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ABSTRACT

Deep neural networks (DNNs) now dominate the AI land-
scape and have shown impressive performance in diverse
application domains, including vision, natural language pro-
cessing (NLP), and healthcare. However, both public and
private entities have been increasingly expressing significant
concern about the potential of state-of-the-art AI models to
cause societal and financial harm. This lack of trust arises
from their black-box construction and vulnerability against
natural and adversarial noise.

As a result, researchers have spent considerable time devel-
oping automated methods for building safe and trustworthy
DNNs. Abstract interpretation has emerged as the most
popular framework for efficiently analyzing realistic DNNs
among the various approaches. However, due to fundamen-
tal differences in the computational structure (e.g., high
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nonlinearity) of DNNs compared to traditional programs,
developing efficient DNN analyzers has required tackling
significantly different research challenges than encountered
for programs.

In this monograph, we describe state-of-the-art approaches
based on abstract interpretation for analyzing DNNs. These
approaches include the design of new abstract domains, syn-
thesis of novel abstract transformers, abstraction refinement,
and incremental analysis. We will discuss how the analysis
results can be used to: (i) formally check whether a trained
DNN satisfies desired output and gradient-based safety prop-
erties, (ii) guide the model updates during training towards
satisfying safety properties, and (iii) reliably explain and
interpret the black-box workings of DNNs.
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1
Introduction

Deep neural networks (DNNs) are currently the dominant technology
in artificial intelligence (AI) and have shown impressive performance in
diverse applications, including autonomous driving, medical diagnosis,
text generation, and logical reasoning. However, they lack transparency
due to their black-box construction and are vulnerable to environmental
and adversarial noise. These issues have caused concerns about their
safety and trust when deployed in the real world. Although standard
training optimizes the model’s accuracy, it does not take into account
desirable safety properties such as robustness (the DNN should behave
similarly for similar inputs), fairness (the DNN output should not
depend too much on some legally protected attribute, such as gender or
race), and monotonicity (if the inputs are partially ordered, so should be
the outputs). As a result, state-of-the-art models remain untrustworthy.
Building trust in DNNs is essential to realizing their vast potential to
positively transform society and the economy and is one of the grand
challenges in computer science today.

3
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4 Introduction

1.1 Safety-informed DNN Deployment Cycle

Figure 1.1 presents a general safety-informed pipeline for DNN devel-
opment, applicable to any application domain. Safety, accuracy, and
efficiency can often conflict with each other. DNN accuracy improves
with model size but that increases the inference cost. Similarly, models
maximizing safety can have reduced accuracy. For example, a DNN
classifier that always predicts the same class for all inputs is robust but
has very low accuracy. As a result, it may not be possible to obtain
DNNs that optimize all three objectives simultaneously. Depending on
the target application, a developer may prioritize accuracy over trust or
vice-versa. The goal of safety-informed DNN development is to ensure
a sufficient balance between accuracy, safety, and efficiency.

Figure 1.1: Development pipeline for building accurate, trustworthy, and efficient
DNNs. Verification is used for testing model trustworthiness (green diamond).

In this pipeline, first, representative training data for the target
application is collected and a DNN is trained to maximize its accuracy
on test inputs from the training distribution. Next, a domain expert
creates (manually or algorithmically) a set of formal safety specifications
(e.g., robustness, fairness) characterizing the expected DNN behavior
in different real-world scenarios. The set of inputs covered by these
specifications can be infinite.

The expert then checks whether the model meets the safety stan-
dards. Since DNNs may not satisfy all the specifications, the standards
can require that at least a significant fraction of all specifications be
satisfied for trustworthiness. If the model meets the criteria, then the
DNN is considered fit for deployment. Otherwise, it is iteratively re-
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1.1. Safety-informed DNN Deployment Cycle 5

paired (e.g., by fine-tuning) until we obtain the desired balance between
accuracy, safety, and efficiency.

During deployment, the DNN inputs are monitored for distribution
shifts, i.e., the inputs are not from the training distribution. If the
runtime system detects a distribution shift, it reports representative
samples to the domain experts. They then design new specifications,
and the model undergoes another round of repair (or full retraining).
How formal methods can help. For checking that the model satis-
fies safety specifications, the standard practice is to evaluate the DNN
behavior on a finite set of inputs satisfying the specifications. How-
ever, this cannot guarantee safe and trustworthy DNN behavior on all
specification inputs. The unseen set can be huge and contain inputs
often seen during real-world deployment. To address these limitations,
there is growing work on checking the safety of DNN models and inter-
preting their behavior, on an infinite set of unseen inputs from safety
specifications using formal methods, which provides a more reliable
metric for measuring a model’s safety than standard empirical methods.
For example, a repaired DNN preserving the original test set accuracy
and efficiency but satisfying the trustworthy specifications more often
is a better model than the unrepaired one as it is less likely to show
undesirable behavior during real-world deployment. Formal methods
can also be used during training to guide the model to satisfy desirable
safety and trustworthiness properties. The models trained this way are
more likely to satisfy safety specifications than those without.

This monograph presents a comprehensive treatment of the tech-
niques that guarantee the safety of DNNs by formally modeling the
behavior of modern DNNs and efficiently computing with abstractions
that represent those behaviors. Our main focus will be on approaches
that leverage a general framework for automated analysis of program-
ming languages called abstract interpretation, the most successful formal
methods for automatically reasoning about DNNs. We emphasize that
the knowledge of the topics covered in this monograph is necessary not
only for computer scientists but for practitioners from all areas building
DNN-based applications, e.g., natural sciences, aerospace, finance, etc.

Next, we describe how safety and trustworthy properties can be
formally specified for DNNs, then we will discuss the key ideas and design
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6 Introduction

considerations in developing abstract interpretation based methods for
the formal verification and training of DNNs. We will also discuss how
abstract interpretation enables reliable explanations and interpretations
of DNNs as well as analysis of differentiable programs.

1.2 Formal Specifications for DNNs

Mathematically, we model a trained DNN as a pure function f . Its input
x can be images, text, videos, sensor measurements, or other data. We
denote the output of the DNN as f(x), which can be a classification of
the input into one of the predefined classes, the regression that estimates
a continuous value, or the set of tokens generated by a language model.
We denote gradients of f as f ′(x).

For a trained DNN f , a developer specifies the property of interest
using two formulas: (1) the precondition φ, which specifies the set of
inputs on which the DNN should not misbehave and (2) the postcondition
ψ, which specifies safe and trustworthy behaviors of the DNN for the
given inputs. These behaviors are typically constraints on the DNN’s
outputs or its gradients. The preconditions and postconditions are
domain-dependent and usually designed by DNN developers.A tool
for DNN verification (a verifier) aims to automatically check if the
postcondition on the DNN’s outputs and/or gradients is satisfied for all
inputs specified by the precondition.

A property specification is a tuple (φ,ψ), where φ is the precon-
dition and ψ is the postcondition. Both formulas φ and ψ typically
represent an infinite number of inputs/outputs. We denote the set of
the results of the evaluations of the DNN on all inputs described by the
precondition φ as f(φ) = {f(x) | x ∈ φ}. Similarly, we denote the set
of all gradients as f ′(φ). The verifier then checks for the inclusion of
the set of possible executions of the DNN into the set of outputs that
satisfy the postcondition, i.e., f(ϕ) ⊆ ψ (or f ′(ϕ) ⊆ ψ) holds. Single
execution specifications, as shown in Figure 1.2, require that each DNN
output f(x) where x ∈ φ must independently satisfy ψ. Relational
specifications require reasoning about multiple related executions of the
same or different DNNs. As we will show in Section 3, a general way to
represent and compute with φ and ψ in these settings is as disjunctions

Full text available at: http://dx.doi.org/10.1561/2500000062



1.2. Formal Specifications for DNNs 7

(a) Verified

(b) Counterexample

Figure 1.2: Single execution specifications require that the DNN output for each
input from φ must independently satisfy ψ.

of convex polyhedra within the framework of abstract interpretation. φ
and ψ can also define distributions leading to probabilistic specifications.
Local and global properties. The set of specifications for DNNs
can be broadly classified as local or global. The precondition φ for local
properties defines a local neighborhood around a sample input from the
test set. For example, given a test image correctly classified as a car by
a DNN, the commonly used local robustness property specifies that if
the original image was classified as a car, then all images generated by
rotating the original image within ±d degrees are also classified as a
car. We present many local properties in Sections 3.1 and 3.2.

In contrast, global properties are not defined with respect to a
specific test input. Verifying global properties yields stronger safety
guarantees compared to local properties, however, global properties
are difficult to formulate for popular domains, such as vision and NLP,
where the individual features processed by the DNN have no clear
semantic meaning. While verifying local properties is not ideal, the local
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8 Introduction

verification results enable testing the safety of the model on an infinite
set of unseen inputs, not possible with standard methods. We present
several concrete global properties in Section 3.1.

1.3 Verifying Specifications over DNNs

DNN verification can be seen as an instance of program verification, since
one can write a DNN as a program, i.e., there is a direct translation
from the mathematical representation of the DNN as a function f

into a side-effect free program. However, since it is well-known that
program verification is undecidable (one cannot prove the correctness of
an arbitrary program with respect to an arbitrary property of interest),
DNN verification is also undecidable in general. Certain DNN verification
problems, such as robustness verification of feedforward networks with
ReLU activations, are decidable but still NP-complete in general (Katz
et al., 2017).

State-of-the-art verifiers are therefore incomplete in general, i.e.,
they can fail to prove a specification when it holds. However, when they
succeed, the DNN will satisfy the specification. In this monograph, we
focus on white-box verifiers that require access to the model parameters.
Verification of closed-source models requires black-box verifiers. We
refer the interested readers to the relevant material in this direction in
Section 1.7. The white-box verifiers can be formulated using the elegant
framework of abstract interpretation. The verifier is parameterized by
the choice of an abstract domain with two main components: abstract
elements and abstract transformers. Abstract elements are mathematical
objects symbolically representing an infinite set of numerical points over
which the verifier operates. Abstract transformers overapproximate the
effect of applying the transformations inside the DNN program (e.g.,
affine or ReLU assignments) on abstract elements.

There is a tradeoff between the cost and overapproximation error
(also known as precision) of an incomplete verifier: expensive verifiers
are more precise while cheap verifiers are imprecise. Both are deter-
mined by the design of the abstract domain and transformers. The key
consideration in designing an efficient verifier applicable to real-world
DNNs is managing this tradeoff. The classical domains, such as Polyhe-
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1.4. Training Provably Safe DNNs 9

dra and Octagons, used for analyzing programs are not well suited for
DNN verification. This is because the DNNs have a different structure
compared to traditional programs. For example, DNNs have a large
number of non-linear assignments but typically do not have loops. For
efficient verification, researchers have developed numerous new abstract
domains and transformers tailored for DNN verification. These abstract
domains can scale to realistic DNNs with millions of neurons, or more
than 100 layers, verifying diverse safety properties in different real-world
applications. We will present them in Section 3. We will also discuss
how verification can be done incrementally to improve efficiency when
verifying a large number of similar DNNs and specifications as needed
for the developement pipeline in Figure 1.1.

1.4 Training Provably Safe DNNs

DNNs trained with standard training often do not satisfy safety spec-
ifications as safety satisfaction is not part of their training objective.
Adversarial or counter-example guided training augment the training
data with violating examples during training, however the trained mod-
els still cannot be proven to be safe in most cases. To overcome these
limitations, certified training methods have been developed in recent
years which directly incorporate the verifier computations within the
training loop and generate models with a high degree of provability, i.e.,
they are more likely to satisfy specifications and are relatively easier to
prove than DNNs obtained with competing methods.

In certified training, if the model f does not satisfy the specification,
as checked by a verifier, its weights are updated to increase the prov-
ability. The gradient updates are derived by formulating a differentiable
property loss on the verifier output, which measures how far the model
is from satisfying the property. Since gradient updates are derived from
the verifier code, its computations must be expressible as a differentiable
function of model weights and parallelizable on GPUs for scalability.
Overall, certified training can be seen as training f where the model
updates are derived by differentiating the surrogate approximation of
the DNN within φ, computed by the verifier.

Full text available at: http://dx.doi.org/10.1561/2500000062



10 Introduction

While certified training improves the provability, safety specifica-
tions can be in conflict with accuracy. Using an imprecise verifier during
training can result in overregularization and a significant reduction in
the standard accuracy. However, precise verifiers often have complicated
code which makes the optimization problem too complicated to solve
during training, yielding suboptimal results. Also, employing a verifier
during training is more expensive than when used for checking specifi-
cations on an already trained DNN, as now the verifier is called during
every training iteration. Balancing the provability, accuracy, and cost
is therefore the main challenge when developing state-of-the-art meth-
ods. Researchers have developed a variety of abstractions, refinements,
and loss formulations to enable efficient training. We will cover these
methods in detail in Section 4.

1.5 Explaining and Interpreting DNNs

Popular methods for explaining DNN predictions identify relevant input
features that influence the DNN output the most. However, they do
not give guarantees about the robustness of the generated explanations.
Relying on non-robust explanations can lead to a false sense of confidence
in an untrustworthy model. We will discuss how abstract interpretation
can be leveraged to generate explanations with robustness guarantees
in Section 5, reliably improving DNN transparency.

Abstract interpretation-based DNN verifiers generate high-
dimensional abstract elements at different layers capturing complex
relationships between neurons and DNN inputs to prove DNN safety.
However, the individual neurons and inputs in the DNN do not have
any semantic meaning, unlike the variables in programs, therefore it
is not clear whether the safety proofs are based on any meaningful
features learned by the DNN. If the DNN is proven to be safe but
the proof is based on meaningless features not aligned with human
intuition, then the DNN behavior cannot be considered trustworthy.
While there has been a lot of work on interpreting black-box DNNs,
standard methods can only explain the DNN behavior on individual
inputs and cannot interpret the complex invariants encoded by the
abstract elements capturing DNN behavior on an infinite set of inputs.
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1.6. Analyzing and Verifying Differentiable Programs 11

The main challenge in interpreting DNN proofs is mapping the complex
abstract elements to human-understandable interpretations.

Section 5 presents ProFIt, the first method for interpreting robust-
ness proofs computed by DNN verifiers. The technique can interpret
proofs computed by different verifiers. It builds upon the novel concept
of proof features computed by projecting the high-dimensional abstract
elements onto individual neurons. The proof features can be analyzed
independently by generating the corresponding interpretations. Since
certain proof features can be more important for the proof than others,
a priority function over the proof features that signifies the importance
of each proof feature in the complete proof is defined. The method
extracts a set of proof features by retaining only the more important
parts of the proof that preserve the property.

A comparison of proof interpretations for DNNs trained with stan-
dard and robust training methods shows that the proof features cor-
responding to the standard networks rely on spurious input features
that are not aligned with human intuition. The proofs of adversarially
trained DNNs filter out some of these spurious features. In contrast, the
networks trained with certifiable training produce proofs that do not
rely on any spurious features but they also miss out on some meaningful
features. Proofs for training methods that combine both empirical and
certified robustness not only preserve meaningful features but also se-
lectively filter out spurious ones. These insights suggest that DNNs can
satisfy safety properties but their behavior can still be untrustworthy.

1.6 Analyzing and Verifying Differentiable Programs

Differentiable programming, which includes automatic differentiation
(AD), is the backbone of machine learning. AD computes the gradients
alongside the values of the program’s output variables. AD computations
generalize many machine learning and signal processing applications.
Thus, generalized abstractions for AD analysis can be deployed across
applications: a neural network, an image filter, and a differential equation
solver can be expressed and analyzed in the same language, even when
combined in complex programs. Despite AD’s ubiquity, automated
formal reasoning of derivatives that AD computes has lagged.

Full text available at: http://dx.doi.org/10.1561/2500000062



12 Introduction

Analyzing gradient properties is important for today’s trustworthy
AI: for instance, the sensitivity of DNN’s output to input noise can be
expressed as finding bound for the absolute gradients values. The same
bounds can help with selecting low precision data types in machine
learning algorithms to prevent overflows. Fairness can be formalized as
a monotonicity property on a specific attribute, which is satisfied when
all derivatives are strictly positive.

To answer these questions, it is not sufficient to reason about the
output of a function (e.g., DNN) f for all inputs in φ. Instead one
has to reason about f ′, the derivative of f . For instance, to prove the
monotonicity of f , one should ensure that its derivative f ′ is strictly
positive or negative for all inputs in φ. Figure 1.3 presents an intuition
of this workflow.

Figure 1.3: Verifying derivative properties requires first computing the derivative of
a function f (given as a piece of code) using automatic differentiation. The derivative
program is then analyzed with abstract interpretation to prove the desired property
(φ,ψ) holds for the derivative f ′ instead of f itself.

Section 6 will present a general framework for precise analysis of AD
computations. This approach leverages ideas from abstract interpreta-
tion of DNNs and generalizes them to find precise abstract transformers
of gradient computation. It overcomes the limitation of standard pro-
gram analysis, which treats the gradient computation as any other code,
and leads to significant imprecision, and is in some cases ill-defined. We
will present the advantage of the AD-specific abstract transformers on
the case study for monotonicity analysis for a decision-making DNN.
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1.7. Sources and Further Reading 13

1.7 Sources and Further Reading

Many recent studies demonstrate the power of modern DNNs, e.g.,
Bojarski et al. (2016) for autonomous driving, Amato et al. (2013) for
medical diagnosis, Brown et al. (2020) for text generation, and Pan
et al. (2023) for logical reasoning. Many domains have standard datasets
for training and inference, e.g., in vision MNIST (LeCun et al., 1989),
CIFAR10 (Krizhevsky, 2009), and ImageNet (Deng et al., 2009).

At the same time, recent research also points out key concerns:
Ribeiro et al. (2016) discusses the issues of black-box model construction
and non-interpretability; Szegedy et al. (2014) and Kurakin et al. (2017)
discuss vulnerability against environmental and adversarial noise. Works
that pointed out problems with standard training include Shafique et al.
(2020) for robustness, Dwork et al. (2012) for fairness, and Sill (1997)
for monotonicity. Tsipras et al. (2019) and Wong et al. (2021) point
out problems with using a finite set of test inputs to ensure DNN
safety during deployment. Many recent works, identify classes of slight
adversarial perturbations that impact the DNN decisions (Madry et al.,
2017; Goodfellow et al., 2014; Heo et al., 2019).

For examples of local robustness to image rotations and its classifica-
tion see, e.g., Balunovic et al. (2019). For examples of global properties
in air traffic collision avoidance systems see, e.g., Katz et al. (2017),
and in security vulnerability classification see, e.g., Chen et al. (2021).
Beyond manual design, there is a growing line of work on automatically
generating formal specifications for DNNs. These include Geng et al.
(2022), Chaudhary et al. (2024b), Geng et al. (2024), and Jin et al.
(2024).

Checking the safety of DNNs has been a very active area of research
with many publications, primarily during inference and relying on white-
box access to the model, such as Balunovic et al. (2019), Singh et al.
(2019b), Zhang et al. (2018a), Singh et al. (2018), Singh et al. (2019d),
Paulsen et al. (2020), Xu et al. (2021), Tran et al. (2019b), Wu et al.
(2022b), Anderson et al. (2019), Katz et al. (2019), Singh et al. (2019a),
Wong and Kolter (2018), Lan et al. (2022), Wang et al. (2018), Bunel
et al. (2020), Wang et al. (2021), Ugare et al. (2022), Kabaha and
Drachsler-Cohen (2022), Palma et al. (2021a), Dathathri et al. (2020),
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Munakata et al. (2023), Ranzato et al. (2021), Banerjee et al. (2024b),
Banerjee et al. (2024a), and Zhou et al. (2024). Black-box DNN verifiers
are based on collecting DNN output for inputs from φ and providing
probabilistic guarantees. These include Baluta et al. (2021), Webb et al.
(2019), Chaudhary et al. (2024a), and Chaudhary et al. (2025).

Certified training leverages DNN verifiers during training obtaining
models that have higher provability than those with standard training.
Examples include Gowal et al. (2019), Mirman et al. (2018), Xu et al.
(2020), Zhang et al. (2020), Shi et al. (2021), Yang et al. (2023), Müller
et al. (2023a), Balunovic and Vechev (2020), and Hu et al. (2023b).

Numerous methods aim to provide transparency of DNNs. Standard
methods include Ribeiro et al. (2016) and Wu et al. (2023) and Wong
et al. (2021). Marques-Silva and Ignatiev (2022), Malfa et al. (2021),
Ignatiev et al. (2019), Darwiche and Hirth (2020), and Wu et al. (2023)
generate explanations with formal guarantees. The work of Banerjee et
al. (2024a) presents ProFIt, the first method for interpreting robustness
proofs computed by DNN verifiers.

Various uses of automatic differentiation are presented (Hückelheim
et al., 2018). Static analysis of AD computations is introduced by Laurel
et al. (2022a), Laurel et al. (2022b), and Laurel et al. (2023). Verification
of properties involving gradients and Jacobians are discussed by Zhang
et al. (2019), Fazlyab et al. (2019b), and Shi et al. (2022)

Abstract interpretation was introduced in the seminal work by
Cousot and Cousot (1977). Over the past almost 50 years, this approach
to program analysis has flourished and demonstrated many uses. There
are numerous books, monographs, and tutorials describing the founda-
tions of abstract interpretations, for instance Cousot (2021), Nielson
et al. (2005), Miné (2017), and Rival and Yi (2020).

Examples of abstract domains for neural networks include Deep-
Poly/CROWN (Singh et al., 2019b; Zhang et al., 2018a), DeepZ/Fast-
Lin (Singh et al., 2018; Weng et al., 2018), Star sets (Tran et al., 2019b),
and DeepJ (Laurel et al., 2022a). These custom solutions can scale to
realistic DNNs with up to a million neurons (Müller et al., 2021a), or
more than 100 layers (Wu et al., 2022b), verifying diverse safety proper-
ties in different real-world applications. Examples include autonomous
driving (Yang et al., 2023), job-scheduling (Wu et al., 2022b), data
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center management (Chakravarthy et al., 2022), biology (Mohr et al.,
2021), aerospace (Cohen et al., 2024), and financial modeling (Laurel
et al., 2023). For examples of refinements of abstract domains used
in machine learning see e.g., Wang et al. (2018), Singh et al. (2019d),
Müller et al. (2021b), Ryou et al. (2021), Wang et al. (2021), Wu et al.
(2022b), and Yang et al. (2021).
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