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Abstract

Real world Multi-Vehicle Motion Planning (MVMP) problems require

the optimization of suitable performance measures under an array

of complex and challenging constraints involving kinematics, dynam-

ics, collision avoidance, and communication connectivity. The general

MVMP problem is thus formulated as a Mathematical Programming

(Optimization) problem. In this monograph, we present a Mathemat-

ical Programming (MP) framework that captures the salient features

of the general MVMP problem. To demonstrate the use of MP for the

formulation and solution of MVMP problems, we examine in detail

four representative works and summarize several other related ones.
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Following this conceptual discussion, we provide a step-by-step demon-

stration of how to formulate, solve, and experimentally validate an MP

problem that represents an MVMP. Finally, we discuss the advantages,

technical challenges, and limitations of this framework. As solution

algorithms and their implementations in solvers continue to develop, we

anticipate that MP solution techniques will be applied to an increasing

number of MVMP problems, and that the framework, formulations,

and experimental approach presented here may serve as a guide for

future MVMP research.
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1

The Future is Bright . . . and Driverless

In 2011–2012, Google demonstrated autonomous ground-based mobil-

ity in an urban environment. By August 2012, the Google Driverless

Car, similar to the one shown in Figure 1.1, had logged more than

300,000 miles in the state of California [134]. Sebastian Thrun, the

lead developer of the car described the broader impacts of this technol-

ogy as follows, “we could change the capacity of highways by a factor

of two or three if we didn’t rely on human precision on staying in the

lane — improve body position and therefore drive a little bit closer

together on a little bit narrower lanes, and do away with all traffic

jams on highways” [132]. Recently, Newman and others at Oxford Uni-

versity have demonstrated driverless cars with similar capabilities [35].

Several states in the United States have already passed legislation that

allow driver’s licenses being issued to driverless cars [106].

During the same period, Kumar et al. demonstrated multiple

quadrotors operating in an indoor workspace and maintaining

formations that translate and rotate with time. This is an example

where multiple autonomous vehicles coordinate to achieve a collective

task [96].

1
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2 The Future is Bright . . . and Driverless

Fig. 1.1 Google’s driverless car had logged more than 300,000 miles in the state of California

by August 2012.

These and many other developments are harbingers of a future

where multiple autonomous vehicles will become an all pervasive

concept with applications that improve our standard of living and

lifestyles. Such vehicles will lead to a reduction in the number of acci-

dents and commute times, and improved fuel efficiency. These, in turn,

will drive down the cost of public transportation, logistics, and supply

chain management, thereby allowing transportation of personnel and

goods to previously unreachable locations in record times.

While exciting, such autonomous vehicle-based applications come

with their own challenges. For example, vehicles may need to plan

their motions in real-time while in transit. This necessitates that the

autonomous decision making be dynamic and efficient. There are kine-

matic challenges as well, e.g., cars cannot slide sideways to parallel park

and a fixed-wing aircraft has a nonzero turn radius. Design limitations

such as finite battery and fuel capacity add to the complexity of the

situation.

Furthermore, if multiple vehicles are operating in a common

workspace (e.g., urban environments, highways, airways), some shared

knowledge of their behavior is important. To obtain this knowledge,

either one needs to have sensors or the vehicles need to communicate

Full text available at: http://dx.doi.org/10.1561/2300000025



1.1 What’s in it for the Readers? 3

with each other or with central entities that update other vehicles with

the latest information about their intentions as and when needed.

The biggest challenges, however, will be the commercial viability of

such vehicles and adoption by the general public. Specifically, we need

to address issues of energy efficiency and safety.

• Efficiency requirements dictate that these vehicles use as lit-

tle fuel as possible, to travel as far as possible, as quickly as

possible.
• Safety requirements dictate that these vehicles be capable of

avoiding obstacles and not collide with each other.

Despite all these challenges, the current propensity of innovation in this

space points to a future that is indeed bright...and driverless!

1.1 What’s in it for the Readers?

In the following discussions, the readers will be introduced to a rigorous

and systematic treatment of these challenges and a family of technical

approaches that will assist in addressing them. Specifically, we will

ground our discussions in the idea of mathematical programming as

applied to Multiple-Vehicle Motion Planning (MVMP) and present the

material in the following order:

• In Section 2, we start by formally defining the MVMP prob-

lem and its most common variants, such as path planning,

trajectory planning, and path coordination problems. We

then present the basic elements for modeling MVMP sys-

tems in detail. These elements include vehicle kinematics,

dynamics, path primitives, and communication models. We

also provide an introduction to the mathematical program-

ming framework that will be used to model MVMP problems,

relevant solution algorithms, modeling environments, and

solvers.
• A general MP based framework that captures the salient fea-

tures of MVMP problems is introduced in Section 3. We start

Full text available at: http://dx.doi.org/10.1561/2300000025



4 The Future is Bright . . . and Driverless

this discussion with a review of existing literature of MVMP

using MP by focusing on four representative papers that best

demonstrate the application of this framework to a range of

MVMP scenarios. Each of the four papers provides various

model components, which are presented in great detail. Key

analyses performed in these papers have been independently

derived and presented in the Appendices.
• In Section 4, readers are provided a step-by-step demonstra-

tion on how to formulate and solve a distributed MVMP

involving autonomous unmanned ground vehicles operating

in an indoor environment under communication connectivity

constraints. Experimental approaches utilized in the litera-

ture to validate MP based MVMP formulations are docu-

mented.
• Finally, in Section 5, we discuss the technical challenges and

limitations of this framework and present future directions

of this research.

Full text available at: http://dx.doi.org/10.1561/2300000025



References

[1] “BONMIN: Basic Open-source Nonlinear Mixed INteger programming,”
Available from: https://projects.coin-or.org/Bonmin/wiki.

[2] “GNU linear programming kit,” Available from: http://www.gnu.org/
software/glpk/.

[3] “GUROBI Optimizer,” Available from: http://www.gurobi.com.
[4] “The MOSEK optimization software,” Available from: http://www. mosek.

com/.
[5] “Solving Constraint Integer Programs,” Available from: http://www.scip. zib.

de.
[6] “Xpress-mp and mosel,” Available from: http://www.fico.com.
[7] P. Abichandani, H. Benson, and M. Kam, “Multi-vehicle path coordination

under communication constraints,” in Proceedings of American Control Con-
ference, Seattle, WA, June 2008.

[8] P. Abichandani, H. Benson, and M. Kam, “Multi-vehicle path coordination
in support of communication,” in Proceedings International Conference on
Robotics and Automation, Kobe, Japan, May 2009.

[9] P. Abichandani, H. Benson, and M. Kam, “Decentralized path coordination
in support of communication,” in Proceedings of International Conference on
Robotic Systems, San Francisco, CA, 2011.

[10] P. Abichandani, H. Benson, and M. Kam, “Robust communication
connectivity for multi-robot path coordination using mixed integer nonlin-
ear programming: Formulation and feasibility analysis,” in Proceedings of
the International Conference on Robotics and Automation (ICRA 2013),
Karlsruhe, May 2013.

67

Full text available at: http://dx.doi.org/10.1561/2300000025

https://projects.coin-or.org/Bonmin/wiki
http://www.gnu.org/
software/glpk/
http://www.gurobi.com
http://www.
mosek.com/
mosek.com/
http://www.scip.
zib.de
zib.de
http://www.fico.com


68 References

[11] P. Abichandani, G. Ford, H. Benson, and M. Kam, “Mathematical program-
ming for multi-vehicle motion planning problems,” in Proceedings of the Inter-
national Conference on Robotics and Automation (ICRA 2012), St. Paul, MN,
May 2012.

[12] P. Abichandani, K. Mallory, and M. A. Hsieh, “Experimental multi-vehicle
path coordination under communication connectivity constraints,” in Pro-
ceedings of International Symposium on Experimental Robotics (ISER 2012),
Quebec City, Canada, June 2012.

[13] P. Abichandani, K. Mallory, and M. A. Hsieh, “Experimental multi-vehicle
path coordination under communication connectivity constraints,” in Proceed-
ings of the International Symposium on Experimental Robotics (ISER 2012),
Quebec City, Canada, June 2012.

[14] N. Amato and Y. Wu, “A randomized roadmap method for path and manipu-
lation planning,” in Proceedings of IEEE International Conference on Robotics
and Automation, vol. 1, 22–28, pp. 113–120, 1996.

[15] M. L. F. Amirouche, Fundamentals of Multibody Dynamics: Theory and Appli-
cations. Birkhauser: Boston, MA, USA, 2006.

[16] P. J. Angeline and K. E. Kinnear, Jr., eds., Advances in Genetic Program-
ming — 2. Cambridge, MA, USA: MIT Press, 1996.

[17] G. Aoude, J. P. How, and I. Garcia, “Two-stage path planning approach
for solving multiple spacecraft reconfiguration maneuvers,” AAS Journal of
Astronomical Science, vol. 56, no. 5, pp. 515–544, 2008.

[18] S. Behnke, “Local multiresolution path planning,” in Proceedings of RoboCup
International Symposium, pp. 332–343, 2003.

[19] A. Bemporad and M. Morari, “Control of systems integrating logic, dynamics,
and constraints,” Automatica, vol. 35, pp. 407–427, 1999.

[20] A. Ben-Tal and A. Nemirovski, “On polyhedral approximations of the
second-order cone,” Mathematics of Operations Research, vol. 26, no. 2,
pp. 193–205, 2001. Available from: http://mor.journal.informs.org/content/
26/2/193.abstract.

[21] H. Y. Benson, “Milano: Mixed-integer linear and nonlinear optimizer,” Avail-
able from: http://www.pages.drexel.edu/∼hvb22/milano/.

[22] H. Y. Benson, “Using interior-point methods within an outer approximation
framework for mixed integer nonlinear programming,” in Mixed Integer Non-
linear Programming, vol. 154, ser. The IMA Volumes in Mathematics and its
Applications, (J. Lee and S. Leyffer, eds.), pp. 225–243, New York: Springer,
2012.

[23] T. Berglund, A. Brodnik, H. Jonsson, M. Staffanson, and I. Soderkvist, “Plan-
ning smooth and obstacle-avoiding b-spline paths for autonomous mining vehi-
cles,” IEEE Transactions on Automation Science and Engineering, vol. 7,
no. 1, pp. 167–172, Janaury 2010.

[24] E. Bicho and S. Monteiro, “Formation control for multiple mobile robots: A
non-linear attractor dynamics approach,” in Proceedings of IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, vol. 2, pp. 2016–2022,
October 2003.

Full text available at: http://dx.doi.org/10.1561/2300000025

http://mor.journal.informs.org/content/
 26/2/193.abstract
http://www.pages.drexel.edu/~hvb22/milano/


References 69

[25] F. Borrelli, D. Subramanian, A. Raghunathan, and L. Biegler, “MILP and
NLP techniques for centralized trajectory planning of multiple unmanned air
vehicles,” in Proceedings of American Control Conference, p. 6, Minneapolis,
MN, 2006.

[26] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequal-
ities in System and Control Theory, vol. 15 Studies in Applied Mathematics.
Philadelphia, PA: SIAM, June 1994.

[27] A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A User’s Guide. Scientific
Press, 1988.
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[92] T. Lozano-Pérez, “Automatic planning of manipulator transfer movements,”
IEEE Transactions on Systems, Man, & Cybernetics, vol. 11, no. 10,
pp. 681–698, 1981.

[93] J. Mattingley and S. Boyd, “Automatic code generation for real-time convex
optimization,” in Convex Optimization in Signal Processing and Communica-
tions, Cambridge University Press, 2009.

[94] N. McClamroch and D. Wang, “Feedback stabilization and tracking of con-
strained robots,” IEEE Transactions on Automatic Control, vol. 33, no. 5,
pp. 419–426, May 1988.

[95] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic program
trajectory generation for heterogeneous quadrotor teams,” in Proceedings of
the International Conference on Robotic and Automation, St. Paul, MN, May
2012.

[96] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and control
for precise aggressive maneuvers with quadrotors,” The International Journal
of Robotics Research, vol. 31, no. 5, pp. 664–674, 2012. Available from: http:
//ijr.sagepub.com/content/31/5/664.abstract.

[97] M.Lepetic, G. Klancar, I. Skrjanc, D. Matko, and B. Potocnik, “Time opti-
mal path planning considering acceleration limits,” Robotics and Autonomous
Systems, vol. 45, pp. 199–210, 2003.

[98] R. E. Moore, “Global optimization to prescribed accuracy,” Computers and
Mathematics with Applications, vol. 21, no. 6/7, pp. 25–39, 1991.

[99] S. Nash and A. Sofer, Linear and Nonlinear Programming. New York:
McGraw-Hill, 1996.

[100] W. Nelson, “Continuous-curvature paths for autonomous vehicles,” in Pro-
ceedings of International Conference on Robotics and Automation, vol. 3,
pp. 1260–1264, May 1989.

[101] W. Nelson, “Continuous steering-function control of robot carts,” IEEE Trans-
actions on Industrial Electronics, vol. 36, no. 3, pp. 330–337, August 1989.

[102] G. Nemhauser and L. Wolsey, Integer and Combinatorial Optimization. New
York: Wiley, 1988.

[103] N. J. Nilsson, “A mobile automaton: An application of artificial intelli-
gence techniques,” in International Conference on Artificial Intelligence,
pp. 509–520, 1969.
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