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Abstract

Energy and energy exchange govern interactions in the physical world.
By explicitly considering the energy and power in a robotic system,
many control and design problems become easier or more insightful than
in a purely signal-based view. We show the application of these energy
considerations to robotics; starting from the fundamental aspects, but,
most importantly, continuing to the practical application to robotic
systems. Using the theory of Port-Hamiltonian Systems as a fundamental
basis, we show examples concerning energy measurement, passivity and
safety. Control by interconnection covers the shaping and directing of
energy inside the controller algorithms, to achieve desired behaviour in
a power-consistent manner. This idea of control over the energy flows
is extended to the physical domain. In their mathematical description
and analysis, the boundary between controller and robot disappears
and everything is an interconnected system, driven by energy exchange
between its parts.

G. A. Folkertsma and S. Stramigioli. Energy in Robotics. Foundations and TrendsR©

in Robotics, vol. 6, no. 3, pp. 140–210, 2017.
DOI: 10.1561/2300000038.
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1
Introduction

The physical world is governed by energy.
From the kinetic energy in a speeding car to the first law of thermo-
dynamics, energy is the lingua franca in all physical domains. It is a
coordinate-independent description of the energetic state of a system.

Interactions are almost exclusively1 characterised by energy
exchange.
From a battery, through an electric motor—via the magnetic fields—to
the mechanical system of a robot: the power or exchanged energy can be
traced across all these physical domains. While a car speeds up because
the engine applies a torque on the wheels through a set of transmissions,
this effort is really a means of pouring energy from the petrol or battery
into the kinetic energy of the car as a moving mass.

Many applications in robotics are concerned with energy: the amount
of kinetic energy in the robot (e.g. for safety issues), a periodic motion—
oscillation—with a certain amplitude (i.e. total energy), energy-efficiency
objectives, and storing and releasing energy in springs for explosive
motions are some examples.

1Certain interactions, like ideal constraints, can influence motion without energy
exchange.

2
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1.1. Port-Hamiltonian systems 3

By not solely considering signals, but rather the energy in robotic
systems explicitly, more insight can be gained, control problems may
become easier and a “feel” for the actual physical processes emerges.
This energy-based perspective need not focus on only the control system,
nor only on the description of the physical robot. We present a holistic,
energy-based view of robotic systems: Energy in Robotics. To achieve
this holistic view, we shall address the following topics:

1. Energy-based formulation of physical systems: Port-Hamiltonian
System theory.

2. Passivity and stability in robotic systems.

3. Measurement and control of energy flowing through actuators.

4. Energy-based controller design: energy shaping and energy routing
in the controller.

5. Energy-based system design: shaping the energy flows in a physical
robotic system.

The use of energy in robotics is broader than just these topics: there
are for example energy-based navigation methods; and in control theory
there is a strong link between Lyapunov’s stability theorem and energy.
The focus of this paper is on the cyber-physical interaction: the study and
control of energy flows between the physical system and the controller.

1.1 Port-Hamiltonian systems

Hamiltonian mechanics is a theory of classical mechanics similar to
Lagrangian mechanics. The classical canonical formulation is described
by a set of equations governing the Hamiltonian:

dp

dt = −∂H
∂q

(1.1)

dq

dt = +∂H
∂p

H = T + V.

Full text available at: http://dx.doi.org/10.1561/2300000038



4 Introduction

H is the Hamiltonian, the sum of kinetic T and potential energy V ,
i.e. the total internal energy of the system; q and p are the generalised
coordinates and momenta, respectively. A generalised coordinate is e.g.
a position, or charge displacement in the electrical domain. Mechanical
momentum is e.g. p = mv; in the electrical domain it is the state
variable of a inductor, the magnetic flux.
Hamiltonian mechanics are suitable for energy-based modelling and
control: the total energy H is expressed explicitly in the equations.

Example 1.1. A simple example of a physical system described with
Hamiltonian mechanics is the mass-spring oscillator. The position q

is the spring deflection; momentum p is the momentum of the mass,
p = m · v. With kinetic energy T = p2/(2m) (mass m) and potential
energy V = q2/(2C) (C is the compliance of the spring, the inverse of
its stiffness) the dynamic equations become:

H = p2

2m + q2

2C (1.2)

dp
dt = − q

C

dq
dt = p

m
.

Of course, in the equation for p we recognise ṗ = F , Newton’s second
law; in this case mv̇ = Kq. The equation for q is the obvious q̇ =
v. 〈example end〉

This example shows that energy is explicitly modelled: when solving
the equations one will see the energy flow between T and V . In this
closed system without friction, the total energy H is conserved.

In robotics, however, there is always interaction: between mechanical
parts, across domains through transducers, and with the environment.
For this interaction, the sub-systems must be interconnected. This
interconnection can be described by so-called power ports: interfaces
that transfer energy between elements, domains, systems. A power
port is always a pair of variables whose pairing characterises the power
exchange, e.g. force and velocity or voltage and current.

Full text available at: http://dx.doi.org/10.1561/2300000038



1.1. Port-Hamiltonian systems 5

In port-Hamiltonian systems theory, a common representation is the
causal Poisson framework representation, which is an input-state-output
representation. In this representation, all the states like q and p are
collected in a single state vector which may even be a combination of
generalised moments and displacements and indicated as x:

ẋ =
[
J(x)−R(x)

]∂H
∂x

(x) + g(x)u x ∈ X , u ∈ Rm (1.3)

y = g>(x)∂H
∂x

(x), y ∈ Rm

where J(x) = −J>(x), R(x) = R>(x) ≥ 0. J is an internal interconnec-
tion matrix; R is a resistive structure. g represents the interconnection,
and therefore effect, of the port variables on the state variables—and
vice versa.
The matrix J is a power-continuous interconnection by its skew-
symmetry, whereas R models pure resistive losses of the system, as can
be seen by taking the time derivative of the Hamiltonian:

Ḣ(x) = ∂H
∂x

>
(x) · ẋ (1.4)

= ∂H
∂x

>
(x)
[
J(x)−R(x)

]∂H
∂x

(x) + ∂H
∂x

>
(x) · g(x)u

= −∂H
∂x

>
(x)R(x)∂H

∂x
(x) + y>u,

which is the power supplied through the port y>u, minus the power
lost to friction, quadratic on R(x).

Example 1.2. Consider the mass-spring-damper system in Figure 1.1:
it does not have an external interaction port, so g(x) ≡ 0, hence the
Hamiltonian should change only with the quadratic R(x) term of (1.4).

The state vector comprises p and q as in Example 1.1; the damping
force Fb = b · v = b · p/m is modelled in the R matrix.

H(x) = p2

2m + q2

2C (1.5)
(
ṗ

q̇

)
=
[(

0 −1
1 0

)
−
(
b 0
0 0

)](
p/m

q/C

)

Full text available at: http://dx.doi.org/10.1561/2300000038



6 Introduction
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Figure 1.1: A mass-spring-damper system. (Example 1.2)

−1

0

1

St
at

e x (m)
v (m s−1)

−0.5

0

0.5

Po
we

r
(W

)

PC
PM
PR

0 2 4 6 8 10
0

0.2
0.4

t (s)

En
er

gy
(J

)

EC
EM
ER

Figure 1.2: Simulation of the mass-spring-damper system of Figure 1.1. Energy
flows back and forth between the spring and mass, and is dissipated in the damper.
(Example 1.2)

Figure 1.2 shows a simulation of this example system, with C =
1 m N−1, b = 0.1 N s m−1, m = 1 kg, x(0) = (0 1 m)>. Especially
the plot of the energy shows how the Hamiltonian (EM +EC) decreases
with the energy dissipated in the damper, as expected from (1.4).
(EM and EC are the first and second term of the Hamiltonian of (1.5);
ER is the energy dissipated by the damper, given by

∫
Fbv dt =∫

bv2 dt.) 〈example end〉
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1.1. Port-Hamiltonian systems 7

Example 1.3. An example of a system with an external port is the
sliding mass, with an actuator applying a force on it, as in Figure 1.3.
The only state is the momentum p. Choosing F as the input determines
g(x) = 1 and the dynamic equations are:

H(x) = p2

2m (1.6)

ẋ = ṗ =
[
(0)− (b)

] · p
m

+ (1)F

y = (1)> p
m
.

The choice for F as input has made y = p/m = v, such that the product
of input and output is power and this is indeed a power port.

M

b

F

Figure 1.3: A mass sliding on a surface with friction, with a port to the environment:
the actuator force. (Example 1.3)

Simulation results of this system (with m = 1 kg, b =
0.5 N s m−1, F = 0.5 N1(t− 1)) are shown in Figure 1.4. The difference
between the power injected by the actuator (PF = v · F ) and the power
lost in friction (PR = bv2), shaded in the middle graph, is exactly equal
to the time derivative of the Hamiltonian, ĖM = PM. 〈example end〉

Finally, the port of the Port-Hamiltonian System is an interface: the
system can be connected to other systems through this power port. The
interconnection between two or more PHS is described by a Dirac struc-
ture, which is a power-continuous coupling of the port variables. In fact,
the mass-spring-damper of Example 1.2 can be viewed—and modelled—
as three PHS, one for each element, interconnected by a Dirac structure,
as in Figure 1.5. The interconnection of Port-Hamiltonian Systems is
again a Port-Hamiltonian System, with a Hamiltonian that is the sum
of the two systems’ Hamiltonians and a new internal interconnection
matrix J that incorporates the (old, external) Dirac structure.

Full text available at: http://dx.doi.org/10.1561/2300000038
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Figure 1.4: Simulation of the sliding mass in Figure 1.3. The difference between
the power supplied through the port, PF, and the power lost to friction, PR, is equal
to the time derivative of the Hamiltonian EM. (Example 1.3)

D
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C

R I

spring

friction mass

Figure 1.5: A Dirac structure is a power-continuous interconnection between
Port-Hamiltonian Systems. This figure shows the system of Figure 1.1 as three
interconnected elements, or systems.

An excellent introductory overview of Port-Hamiltonian Systems
Theory can be found in van der Schaft and Jeltsema (2014).
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