the zonotope domain—limiting
the number of generators reduces precision while improving efficiency.
It is also important to note that thus far most of the action in the
abstraction-based verification space, and verification of neural networks
at large, has been focused on ℓp-robustness properties for images. (We’re
also starting to see evidence that the ideas can apply to natural-language
robustness (Zhang et al., 2021).) So it’s unclear whether verification will
work for more complex perceptual notions of robustness—e.g., rotating
an image or changing the virtual background on a video—or other more
complex properties and domains, e.g., malware detection.

The robustness properties we discussed check if a fixed region of
inputs surrounding a point lead to the same prediction. Alternatively,
we can ask, how big is the region around a point that leads to the same
prediction? Naïvely, we can do this by repeatedly performing verification
with larger and larger ℓ2 or ℓ∞ bounds until verification fails. Some
techniques exploit the geometric structure of a neural network—induced
by ReLUs—to grow a robust region around a point (Zhang et al., 2018b;
Fromherz et al., 2021).

As we discussed throughout this part of the monograph, abstract-
interpretation techniques can make stupid mistakes due to severe over-
approximations. However, abstract interpretation works well in practice
for verification. Why? Two recent papers shed light on this question
from a theoretical perspective (Baader et al., 2020; Wang et al., 2020).
The papers generalize the universal approximation property of neural
networks (Section 2.1) to verification with the interval domain or any
domain that is more precise. Specifically, imagine that we have a neural
network that is robust as per the ℓ∞ norm; i.e., the following property
is true for a bunch of inputs of interest:

{ ∥x− c∥∞ ⩽ ϵ }
r ← f(x)

{ class(r) = y }

But suppose that abstract interpretation using the interval domain fails
to prove robustness for most (or all) inputs of interest. It turns out
that we can always construct a neural network f ′, using any realistic
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activation function (ReLU, sigmoid, etc.), that is very similar to f—as
similar as we like—and for which we can prove robustness using abstract
interpretation. The bad news, as per Wang et al., 2020, is that the
construction of f ′ is likely exponential in the size of the domain.
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Abstract Training of Neural Networks

You have reached the final section of this glorious journey. So far on our
journey, we have assumed that we’re given a neural network that we
want to verify. These neural networks are, almost always, constructed
by learning from data. In this section, we will see how to train a neural
network that is more amenable to verification via abstract interpretation
for a property of interest.

12.1 Training Neural Networks
We begin by describing neural network training from a data set. Specif-
ically, we will focus throughout this section on a classification setting.

Optimization Objective
A dataset is of the form

{(x1, y1), . . . , (xm, ym)}

where each xi ∈ Rn is an input to the neural network, e.g., an image
or a sentence, and yi ∈ {0, 1} is a binary label, e.g., indicating if a
given image is that of a cat or if a sentence has a positive or negative
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sentiment. Each item in the dataset is typically assumed to be sampled
independently from a probability distribution, e.g., the distribution of
all images of animals.

Given a dataset, we would like to construct a function in Rn → R
that makes the right prediction on most of the points in the dataset.
Specifically, we assume that we have a family of functions represented
as a parameterized function fθ, where θ is a vector of weights. We would
like to find the best function by searching the space of θ values. For
example, we can have the family of affine functions

fθ(x) = θ1 + θ2x1 + θ3x2

To find the best function in the function family, we effectively need
to solve an optimization problem like this one:

argmin
θ

1
m

m∑
i=1

1[fθ(xi) = yi]

where 1[b] is 1 if b is true and 0 otherwise. Intuitively, we want the
function that makes the smallest number of prediction mistakes on our
dataset {(x1, y1), . . . , (xm, ym)}.

Practically, this optimization objective is quite challenging to solve,
since the objective is non-differentiable—because of the Boolean 1[·]
operation, which isn’t smooth. Instead, we often solve a relaxed opti-
mization objective like mean squared error (mse), which minimizes how
far fθ’s prediction is from each yi. mse looks like this:

argmin
θ

1
m

m∑
i=1

(fθ(xi)− yi)2

Once we’ve figured out the best values of θ, we can predict the label of
an input x by computing fθ(x) and declaring label 1 iff fθ(x) ⩾ 0.5.

We typically use a general form to describe the optimization ob-
jective. We assume that we’re given a loss function L(θ, x, y) which
measures how bad is the prediction fθ(x) is compared to the label y.
Formally, we solve

argmin
θ

1
m

m∑
i=1

L(θ, xi, yi) (12.1)
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Squared error is one example loss function, but there are others, like
cross-entropy loss. For our purposes here, we’re not interested in what
loss function is used.

Loss Function as a Neural Network
The family of functions fθ is represented as a neural network graph
Gθ, where every node v’s function fv may be parameterized by θ. It
turns out that we can we represent the loss function L also as a neural
network; specifically, we represent L as an extension of the graph Gθ by
adding a node at the very end that computes, for example, the squared
difference between fθ(x) and y. By viewing the loss function L as a
neural network, we can abstractly interpret it, as we shall see later in
the section.

Suppose that fθ : Rn → R has a graph of the form

v1

vn

... vo

where the dotted arrows indicate potentially intermediate nodes. We
can construct the graph of a loss function L(θ, x, y) by adding an input
node vy for the label y and creating a new output node vL that compares
the output of fθ (the node vo) with y.

v1

vn

vy

... vo vL

Here, input node vy takes in the label y and fvL encodes the loss function,
e.g., mean squared error (f(x)− y)2.
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Gradient Descent
How do we find values of θ that minimize the loss? Generally, this is a
hard problem, so we just settle for a good enough set of values. The
simplest thing to do is to randomly sample different values of θ and
return the best one after some number of samples. But this is a severely
inefficient approach.

Typically, neural-network training employs a form of gradient descent.
Gradient descent is a very old algorithm, due to Cauchy in the mid 1800s.
It works by starting with a random value of θ and iteratively nudging
it towards better values by following the gradient of the optimization
objective. The idea is that starting from some point x0, if we want to
minimize g(x0), then our best bet is to move in the direction of the
negative gradient at x0.

The gradient of a function g(θ) with respect to inputs θ, denoted
∇g, is the vector of partial derivatives1(

∂g

∂θ1
, . . . ,

∂g

∂θn

)
The gradient at a specific value θ0, denoted (∇g)(θ0), is(

∂g

∂θ1
(θ0), . . . ,

∂g

∂θn
(θ0)

)
If you haven’t played with partial derivatives in a while, I recommend
Deisenroth et al. (2020) for a machine-learning-specific refresher.

Gradient descent can be stated as follows:

1. Start with j = 0 and a random value of θ, called θ0.

2. Set θj+1 to θj − η((∇g)(θi)).

3. Set j to j + 1 and repeat.

Here η > 0 is the learning rate, which constrains the size of the change of
θ: too small a value and you’ll make baby steps towards a good solution;
too large a value and you’ll bounce wildly around unable to catch a

1The gradient is typically a column vector, but for simplicity of presentation we
treat it as a row vector here.
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good region of solutions for θ, potentially even diverging. The choice
of η is typically determined empirically by monitoring the progress of
the algorithm for a few iterations. The algorithm is usually terminated
when the loss has been sufficiently minimized or when it starts making
tiny steps, asymptotically converging to a solution.

In our setting, our optimization objective is

1
m

m∑
i=1

L(θ, xi, yi)

Following the beautiful properties of derivatives, the gradient of this
function is

1
m

m∑
i=1
∇L(θ, xi, yi)

It follows that the second step of gradient descent can be rewritten as

Set θj+1 to θj − η
m

∑m
i=1∇L(θj , xi, yi).

In other words, we compute the gradient for every point in the dataset
independently and take the average.

Stochastic Gradient Descent
In practice, gradient descent is incredibly slow. So people typically use
stochastic gradient descent (sgd). The idea is that, instead of computing
the average gradient in every iteration for the entire dataset, we use
a random subset of the dataset to approximate the gradient. sgd is
also known as mini-batch gradient descent. Specifically, here’s how sgd
looks:

1. Start with j = 0 and a random value of θ, called θ0.

2. Divide the dataset into a random set of k batches, B1, . . . , Bk.

3. For i from 1 to k,

Set θj+1 to θj − η

m

∑
(x,y)∈Bi

∇L(θj , x, y)

Set j to j + 1

4. Go to step 2.
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In practice, the number of batches k (equivalently size of the batch) is
typically a function of how much data you can cram into the gpu at
any one point.2

12.2 Adversarial Training with Abstraction
The standard optimization objective for minimizing loss (Equation (12.1))
is only interested in, well, minimizing the average loss for the dataset,
i.e., getting as many predictions right. So there is no explicit goal of
generating robust neural networks, for any definition of robustness. As
expected, this translates to neural networks that are generally not very
robust to perturbations in the input. Furthermore, even if the trained
network is robust on some inputs, verification with abstract interpreta-
tion often fails to produce a proof. This is due to the overapproximate
nature of abstract interpretation. One can always rewrite a neural
network—or any program for that matter—into one that fools abstract
interpretation, causing it to loose a lot of precision and therefore fail
to verify properties of interest. Therefore, we’d like to train neural
networks that are friendly for abstract interpretation.

We will now see how to change the optimization objective to produce
robust networks and how to use abstract interpretation within sgd to
solve this optimization objective.

Robust Optimization Objective
Let’s consider the image-recognition-robustness property from the previ-
ous section: For every (x, y) in our dataset, we want the neural network
to predict y on all images z such that ∥x− z∥∞ ⩽ ϵ. We can characterize
this set as

R(x) = {z | ∥x− z∥∞ ⩽ ϵ}
Using this set, we will rewrite our optimization objective as follows:

argmin
θ

1
m

m∑
i=1

max
z∈R(xi)

L(θ, z, yi) (12.2)

2To readers from the future: In the year 2021, graphics cards and some specialized
accelerators used to be the best thing around for matrix multiplication. What have
you folks settled on, quantum or dna computers?
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Intuitively, instead of minimizing the loss for (xi, yi), we minimize the
loss for the worst-case perturbation of xi from the set R(xi). This is
known as a robust-optimization problem (Ben-Tal et al., 2009). Training
the neural network using such objective is known as adversarial training—
think of an adversary (represented using the max) that’s always trying
to mess with your dataset to maximize the loss as you are performing
the training (Madry et al., 2018).

Solving Robust Optimization via Abstract Interpretation
We will now see how to solve the robust-optimization problem using
sgd and abstract interpretation!

Let’s use the interval domain. The set R(x) can be defined in
the interval domain precisely, as we saw in the last section, since it
defines a set of images within an ℓ∞-norm bound. Therefore, we can
overapproximate the inner maximization by abstractly interpreting L

on the entire set R(xi). (Remember that L, as far as we’re concerned,
is just a neural network.) Specifically, by virtue of soundness of the
abstract transformer La, we know that(

max
z∈R(xi)

L(θ, z, yi)
)

⩽ u

where
La(θ, R(xi), yi) = [l, u]

In other words, we can overapproximate the inner maximization by
abstractly interpreting the loss function on the set R(xi) and taking
the upper bound.

We can now rewrite our robust-optimization objective as follows:

argmin
θ

1
m

m∑
i=1

upper bound of La(θ, R(xi), yi) (12.3)

Instead of thinking of La as an abstract transformer in the interval
domain, we can think of it as a function that takes a vector of inputs,
denoting lower and upper bounds of R(x), and returns the pair of lower
and upper bounds. We call this idea flattening the abstract transformer;
we illustrate flattening with a simple example:
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Example 12.1. Consider the ReLU function relu(x) = max(0, x). The
interval abstract transformer is

relua([l, u]) = [max(0, l), max(0, u)]

We can flatten it into a function reluaf : R2 → R2 as follows:

reluaf(l, u) = (max(0, l), max(0, u))

Notice that reluaf returns a pair in R2 as opposed to an interval.

With this insight, we can flatten the abstract loss function La into
Laf. Then, we just invoke sgd on the following optimization problem,

argmin
θ

1
m

m∑
i=1

Laf
u (θ, li1, ui1, . . . , lin, uin, yi) (12.4)

where Laf
u is only the upper bound of the output of Laf, i.e., we throw

away the lower bound (remember Equation (12.3)), and R(xi) =
([li1, ui1], . . . , [lin, uin]).

sgd can optimize such objective because all of the abstract trans-
formers of the interval domain that are of interest for neural networks
are differentiable (almost everywhere). The same idea can be adapted
to the zonotope domain, but it’s a tad bit uglier.

Example 12.2. Given a function f : R → R, its zonotope abstract
transformer fa is one that takes as input a 1-dimensional input zonotope
with m generator variables, ⟨c0, . . . , cm⟩, and outputs a 1-dimensional
zonotope also with m generators, ⟨c′

0, . . . , c′
m⟩. We can flatten fa by

treating it as a function in

faf : Rm+1 → Rm+1

where the m + 1 arguments and outputs are the coefficients of the m

generator variables and the center point.

Flattening does not work for the polyhedron domain, because it
invokes a black-box linear-programming solver for activation functions,
which is not differentiable.
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Looking Ahead
We saw how to use abstract interpretation to train (empirically) more
robust neural networks. It has been shown that neural networks trained
with abstract interpretation tend to be (1) more robust to perturbation
attacks and (2) are verifiably robust using abstract interpretation. The
second point is subtle: You could have a neural network that satisfies a
correctness property of interest, but that does not mean that an abstract
domain will succeed at verifying that the neural network satisfies the
property. By incorporating abstract interpretation into training, we
guide sgd towards neural networks that are amenable to verification.

The first use of abstract interpretation within the training loop
came in 2018 (Mirman et al., 2018; Gowal et al., 2018). Since then,
many approaches have used abstract interpretation to train robust
image-recognition as well as natural-language-processing models (Zhang
et al., 2020; Zhang et al., 2021; Jia et al., 2019; Xu et al., 2020; Huang
et al., 2019). Robust optimization is a rich field (Ben-Tal et al., 2009);
to my knowledge, Madry et al. (2018) were the first to pose training of
ℓp-robust neural networks as a robust-optimization problem.

There are numerous techniques for producing neural networks that
are amenable to verification. For instance, Sivaraman et al., 2020 use
constraint-based verification to verify that a neural network is monotone.
Since constraint-based techniques can be complete, they can produce
counterexamples, which are then used to retrain the neural network,
steering it towards monotonicity. Another interesting direction in the
constraint-based world is to train neural networks towards ReLUs whose
inputs are always positive or always negative (Xiao et al., 2019). This
ensures that the generated constraints have as few disjunctions as
possible, because the encoding of the ReLU will be linear (i.e., no
disjunction).

ℓp-robustness properties are closely related to the notion of Lipschitz
continuity. For instance, a network f : Rn → Rm is K-Lipschitz under
the ℓ2 norm if

∥f(x)− f(y)∥2 ⩽ K ∥x− y∥2
The smallest K satisfying the above is called the Lipschitz constant of f .
If we can bound K, then we can prove ℓ2-robustness of f . A number of
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works aim to construct networks with constrained Lipschitz constants,
e.g., by adding special layers to the network architecture or modifying
the training procedure (Trockman and Kolter, 2021; Leino et al., 2021;
Li et al., 2019)
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My goal with this monograph is to give an introduction to two salient
neural-network verification approaches. But, as you may expect, there
are many interesting ideas, issues, and prospects that we did not dis-
cuss.

Correctness Properties
In Part I of the monograph, we saw a general language of correctness
properties, and saw a number of interesting examples across many
domains. One of the hardest problems in the field verification—and
the one that is least discussed—is how to actually come up with such
properties (also known as specifications). For instance, we saw forms
of the robustness property many times throughout the monograph.
Robustness, at a high level, is very desirable. You expect an intelligent
system to be robust in the face of silly transformations to its input. But
how exactly do we define robustness? Much of the literature focuses
on ℓp norms, which we saw in Section 11. But one can easily perform
transformations that lie outside ℓp norms, e.g., rotations to an image, or
work in domains where ℓp norms don’t make much sense, e.g., natural
language, source code, or other structured data.
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Full text available at: http://dx.doi.org/10.1561/2500000051



140 The Challenges Ahead

Therefore, coming up with the right properties to verify and enforce
is a challenging, domain-dependent problem requiring a lot of careful
thought.

Verification Scalability
Every year, state-of-the-art neural networks blow up in size, gaining
more and more parameters. We’re talking about billions of parameters.
There is no clear end in sight. This poses incredible challenges for
verification. Constraint-based approaches are already not very scalable,
and abstraction-based approaches tend to lose precision with more and
more operations. So we need creative ways to make sure that verification
technology keeps up with the parameter arms race.

Verification Across the Stack
Verification research has focused on checking properties of neural net-
works in isolation. But neural networks are, almost always, a part of a
bigger more complex system. For instance, a neural network in a self-
driving car receives a video stream from multiple cameras and makes
decisions on how to steer, speed up, or brake. These video streams
run through layers of encoding, and the decisions made by the neu-
ral network go through actuators with their own control software and
sensors. So, if one wants to claim any serious correctness property of
a neural-network-driven car, one needs to look at all of the software
components together as a system. This makes the verification problem
challenging for two reasons: (1) The size of the entire stack is clearly
bigger than just the neural network, so scalability can be an issue. (2)
Different components may require different verification techniques, e.g.,
abstract domains.

Another issue with verification approaches is the lack of emphasis
on the training algorithms that produce neural networks. For example,
training algorithms may themselves not be robust: a small corruption
to the data may create vastly different neural networks. For instance,
a number of papers have shown that poisoning the dataset through
minimal manipulation can cause a neural network to pick up on spurious
correlations that can be exploited by an attacker. Imagine a neural
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network that detects whether a piece of code is malware. This network
can be trained using a dataset of malware and non-malware. By adding
silly lines of code to some of the non-malware code in the dataset, like
print("LOL"), we can force the neural network to learn a correlation
between the existence of this print statement and the fact that a piece
of code is not malware (Ramakrishnan and Albarghouthi, 2020). This
can then be exploited by an attacker. This idea is known as installing a
backdoor in the neural network.

So it’s important to prove that our training algorithm is not sus-
ceptible to small perturbations in the input data. This is a challenging
problem, but researchers have started to look at it for simple mod-
els (Drews et al., 2020; Rosenfeld et al., 2020).

Verification in Dynamic Environments
Often, neural networks are deployed in a dynamic setting, where the
neural network interacts with the environment, e.g., a self-driving car.
Proving correctness in this setting is rather challenging. First, one
has to understand the interaction between the neural network and
the environment—the dynamics. This is typically hard to pin down
precisely, as real-world physics may not be as clean as textbook formulas.
Further, the world can be uncertain, e.g., we have to somehow reason
about other crazy drivers on the road. Second, in such settings, one
needs to verify that a neural-network-based controller maintains the
system in a safe state (e.g., on the road, no crash, etc.). This requires an
inductive proof, as one has to reason about arbitrarily many time steps
of control. Third, sometimes the neural network is learning on-the-go,
using reinforcement learning, where the neural network tries things to
see how the environment responds, like a toddler stumbling around. So
we have to ensure that the neural network does not do stupid things as
it is learning.

Recently, there have been a number of approaches attempting to
verify properties of neural networks in dynamic and reinforcement-
learning settings (Bastani et al., 2018; Zhu et al., 2019; Ivanov et al.,
2019; Anderson et al., 2020).
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Probabilistic Approaches
The verification problems we covered are hard, yes-or-no problems.
A recent approach, called randomized smoothing (Cohen et al., 2019;
Lécuyer et al., 2019), has shown that one can get probabilistic guarantees,
at least for some robustness properties (Ye et al., 2020; Bojchevski et al.,
2020). Instead of saying a neural network is robust or not around some
input, we say it is robust with a high probability.
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