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Abstract

Demonstration learning is a powerful and practical technique to develop
robot behaviors. Even so, development remains a challenge and possible
demonstration limitations, for example correspondence issues between
the robot and demonstrator, can degrade policy performance. This
work presents an approach for policy improvement through a tactile
interface located on the body of the robot. We introduce the Tactile
Policy Correction (TPC ) algorithm, that employs tactile feedback for
the refinement of a demonstrated policy, as well as its reuse for the
development of other policies. The TPC algorithm is validated on
humanoid robot performing grasp positioning tasks. The performance
of the demonstrated policy is found to improve with tactile corrections.
Tactile guidance also is shown to enable the development of policies able
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to successfully execute novel, undemonstrated, tasks. We further show
that different modalities, namely teleoperation and tactile control, pro-
vide information about allowable variability in the target behavior in
different areas of the state space.
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1

Introduction

The realization of physical movement is fundamental to many robotics
applications. Whether operating in industrial and laboratory settings,
or within general society, physically embodied robots typically are
tasked with the execution of physical actions, thus requiring algorithms
for motion control. Over the years a variety of approaches for motion
control have been proposed, with many resulting in impressive robot
capabilities. The development of control paradigms becomes increas-
ingly difficult however as robot and domain complexities grow, for
example with high degree-of-freedom manipulators or interactions with
compliant objects. Often traditional approaches that define explicit
mathematical models of the world, and from these derive rules for con-
trol, struggle to scale with increasing complexity. Moreover, the devel-
opment of a control paradigm for any robot platform is confounded by
difficulties such as noisy sensors and inaccurate actuation.

In the face of such challenges, to develop robust control algo-
rithms typically requires a significant measure of expertise and effort
from the developer. The advancement of techniques that reduce the
demands placed on a developer therefore are desirable. We introduce
in this article an approach to policy development in which corrections

1
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2 Introduction

Fig. 1.1 Our approach of (a) task demonstration, followed by tactile correction of the
learned policy for (b) refinement of the demonstrated behavior and (c) its reuse in the devel-

opment of other policies. Black solid arrows indicate demonstrated or corrected executions,

black dashed arrows generalization executions and white arrows human hand movement.

provided by a teacher through a tactile interface are used to adapt
and improve a policy. Our Tactile Policy Correction (TPC) algorithm
initially derives a policy via Learning from Demonstration (LfD) tech-
niques (Figure 1.1a). Under LfD, a robot learner generalizes a policy
from data recorded during the execution of a target behavior by a task
expert. Our approach then has a human teacher provide policy correc-
tions through a tactile interface located on the body of the robot. The
corrections indicate relative adjustments to the robot pose, and thus
to the policy predictions. The teacher provides corrections in order to
accomplish one of two goals, and how corrections are incorporated into

Full text available at: http://dx.doi.org/10.1561/2300000012



1.1 Background and Motivation 3

the policy differs for each. The first goal is to refine a policy during
execution, and thus to improve its performance based on execution
experience (Figure 1.1b). The second goal is to assist in policy reuse,
by guiding an existing policy towards accomplishing a different task
(Figure 1.1c).

We validate our approach on a humanoid robot performing end-
effector positioning tasks. We show that policies produced under our
policy derivation technique are flexible with respect to variability seen
between the teacher demonstrations, and furthermore that different
teaching modalities (i.e., task demonstration, tactile correction) pro-
vide information about acceptable execution variability within differ-
ent areas of the state space. The performance of a policy learned from
demonstration is shown to improve after refinement through tactile cor-
rections. Successful policy reuse also is validated. Through tactile guid-
ance, executions with existing policies are iteratively adjusted towards
producing new behaviors, with the result of policies able to execute
alternate, undemonstrated, tasks. Tactile corrections thus enable the
development of new policies, bootstrapped on the reuse of a policy
learned from demonstration.

The remainder of this section reports on the related literature
that supports this work. Section 2 introduces the TPC algorithm and
presents our implementation in detail. Experimental setup and results
are reported in Section 3. A discussion of our approach and findings
are provided in Section 4, followed by concluding remarks.

1.1 Background and Motivation

We begin with a discussion of policy development under Learning from
Demonstration (LfD), followed by existing approaches to policy refine-
ment and reuse within LfD.

1.1.1 Learning from Demonstration

Under LfD, teacher executions of a desired behavior are recorded and
a policy is derived from the resultant dataset. LfD has seen success in a
variety of robotics applications, and has the attractive characteristics of
being an intuitive means for human teacher to robot learner knowledge

Full text available at: http://dx.doi.org/10.1561/2300000012



4 Introduction

transfer, as well as being an accessible policy development technique for
those who are not robotics-experts. There are many design decisions to
consider when building an LfD system. These range from who executes
the demonstrations and how they are recorded, to the technique used
for policy derivation. Here we overview only those decisions specific
to our particular system, and refer the reader to [2] and [8] for a full
review of robot LfD.

When recording and executing demonstrations the issue of corre-
spondence is key, where teacher demonstrations do not directly map to
the robot learner due to differences in sensing or motion [21]. Corre-
spondence issues are minimized when the learner records directly from
its own sensors while under the control of the teacher. For example,
under teleoperation the teacher remotely controls the robot platform
(e.g. [27]), while under kinesthetic control the teacher touches the robot
to guide the motion (e.g. [9]). Teleoperation requires an interface for the
direct control of all degrees of freedom on the robot. By contrast, kines-
thetic teaching requires a (passive or active) responsiveness to human
touch, for example back-drivable motors or force–torque sensing in the
joints. Both techniques are employed in our work.

Many approaches exist within LfD to derive a policy from the
demonstration data [2], the most popular of which either directly
approximate the underlying function mapping observations to actions,
or approximate a state transition model and then derive a policy using
techniques such as Reinforcement Learning [26]. Our work derives a
policy under a variant of the first approach, where probabilistic regres-
sion techniques are used to predict a target robot pose based on world
state, and a controller external to the algorithm selects an action able to
accomplish this target pose. Our reason for splitting policy prediction
into these two steps is tied to the mechanism by which the algorithm
responds to tactile feedback (discussed in Section 2.1).

1.1.2 Policy Refinement and Reuse

Even with the advantages secured through demonstration, policy devel-
opment typically is still non-trivial. To have a robot learn from its
execution performance, or experience, therefore is a valuable policy
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1.1 Background and Motivation 5

improvement tool for any development technique. Within the context
of LfD specifically, execution experience can be used to overcome limi-
tations in the demonstration dataset. One possible limitation is dataset
sparsity, since demonstration from every world state is infeasible in all
but the simplest domains. Other limitations include poor correspon-
dence between the teacher and learner or deficiencies in the teacher,
who may in fact provide suboptimal or ambiguous demonstrations.
Here we consider policy refinement and policy reuse as two techniques
to assist the development process, or equivalently to reduce the strain
on the policy developer.

Within demonstration learning, a variety of approaches incorporate
information gathered from experience in order to refine a policy. For
example, execution experience is used to update reward-determined
state values [15, 19, 25] and learned state transition models [1, 6].
Other approaches provide more demonstration data, driven by teacher-
initiated demonstrations [9] as well as by learner requests for more
data [11, 13]. In this work, we also provide more data, but using a
different control mechanism than during the initial teacher demonstra-
tions; specifically, teleoperation is used for the initial demonstration
data, and a form of hybrid kinesthetic control when producing the
refinement data.

Policy reuse under LfD occurs most frequently with behavior prim-
itives, or simpler policies that contribute to the execution of a more
complex policy. Hand-coded behavior primitives are used within tasks
learned from demonstration [22], demonstrated primitives are combined
into a new policy by a human [24] or automatically by the learning
algorithm [3], and demonstrated tasks are decomposed into a library
of primitives [7]. The focus of our approach is instead on adapting an
existing policy to accomplish a different task, rather than incorporating
the existing behavior as a subcomponent of a larger task.

1.1.3 Tactile Corrections

To enable policy refinement and reuse, the approach taken in this work
is to provide corrections on a policy execution. Corrections have the
advantage of providing guidance on a more suitable alternate prediction

Full text available at: http://dx.doi.org/10.1561/2300000012



6 Introduction

for the policy, instead of requiring that this be inferred from an indi-
cation of prediction quality, as state reward does for example. Having
directed feedback becomes particularly relevant when guiding a policy
towards accomplishing a novel behavior.

Within LfD policy correction has seen limited attention, and most
examples consider a human teacher selecting the correct prediction
from a discrete set of actions with significant time duration [11, 22].
The target application domain for our work however has policies mak-
ing continuous-valued predictions at a rapid rate, and both features
complicate the individual selection of a single alternate prediction to
serve as the correction. To address these challenges, we translate feed-
back from a tactile sensor into continuous-valued modifications of the
current pose, as the robot executes. In contrast to other work with
continuous-valued corrections [3], we offer corrective feedback online,
instead of post-execution, and through a tactile interface, instead of a
high-level computational language.

We posit that tactile feedback furthers many of the strengths of
demonstration-based learning. Namely, humans already use touch to
instruct other humans in certain contexts; for example when demon-
strating a motion, like a tennis swing, that requires a particular position
trajectory. To augment demonstration learning with tactile feedback
therefore is one natural extension to the idea of teaching robots as
humans teach other humans. Demonstration-based policy development
also is accessible to those who are not robotics experts, and possibly
operating robots outside of laboratory or industrial settings. Here the
detection of tactile interactions can be critical for safe robot operation
around humans, and so tactile sensing gains importance on a very fun-
damental level. These tactile sensing capabilities might then be addi-
tionally exploited, to transfer knowledge from human to robot for the
purpose of behavior development.

Within the field of robot learning (including but not restricted to
LfD), only a handful of works utilize human touch for the development
of robot behaviors. For example, tactile feedback is detected in order to
minimize resistance to movement during demonstration with an indus-
trial arm [14], and to minimize the support forces provided by a teacher
during humanoid behavior learning [20]. Tactile interactions between a
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1.2 Our Approach 7

robotic pet-surrogate and elderly patients also are mapped to reward
signals, that are used within a Reinforcement Learning paradigm to
adapt behavior selection [29].

1.2 Our Approach

In summary, the approach presented in this paper employs tactile cor-
rections to modify a policy learned through demonstration, for the
purpose of both policy refinement and policy reuse.

Our target application domain is low-level motion control for high
degree-of-freedom (DoF) robots. To specify a target behavior for each
joint is complicated, and systems typically are under-constrained,
resulting in, for example, many joint configurations mapping to a sin-
gle end-effector pose. The ability to exploit previously learned domain
knowledge for the development of new policy behaviors, i.e. policy
reuse, thus is advantageous. Performance might suffer however if the
reused policy provides only an approximation to the new target behav-
ior. Moreover, while the use of demonstration for policy development is
practical for many reasons, it is limited by the interface controlling the
demonstration, the quality of which furthermore frequently degrades as
the degrees of freedom to control increase. We aim to overcome policy
deficiencies through refinement.

To accomplish both refinement and reuse, the policy incorporates
new behavior examples. Instead of producing the examples from teacher
demonstration however [9, 11, 13], which would be unable to improve
upon limitations like a poor demonstration interface, we have the stu-
dent respond online to corrections indicated by a teacher and treat the
resultant trajectory as new training data. Providing explicit corrections
has been seldom used within the LfD paradigm [11, 22], especially when
the corrections are continuous-valued [3].

We provide corrections through a tactile interface. In addition to
being a technique that is relatively unaddressed to date within the robot
learning literature in general [20, 29], and the LfD literature in partic-
ular [14], we argue that information transfer through human touch is a
natural extension of human demonstration, as an intuitive and effective
mechanism for the transfer of knowledge from human to robot.
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