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Abstract

The field of microrobotics has seen tremendous advances in recent

years. The principles governing the design of such submillimeter scale

robots rely on an understanding of microscale physics, fabrication, and

novel control strategies. This monograph provides a tutorial on the

relevant physical phenomena governing the operation and design of

microrobots, as well as a survey of existing approaches to microrobot

design and control. It also provides a detailed practical overview of

actuation and control methods that are commonly used to remotely

power these designs, as well as a discussion of possible future research

directions. Potential high-impact applications of untethered micro-

robots such as minimally invasive diagnosis and treatment inside the

human body, biological studies or bioengineering, microfluidics, desk-

top micromanufacturing, and mobile sensor networks for environmental

and health monitoring are reported.
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1

Introduction

Due to recent advances in micro- and nanoscale science and technol-

ogy and increasing demand for new microsystems for applications in

medicine, biotechnology, manufacturing, and mobile sensor networks,

creating tiny mobile robots that could access enclosed small spaces

down to the micron scale such as inside the human body and microflu-

idic devices and could manipulate and interact with micro/nanoscale

entities has become a critical issue. Since human or macroscale robot

sensing, precision, and size are not sufficient to interact with such tiny

objects and access such tiny spaces directly, microrobotics has emerged

as a new robotics field to extend our interaction and exploration capa-

bilities to submillimeter scales. Moreover, mobile microrobots could be

manufactured cost-effectively in large numbers where a large number of

microrobots could enable new massively parallel, self-organizing, recon-

figurable, swarm, or distributed systems. For these purposes, many

groups have been proposing various untethered mobile microrobotic

systems in the past decade. Such untethered microrobots could enable

many new applications such as minimally invasive diagnosis and treat-

ment inside the human body, biological studies or bioengineering

applications inside microfluidic channels, desktop micromanufacturing,

and mobile sensor networks for environmental and health monitoring.

1

Full text available at: http://dx.doi.org/10.1561/2300000023



2 Introduction

There is no standardized definition of the term microrobot. In fact,

reported microrobots range in size from single µms to the cm scale.

However, one common approach defines a microrobot as existing in the

size range of hundreds of nm to 1 mm. In some cases, component size

scale being micron scale is taken as the crucial aspect, which could then

include millimeter or centimeter-scale mobile robots as microrobots. In

other cases, overall size scale being micron scale is emphasized where

mobile robots able to fit in spaces smaller than a millimeter are con-

sidered as microrobots. In this monograph, the latter is used to define

microrobots since the overall size dictates the environment in which

the robots are capable of accessing, and also tells us something about

their capabilities. On the other hand, a more relevant definition when

studying novel wireless locomotion schemes might involve the types of

physical interactions which dominate the motion and interaction of the

robot. Large or centi/milli-scale robots are dominated by inertial and

other bulk forces, while the motion of microrobots is dominated by

surface area-related forces, including friction, adhesion, drag, and vis-

cous forces at the micro-scale. The lower-bound of microrobots could

likewise be when assumptions of the continuity of matter are no longer

valid. At sizes below tens of µm, effects such as Brownian motion and

chemical interactions could lead to stochastic descriptions of motion

behavior. This is the realm of nanorobots, and will not be addressed in

this survey. Thus, we define microrobots as being roughly in the size

range single to hundreds of µm, and being dominated by micro-scale

physical forces and effects.

This size range presents significant new challenges in fabrication,

actuation, and power supply not seen in larger traditional robotics.

This size scale is particularly interesting because new physical princi-

ples begin to dominate the behavior. As we go smaller, the balance of

different forces changes dramatically, and we see increases in friction

and adhesion while the influence of weight and inertia is markedly

reduced. Other changes in fluid mechanics, stochastic motions, and

shorter time scales also challenge natural engineering notions as to

how robotic elements move and interact. These physical effects must be

taken into account when designing and operating robots at the small

scale.

Full text available at: http://dx.doi.org/10.1561/2300000023



1.1 Brief History of Microrobotics 3

Fig. 1.1 Diagram showing the benefits, challenges, and potential applications of micro-scale

mobile robots.

The benefits, challenges, and potential applications of micro-scale

mobile robots are overviewed in Figure 1.1. Here we see that micro-

robots promise to access small spaces in a non-invasive manner as a

new platform for microscale physics/dynamics. Compared with other

robotic systems, they can be fabricated inexpensively in bulk for poten-

tial massively parallel applications. However, several challenges arise

in the design and control of micro-scale robots such as nonintuitive

physical forces, limited options for power and actuation, significant

fabrication constraints, and difficulty in localizing such tiny robots.

The field of microrobotics is particularly exciting due to the potential

applications in healthcare, bioengineering, microfluidics, mobile sensor

networks, and in micro-factories.

1.1 Brief History of Microrobotics

Advances in and increased use of microelectromechanical systems

(MEMS) since the 1990s have driven the development of untethered

microrobots. MEMS fabrication methods allow for precise features to

Full text available at: http://dx.doi.org/10.1561/2300000023



4 Introduction

Fig. 1.2 Approximate timeline showing the emerging new microrobot systems as signifi-

cant milestones. (a) Screw-type surgical robot [100]. (b) Bacteria-driven systems [40]. (c)
Artificial micro-swimmer [53]. (d) Magnetically controlled bacteria [133]. (e) MEMS electro-

static microrobot [50]. (f) Thermal laser-driven microrobot [201]. (g) MRI-driven magnetic

bead in pig artery [132]. (h) Artificial bacterial flagella [236]. (i) Crawling magnetic micro-
robot [155]. (j) Bacteria swarms [134]. (k) 3D magnetic microrobot control [115]. (l) Bubble

microrobot [96]. (m) Light-sail microrobot [27].

be made from a wide range of materials which can be useful for func-

tionalized microrobots. There has been a surge in microrobotics work

in the past few years, and the field is relatively new and is growing fast

[186]. Figure 1.2 overviews a few of the new microrobotic technologies

which have been published, along with their approximate size scale.

In popular culture, the field of microrobotics is familiar to many

due to the 1966 sci-fi movie Fantastic Voyage, and later the 1987 movie

Innerspace. In these films, miniaturized submarine crews are injected

inside the human body and perform noninvasive surgery. The first

studies in untethered robots using principles which would develop into

microrobot actuation principles were only made recently, such as a

magnetically driven screw which moved through tissue [100]. Other sig-

nificant milestone studies in untethered microrobotics include a study

on bacteria-inspired swimming propulsion [55], bacteria-propelled

Full text available at: http://dx.doi.org/10.1561/2300000023



1.1 Brief History of Microrobotics 5

beads [14, 40], steerable electrostatic crawling microrobots [50],

laser-powered micro-walkers [201], magnetic resonance imaging (MRI)

device-driven magnetic beads [132], and magnetically driven mm-scale

nickel robots [231]. These first studies have been followed by other

novel actuation methods such as helical propulsion [75, 236], stick-

slip crawling microrobots [155], magnetotactic bacteria swarms as

microrobots [135], optically driven “bubble” microrobots [96], and

microrobots driven directly by the transfer of momentum from a

directed laser spot [27], among others. Figures 1.3 and 1.4 show a

number of the existing approaches to microrobot mobility in the liter-

ature for motion in 2D/3D. These methods will be discussed in detail

in Section 3. It is immediately clear that actual microrobots do not

resemble the devices shrunk down in popular microrobotics depictions.

As an additional driving force for the development of mobile micro-

robots, the Mobile Microrobotics Competition sponsored and run by

the National Institute of Standards and Technology (NIST) began in

Fig. 1.3 Some existing approaches to mobile microrobot power and control in 2D. (a)

Magnetically-driven crawling robots include the Mag-µBot [155], the Mag-Mite magnetic
crawling microrobot [71], the magnetic microtransporter [173], rolling magnetic microrobot

[105], the diamagnetically-levitating mm-scale robot [157], the self-assembled surface swim-
mer [192], and the magnetic thin-film microrobot [106]. (b) Thermally-driven microrobots

include the laser-activated crawling microrobot [201], micro light sailboat [27], and the
optically controlled bubble microrobot [96]. (c) Electrically-driven microrobots include the
electrostatic scratch-drive microrobot [52] and the electrostatic microbiorobot [174]. Other

microrobots which operate in 2D include the piezoelectric-magnetic microrobot MagPieR

[28] and the electrowetting droplet microrobot [176].

Full text available at: http://dx.doi.org/10.1561/2300000023



6 Introduction

Fig. 1.4 Some existing approaches to mobile microrobot power and control in 3D. (a)

Chemically-propelled designs include the microtubular jet microrobot [193] and the electro-
osmotic swimmer [98]. (b) Swimming microrobots include the colloidal magnetic swimmer

[53], the magnetic thin-film helical swimmer [226], the micron-scale magnetic helix fabri-

cated by glancing angle deposition [75], the micro-helix microrobot with cargo carrying
cage, fabricated by direct laser writing [208] and the micro-helix microrobot with magnetic

head, fabricated as thin-film and rolled using residual stress [237]. (c) Microrobots pulled in

3D using magnetic field gradients include the nickel microrobot capable of 5 DOF motion in
3D using the OctoMag system [115] and the MRI-powered and imaged magnetic bead [131].

(d) Bio-hybrid approaches include the artificially-magnetotactic bacteria [99], the chemo-
tactic steering of bacteria-propelled microbeads [110] and the bacteria swarm manipulating

micron-scale bricks [134].

2007 as the “nanogram” league of the popular Robocup robot soccer

competition [82]. This yearly event has moved to the International Con-

ference on Robotics and Automation (ICRA), and challenges teams to

accomplish mobility and manipulation tasks with an untethered micro-

robot smaller than 500 µm on a side. The competition has spurred

several research groups to begin research in microrobotics, and has

helped define the challenges most pressing to the microrobotics research

field.

This monograph introduces the reader to micro-scale robotics in the

context of the relevant micro-scale physical effects which govern their

operation. It begins with an overview of the most commonly encoun-

tered physical effects in Section 2, followed by a review of some of

Full text available at: http://dx.doi.org/10.1561/2300000023



1.1 Brief History of Microrobotics 7

the microrobot actuation methods used in Section 3. The monograph

concludes with a discussion of potential application areas in Section 4

and a summary of the current status of the field, along with a list of

important open challenges in Section 5. A list of nomenclature used

throughout the monograph is also given at the end.
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