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Abstract

This paper discusses the visual inertial structure from motion problem
(VI-SfM problem) with special focus on the following three fundamen-
tal issues: observability properties, resolvability in closed form and data
association. Regarding the first issue, after a discussion about the cur-
rent state of the art, the paper investigates more complex scenarios.
Specifically, with respect to the common formulation, which assumes
three orthogonal accelerometers and three orthogonal gyroscopes, the
analysis is extended to cope with the cases of a reduced number of
inertial sensors and any number of point features observed by monocu-
lar vision. In particular, the minimal case of a single accelerometer,
no gyroscope and a single point feature is addressed. Additionally,
the analysis accounts for biased measurements and unknown extrinsic
camera calibration. The results derived for these new and very chal-
lenging scenarios have interesting consequences both from a techno-
logical and neuroscientific perspective. Regarding the second issue, a
simple closed form solution to the VI-SfM is presented. This solution
expresses the structure of the scene and the motion only in terms of the
visual and inertial measurements collected during a short time inter-
val. This allows introducing deterministic algorithms able to simulta-
neously determine the structure of the scene together with the motion
without the need for any initialization or prior knowledge. Addition-
ally, the closed-form solution allows us to identify the conditions under
which the VI-SfM has a finite number of solutions. Specifically, it is
shown that the problem can have a unique solution, two distinct solu-
tions or infinite solutions depending on the trajectory, on the num-
ber of point-features and on their arrangement in the 3D space and
on the number of camera images. Finally, the paper discusses the
third issue, i.e., the data association problem. Starting from basic
results in computer vision, it is shown that, by exploiting the informa-
tion provided by the inertial measurements, a single point correspon-
dence (in the case of a planar motion) and two point correspondences
(for a general 3D motion) are sufficient to characterize the motion
between two camera poses. This allows us to use an 1-point RANSAC
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algorithm (in the planar case) or a 2-point RANSAC algorithm (in the
general 3D case) to detect outliers. The paper concludes with some dis-
cussion about connections to related research fields both in the frame-
work of computer science and neuroscience.

A. Martinelli. Observability Properties and Deterministic Algorithms in
Visual-Inertial Structure from Motion. Foundations and Trends R© in Robotics,
vol. 3, no. 3, pp. 139–209, 2012.
DOI: 10.1561/2300000030.
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1
Introduction

The term Structure from Motion (SfM) was coined by the com-
puter vision community to define the problem of estimating the
three-dimensional structure of the scene and the motion from two-
dimensional image sequences. In this paper we consider the same
estimation problem but the sensor suit is also composed by inertial
sensors (accelerometers and gyroscopes). We will refer to this problem
as to the Visual-Inertial Structure from Motion problem (from now
on the VI-SfM problem). The VI-SfM problem has particular interest
and has been investigated in many disciplines, both in the framework
of computer science (e.g., [5, 23, 24, 37, 49]) and in the framework
of neuroscience (e.g., [4, 11, 14]). These sensors require no external
infrastructure and this is a key advantage for robots operating in
unknown environments where GPS signals are shadowed. For this
reason, vision and inertial sensing have received great attention by
the mobile robotics community in the last years and many approaches
have been introduced.

According to Corke et al. [7], we distinguish between loosely coupled
and tightly coupled approaches. In the former, the sensor data process-
ing takes place in separate modules, which exchange information each

3
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4 Introduction

other. The information delivered by the inertial can be used to speed
up the tracking task of the features by predicting their locations within
the next frame; in turn, data from the visual sensor allows updating the
calibration parameters of inertial sensors. In the latter (tightly coupled
approaches), all measurements, both visual and inertial, are combined
and processed using a common filter-based approach.

A special issue of the International Journal of Robotics Research has
recently been devoted to the visual and inertial sensor fusion [10]. In [7],
a tutorial introduction to the vision and inertial sensing was presented.
This work provides a biological point of view and it illustrates how
vision and inertial sensors have useful complementarities allowing them
to cover the respective limitations and deficiencies. In [47] the inertial
measurements are used to reduce the ambiguities in the structure from
motion problem.

The majority of the approaches so far introduced, perform the
fusion of vision and inertial sensors by filter-based algorithms. In [3],
these sensors are used to perform egomotion estimation. The sensor
fusion is obtained by an Extended Kalman Filter (EKF) and by an
Unscented Kalman Filter (UKF). The approach proposed by Gemeiner
et al. [16] extends the previous one by also estimating the structure of
the environment where the motion occurs. In particular, new landmarks
are inserted on line into the estimated map. This approach has been
validated by conducting experiments in a known environment where a
ground truth was available. Also, in [52], an EKF has been adopted. In
this case, the proposed algorithm estimates a state containing the robot
speed, position and attitude, together with the inertial sensor biases
and the location of the features of interest. In the framework of aerial
navigation, an EKF has been adopted by Kim and Sukkarieh [25] to
perform VI-SfM. It was observed that any inconsistent attitude update
severely affects any solution. The authors proposed to separate attitude
update from position and velocity update. Alternatively, they proposed
to use additional velocity observations, such as air velocity observation.
Very recently, in the frame work of micro aerial robotics, flight stabi-
lization and fully autonomous navigation have been achieved by using
monocular vision and inertial sensors as the only exteroceptive sensors.
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5

Also in this case, the sensor fusion was carried out by a filter based
algorithm [53, 54].

Since most of the previous algorithms to fuse visual and inertial
measurements are based on linear estimators, in the last years, the
effect that the observability properties can have on the consistency
of a linearized estimator, has been investigated by Hesch et al. [22],
Kottas et al. [26], Li and Mourikis [28]. More in general, recent works
have investigated the observability properties of the VI-SfM problem
for various scenarios (see Section 2.1 for a detailed state of the art).

The first goal of this paper (chapter 2) is to provide the main results
achieved in the last years about the observability properties of the VI-
SfM problem and to provide an important step forward by analyzing
new and very challenging scenarios. Specifically, in the second part
of chapter 2, the observability analysis is extended to cope with the
cases of a reduced number of inertial sensors and any number of point
features observed by the monocular vision. In particular, the minimal
case of a single accelerometer, no gyroscope and a single point feature is
addressed. Additionally, the analysis accounts for biased measurements
and unknown extrinsic camera calibration. The results derived for these
new and very challenging scenarios have interesting consequences both
from a technological and neuroscientific perspective.

There are very few methods able to perform the fusion of image and
inertial measurements without a filter-based approach. One algorithm
of this type has been suggested by Strelow and Singh [49]. This algo-
rithm is a batch method that performs SfM from image and inertial
measurements. Specifically, it minimizes a cost function by using the
Levenberg Marquardt algorithm [46]. This minimization process starts
by initializing the velocities, the gravity and the biases to zero.

When using a recursive estimator (e.g. an EKF), or an off-line opti-
mization method to minimize a suitable cost function, an important
issue that arises is the initialization problem. Indeed, because of the
system non-linearities, an erroneous initialization can irreparably com-
promise the entire estimation process. This problem has firstly been
considered by Lupton and Sukkarieh [31]. In particular, they proposed
a method able to estimate the scale factor by using a square root
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6 Introduction

information filter. Additionally, the same authors proposed an EKF
that does not suffer from the initialization of the speed and of the
orientation [32, 33]. An efficient solution to the initialization problem
is obtained by introducing a deterministic algorithm able to determine
the initial state by using the visual and inertial measurements acquired
during a short time interval. This issue has been addressed only very
recently by Dong-Si and Mourikis [12] and Martinelli [35, 37, 38].
Specifically, in [35] the first closed-form solution to VI-SfM has been
obtained. Then, new extensions of this solution have been derived to
cope with the cases of biased accelerometer’s measurements [37, 38]
and an unknown camera-IMU extrinsic calibration [12]. In chapter 3,
we provide a simple closed-form solution to the VI-SfM and, start-
ing from this, we identify the conditions under which the VI-SfM has
a finite number of solutions. Specifically, it is shown that the prob-
lem can have a unique solution, two distinct solutions or infinite solu-
tions depending on the trajectory, on the number of point-features and
on their arrangement in the 3D space and on the number of camera
images.

Finally, a fundamental issue that arises in any visual motion esti-
mation problem is data association. Any matching algorithm suffers
from outliers, which must be detected and removed. To achieve this
objective, the RANdom SAmple Consensus (RANSAC) introduced by
Fischler and Bolles [15] has been extensively used in visual motion esti-
mation. In the past, concerning the case of only visual measurements
(i.e., in SfM), the 5-point RANSAC [45] has been adopted [27, 50].
Indeed, five correspondences are in general necessary to identify the
five parameters that characterize both the rotation (3 parameters) and
the translation up to a scale (2 parameters) between two camera frames.
In the special case of a planar motion, the rotation can be characterized
by a single parameter and the translation up to a scale by a further
parameter. Hence, a 2-point RANSAC can be adopted to detect outliers
for any planar motion. In the context of wheeled and indoor robotics,
the motion not only is planar but also satisfies the non-holonomic con-
straint. This further information has been exploited by Scaramuzza [48]
to use a 1-point RANSAC for outliers detection.
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The information provided by the inertial measurements, dramati-
cally simplifies the data association task. Indeed, the rotation between
two camera frames can be efficiently obtained by integrating the iner-
tial measurements. The translation up to a scale only depends on two
parameters (for a general 3D motion) and one parameter (in the planar
case). This makes possible the use of a 2-point RANSAC in the general
3D case and a 1-point RANSAC in the planar case [51]. We discuss
this issue very briefly in Chapter 4.
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