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ABSTRACT

Neurosymbolic programming combines the otherwise com-
plementary worlds of deep learning and symbolic reason-
ing. It thereby enables more accurate, interpretable, and
domain-aware solutions to Al tasks. We introduce Scallop, a
general-purpose language and compiler toolchain for develop-
ing neurosymbolic applications. A Scallop program specifies
a suitable decomposition of an Al task’s computation into
separate learning and reasoning modules. Learning modules
are built using existing machine learning frameworks and
range from custom neural models to foundation models for
language, vision, and multi-modal data. Reasoning modules
are specified in a declarative logic programming language
based on Datalog which supports expressive features such
as recursion, aggregation, negation, and probabilistic pro-
gramming over structured relations.

Scallop’s compiler enables to automatically train neurosym-
bolic programs in a data- and compute-efficient manner using
an end-to-end differentiable reasoning framework. Scallop
also supports features useful for building real-world applica-
tions such as user-defined data types, and foreign interfaces.

Ziyang Li, Jiani Huang, Jason Liu and Mayur Naik (2024), “Neurosymbolic
Programming in Scallop: Principles and Practice”, Foundations and Trends® in
Programming Languages: Vol. 8, No. 2, pp 118-249. DOI: 10.1561/2500000059.
©2024 Z. Li et al.
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We demonstrate programming in Scallop for applications
that span the domains of image and video processing, natu-
ral language processing, planning, and information retrieval
in a variety of learning settings such as supervised learning,
reinforcement learning, rule learning, contrastive learning,
and in-context learning.
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1

Introduction

1.1 Neurosymbolic Programming

Classical algorithms and deep learning embody two prevalent paradigms
of modern programming. Classical algorithms are well suited for exactly-
defined tasks, such as sorting a list of numbers or finding a shortest
path in a graph. Deep learning, on the other hand, is well suited for
tasks that are not tractable or feasible to perform procedurally, such as
detecting objects in an image or parsing natural language text. These
tasks are typically specified using a set of input-output training data,
and solving them involves learning the parameters of a deep neural
network to fit the data using gradient-based methods.

The two paradigms are complementary in nature. For instance, a
classical algorithm such as the logic program A shown in Figure 1.1a
is interpretable but operates on limited, structured input r. On the
other hand, a deep neural network such as My shown in Figure 1.1b can
operate on rich, unstructured input x but is not interpretable. Modern
applications demand the capabilities of both paradigms. Examples
include question answering (Rajpurkar et al., 2016), code completion
(Chen et al., 2021), and mathematical problem solving (Lewkowycz
et al., 2022), among many others. For instance, code completion requires
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(a) Logic program. (b) Neural model. (c) A basic neurosymbolic program.

Figure 1.1: Comparison of different paradigms. Logic program A accepts only
structured input r whereas neural model M, with parameter 6 can operate on
unstructured input z. Supervision is provided on data indicated in double boxes.
Under algorithmic supervision, a neurosymbolic program must learn 6 without
supervision on r.

deep learning to comprehend programmer intent from the code context,
and classical algorithms to ensure that the generated code is correct.
A natural and fundamental question then is how to program such
applications by integrating the two paradigms.

Neurosymbolic programming is an emerging paradigm that aims to
fulfill this goal (Chaudhuri et al., 2021). It seeks to integrate symbolic
knowledge and reasoning with neural architectures for better efficiency,
interpretability, and generalizability than the neural or symbolic coun-
terparts alone. Consider the task of handwritten formula evaluation (Li
et al., 2020), which takes as input a formula as an image, and outputs
a number corresponding to the result of evaluating it. An input-output
example for this task is (z = A+2+T,y = 1.6). A neurosymbolic
program for this task, such as the one shown in Figure 1.1¢, might first
apply a convolutional neural network My to the input image to obtain a
structured intermediate form r as a sequence of symbols [‘17, ‘+7, ‘3", ¢/’
‘5’], followed by a classical algorithm A to parse the sequence, evaluate
the parsed formula, and output the final result 1.6.

Despite significant strides in individual neurosymbolic applications
(Yi et al., 2018; Mao et al., 2019; Chen et al., 2020; Li et al., 2020; Min-
ervini et al., 2020a; Wang et al., 2019), there is a lack of a language with
compiler support to make the benefits of the neurosymbolic paradigm
more widely accessible. We set out to develop such a language and
identified five key criteria that it should satisfy in order to be practi-
cal. These criteria, annotated by the components of the neurosymbolic
program in Figure 1.1c, are as follows:
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1. A symbolic data representation for r that supports diverse kinds
of data, such as image, video, natural language text, tabular data,
and their combinations.

2. A symbolic reasoning language for A that expresses common rea-
soning patterns such as recursion, negation, and aggregation.

3. An automatic and efficient differentiable reasoning engine for learn-
ing (%) under algorithmic supervision, i.e., supervision on observ-
able input-output data (x,y) but not r.

4. The ability to tailor learning (%) to individual applications’ charac-
teristics, since non-continuous loss landscapes of symbolic programs
hinder learning using a one-size-fits-all method.

5. A mechanism to leverage and integrate with existing training
pipelines ( %), implementations of neural architectures and models

My, and hardware (e.g. GPU) optimizations.

1.2 Scallop: What and Why

We have developed Scallop, a programming language that realizes all of
the above criteria. The key insight underlying Scallop is its choice of
three inter-dependent design decisions: a relational model for symbolic
data representation, a declarative language for symbolic reasoning, and
a provenance framework for differentiable reasoning.

Our design choices were inspired by the following key observations.
First, much of the world’s data is stored in relational databases. Rela-
tions are also flexible enough to represent diverse kinds of data ranging
from high-level visual and language features, to formal programs, to
molecular structures. Second, a declarative language for symbolic rea-
soning allows computation to be expressed concisely via high-level rules,
thereby alleviating programmer effort. Finally, the relational paradigm
offers a suitable abstraction for various advanced features needed for
neurosymbolic programming, such as query planning, hardware acceler-
ation, and probabilistic and differentiable reasoning.

Our aim with Scallop is to provide a cohesive language and frame-
work for integrating neural and symbolic components. In doing so, we
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seek to enable programmers to build neurosymbolic solutions that are
more efficient, generalizable, and interpretable.

1.3 Building Blocks of Neurosymbolic Solutions

A language that integrates neural and symbolic components can be
applied to construct diverse and adaptable solutions. Broadly, a neu-
rosymbolic solution to any given task involves the flexible interplay
of neural and symbolic components, each serving distinct yet comple-
mentary roles in problem-solving. From the existing literature, several
building blocks have emerged as crucial for effective neurosymbolic
solutions, as depicted in Figure 1.2. We proceed to discuss each of these
core building blocks in detail.

ORNaNe0

(a) Feature Extraction (b) Symbolic Inference

ORIASN=C) oG

(c) Algorithmic Supervision (d) Neurosymbolic Program Synthesis

(e) Neural Relaxation (f) Symbolic Distillation

Figure 1.2: Neurosymbolic compositions of neural component (Mp) and symbolic
component (\), which serve as building-blocks for more complex neurosymbolic
applications. We use solid arrows to denote forward data-flows, and dashed arrows to
denote backward data-flows used to supervise the learning of the target component.

Feature Extraction The feature extraction process involves deriving
symbolic features from an input z through a symbolic component,
denoted here as A, before passing these features to a neural model
My for training. Although feature extraction is an established practice
in machine learning and typically not classified as neurosymbolic, it
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nevertheless exemplifies a functional integration of symbolic and neural
elements. In this approach, learning is confined to the neural component,
while the symbolic aspect serves to pre-process the input data.

Notably, advanced feature extraction goes beyond simple tabular
data and often incorporates sophisticated reasoning mechanisms to
construct complex data structures. For instance, in program analysis,
source code can be pre-processed into intricate structures such as ab-
stract syntax trees (ASTs), data-flow graphs, symbolic constraints, or
relational databases (Dinella et al., 2020; Li et al., 2021; Zhu et al.,
2024). Neural networks may thus benefit from more comprehensive,
structured information for downstream tasks, such as proposing bug
fixes, detecting vulnerabilities, and analyzing type information even
within binary code.

Symbolic Inference Symbolic inference involves performing poste-
rior analysis on the outputs of a neural network My using a symbolic
component A provided by a programmer. This analysis can serve var-
ious purposes, such as filtering nonsensical outputs, verifying output
integrity, or combining multiple information sources symbolically to de-
rive additional insights. Though straightforward in concept, an advanced
symbolic inference component A may handle probabilistic information,
deriving a distribution rather than just the most likely output.

For instance, in the task of handwritten formula recognition (z =
AN+3+=T,y = 1.6), after the neural network generates probability
distributions for individual symbols, a probabilistic symbolic inference
engine could synthesize a distribution over possible rational numbers.
Another example is RNA secondary structure prediction, where a neural
network predicts per-nucleotide structures, and a probabilistic RNA
folding algorithm then parses this probabilistic sequence to generate
the top-k most likely structural parses. In Section 5, we cover many
symbolic inference solutions where the My are foundation models.

Algorithmic Supervision Algorithmic supervision extends symbolic
inference by enabling the symbolic component A to propagate learning
signals to the neural network Mjy. As before, we assume that A is pro-
vided by the programmer. While Figure 1.1 demonstrates one example
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of algorithmic supervision through differentiability in A, it generally
suffices for A to propagate the learning signal. In this way, the symbolic
“algorithm” X serves as a guiding supervisor for the neural network Mjy.

Algorithmic supervision also functions as a form of weak supervision,
as it does not require direct, fully supervised labels for My; only the
end label y is needed. This reduces the need for extensive data labeling
or feature engineering, simplifying the training process. Numerous ap-
plications in Scallop leverage this approach, including the previously
mentioned task of learning to evaluate handwritten formulas (Li et
al., 2020; Li et al., 2023). This tutorial explores additional, advanced
examples of algorithmic weak supervision in Section 6.

Neurosymbolic Program Synthesis Neurosymbolic program synthesis
involves learning the symbolic program A\ with the support of neural
networks. This paradigm resembles the classical syntax-guided synthesis
task (Alur et al., 2013), but replaces the traditional algorithmic synthesis
procedure with a neural network My. Here, the symbolic program A is
responsible for generating the expected outputs, and it may be iteratively
refined to better align with a dataset.

This approach offers the advantage of interpretability, as the learned
symbolic component is a white-box program that can be inspected
and verified by humans (Ellis et al., 2022). Traditionally, synthesizing
A requires defining a limited domain-specific language (Ellis et al.,
2020) since general-purpose languages render synthesis computationally
intractable. However, with the recent development of large language
models (LLMs) capable of generating programs in general-purpose
languages like Python, the synthesis of A can now be achieved more
efficiently (Ma et al., 2024).

Neural Relaxation Neural relaxation involves relaxing a deterministic
and discrete symbolic reasoning component A by replacing certain
components in the pipeline with neural networks Mpy. This enables
portions of previously symbolic components to be approximated by
neural networks, improving adaptability to unseen scenarios.

For instance, consider the challenge of designing a neurosymbolic
controller for drones: while effective deterministic controllers exist for
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standard maneuvers, they may struggle to adapt to out-of-domain
scenarios, such as operating near the ground, in strong winds, or in
proximity to other drones. By relaxing certain aspects of the controller
into a neural network My, the system gains greater flexibility and
responsiveness in handling such scenarios, while being able to learn
rapidly (O’Connell et al., 2022; Csomay-Shanklin et al., 2024).

Symbolic Distillation Symbolic distillation extracts information from
a black-box neural network and converts it into a symbolic form A.
Although this process involves generating and refining A, similar to
neurosymbolic program synthesis, symbolic distillation focuses on trans-
lating otherwise uninterpretable weights from a well-trained neural
network My into an interpretable form.

This technique has been applied to scientific discovery in fields such
as animal behavior analysis (Sun et al., 2022). A symbolic program
describing behaviors like “two mice running towards each other” can be
distilled from a neural network trained on data of mice interactions. An-
other application is explanation synthesis for predicting cancer patient
mortality (Wu et al., 2024). For a model trained to predict 6-month
mortality, symbolic distillation can generate explanations of specific
predictions, providing clearer insights for clinical decision-making sup-
ported by machine learning systems.

Other Compositions In addition to the primary building blocks, there
are other notable neurosymbolic compositions. For example, AlphaGo
(Silver et al., 2016) is centered around a symbolic algorithm—Monte
Carlo Tree Search—with neural networks for policy evaluation and
move selection, creating a synergistic decision-making process. On the
other hand, ChatGPT plugins (OpenAl, 2023a) use a large language
model as the primary system, which can invoke symbolic components
like a Python interpreter, database retrieval, or web search to enhance
functionality. As the field of neurosymbolic Al continues to evolve, we
anticipate that more diverse and innovative compositions will emerge,
broadening the scope and applications of neurosymbolic approaches.
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1.4 Application Domains

In this section, we discuss the data modalities for which Scallop is best
suited and explore the application domains where Scallop has shown
effectiveness. We also identify the limitations of Scallop, highlighting
tasks where it may be less effective.

Scallop can be broadly applied to applications that require both
neural models and programmatic reasoning modules. It is particularly
useful when the neural model requires additional training. With a fully
differentiable, end-to-end neurosymbolic pipeline, strong supervision is
not necessary for the neural model. Instead, algorithmic supervision can
be used, offering benefits such as data efficiency and generalizability.

Data Modalities Scallop is capable of handling diverse data modalities
by virtue of being based on the relational data model. The relational
paradigm enables it to work seamlessly with existing relational databases
and tabular data, encompassing information from knowledge bases,
electronic health records, and internet documents. Additionally, natural
language data from NLP tasks can be ingested in various forms: as
raw sentences, embeddings (tensors), or structured representations
such as relational databases or functional programs. Image data from
computer vision can be converted into semantic representations like
scene graphs. Videos, which extend images with a temporal dimension,
can similarly be represented as spatio-temporal scene graphs for analysis
in Scallop. Computer programs can be transformed into relational
databases, capturing detailed information such as abstract syntax trees
and control-flow graphs.

Application Domains We have applied Scallop across diverse domains,
including natural language processing (NLP), computer vision (CV),
planning, program and security analysis, bioinformatics, and healthcare.
In the domain of NLP, we have applied Scallop to tasks that require
reasoning, such as retrieving documents in a database, or analyzing data
from sources such as electronic health records or legal documents. In the
domain of computer vision, rather than focusing on low-level perception
tasks like object segmentation and tracking, we have applied Scallop
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to hybrid tasks such as visual question answering and for supporting
the training of scene graph generation models. In security analysis, we
have applied Scallop to tasks like taint analysis, vulnerability detection,
and fault localization. In bioinformatics, we have employed Scallop in
applications such as predicting RNA secondary structures and RNA
splicing. It is important to note that not all Scallop solutions follow a
uniform architecture. We adapt different building blocks (Figure 1.2)
depending upon each task’s unique characteristics.

Applications Where Scallop May Be Less Effective We identify three
examples where Scallop may not significantly enhance the task-solving
process due to challenges in defining the reasoning component or the
appropriate intermediate representation.

1. Generating Text with Subjective Criteria. A common use-case of
language models like GPT is generating text that satisfies sub-
jective criteria in style or content, such as empathy or political
neutrality. While language models can generate coherent para-
graphs, identifying specific logical components for integration is
challenging. The abstract nature of such tasks makes it difficult
to pinpoint areas where logical reasoning would offer substantial
value beyond what current language models provide.

2. Basic Math Calculations (e.g., +, —, X, +). This task is inher-
ently symbolic and straightforward. Existing tools like Python or
MATLAB can perform these operations directly, and there is no
clear need for a perceptual model. The task is purely logical and
lacks components that would benefit from Scallop’s relational or
perceptual capabilities.

3. Low-Level Motor Control for Robots. Scallop’s syntax is more
suited to defining high-level discrete logical rules rather than
handling low-level numerical processing of sensory signals. Thus,
for tasks like motor control based on raw sensor inputs, imperative
languages such as C or Python may be more effective for specifying
the numerical algorithms.
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1.5 Intended Audience

Scallop is built on the logic programming paradigm and integrates
seamlessly with machine learning frameworks like PyTorch through
Python bindings. As such, we assume readers are familiar with founda-
tional concepts in logic, machine learning, basic calculus (specifically
differentiation), and the Python programming language. This tutorial
covers topics including programming language syntax and semantics,
probabilistic theories and approximations, and the design and implemen-
tation of machine learning systems. While it also explores applications
in natural language processing and computer vision, we provide acces-
sible introductions to each task. Overall, this tutorial is designed for
readers seeking a practical, foundational understanding of neurosym-
bolic programming with Scallop, covering both theoretical concepts and
real-world applications.

1.6 Outline

We cover the core Scallop language in Section 2 starting from the basics
of relational programming. We then describe our core reasoning module
in Section 3 which dives deeper into the internals of Scallop and our
provenance framework. We show the core programming constructs in
Scallop that allow for scalable differentiable reasoning. Next, Section 4
presents a few motivating tasks showcasing Scallop’s ability to concisely
and effectively define neurosymbolic applications. Section 5 connects
Scallop with foundation models. We present a few more advanced
neurosymbolic applications in Section 6. Finally, Section 7 concludes
with a discussion of limitations and future directions.
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