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Abstract

We review the use of factor graphs for the modeling and solving of
large-scale inference problems in robotics. Factor graphs are a family of
probabilistic graphical models, other examples of which are Bayesian
networks and Markov random fields, well known from the statistical
modeling and machine learning literature. They provide a powerful ab-
straction that gives insight into particular inference problems, making
it easier to think about and design solutions, and write modular soft-
ware to perform the actual inference. We illustrate their use in the
simultaneous localization and mapping problem and other important
problems associated with deploying robots in the real world. We in-
troduce factor graphs as an economical representation within which
to formulate the different inference problems, setting the stage for the
subsequent sections on practical methods to solve them. We explain the
nonlinear optimization techniques for solving arbitrary nonlinear factor
graphs, which requires repeatedly solving large sparse linear systems.

The sparse structure of the factor graph is the key to understand-
ing this more general algorithm, and hence also understanding (and
improving) sparse factorization methods. We provide insight into the
graphs underlying robotics inference, and how their sparsity is affected
by the implementation choices we make, crucial for achieving highly
performant algorithms. As many inference problems in robotics are in-
cremental, we also discuss the iSAM class of algorithms that can reuse
previous computations, re-interpreting incremental matrix factoriza-
tion methods as operations on graphical models, introducing the Bayes
tree in the process. Because in most practical situations we will have
to deal with 3D rotations and other nonlinear manifolds, we also in-
troduce the more sophisticated machinery to perform optimization on
nonlinear manifolds. Finally, we provide an overview of applications of
factor graphs for robot perception, showing the broad impact factor
graphs had in robot perception.

F. Dellaert and M. Kaess. Factor Graphs for Robot Perception. Foundations and
Trends® in Robotics, vol. 6, no. 1-2, pp. 1-139, 2017.

DOI: 10.1561/2300000043.
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1

Introduction

This article reviews the use of factor graphs for the modeling and solv-
ing of large-scale inference problems in robotics, including the simulta-
neous localization and mapping (SLAM) problem. Factor graphs are a
family of probabilistic graphical models, other examples of which are
Bayesian networks and Markov random fields, which are well known
from the statistical modeling and machine learning literature. They
provide a powerful abstraction to give insight into particular inference
problems, making it easier to think about and design solutions, and
write modular, flexible software to perform the actual inference. Below
we illustrate their use in SLAM, one of the key problems in mobile
robotics. Other important problems associated with deploying robots
in the real world are localization, tracking, and calibration, all of which
can be phrased in terms of factor graphs, as well.

In this first section we introduce Bayesian networks and factor
graphs in the context of robotics problems. We start with Bayesian
networks as they are probably the most familiar to the reader, and
show how they are useful to model problems in robotics. However,
since sensor data is typically given to us, we introduce factor graphs
as a more relevant and economical representation. We show Bayesian
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Figure 1.1: A toy SLAM (simultaneous localization and mapping) example with
three robot poses and two landmarks. Above we schematically indicate the robot
motion with arrows, while the dotted lines indicate bearing measurements.

networks can be effortlessly converted to factor graphs by conditioning
on the sensor data. We then formulate the different inference problems
as optimization problems on factor graphs, setting the stage for the
subsequent sections on practical methods to solve them.

1.1 Inference Problems in Robotics

To act sensibly in the world, robots need to infer knowledge about the
world from their sensors, while drawing on a priori knowledge. There
are many different such inference problems in robotics, but none of
them have received as much attention as simultaneous localization and
mapping (SLAM). We discuss SLAM in detail and use it as a moti-
vating example below. Other inference problems include localization in
a known environment, tracking other actors in the environment, and
multi-robot versions of all of the above. More specialized problems are
also of interest, e.g., calibration or long-term inertial navigation.

In the SLAM problem the goal is to localize a robot using the infor-
mation coming from the robot’s sensors. In a simple case this could be
a set of bearing measurements to a set of landmarks. If the landmarks’
positions are known, this comes down to a triangulation problem remi-
niscent of how ships navigate at sea. However, the additional wrinkle in
SLAM is that we do not know the landmark map a priori, and hence we
have to infer the unknown map simultaneously with localization with
respect to the evolving map.
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Figure 1.1 shows a simple toy example illustrating the structure
of the problem graphically. A robot located at three successive poses
x1, T2, and x3 makes bearing observations on two landmarks /; and
5. To anchor the solution in space, let us also assume there is an ab-
solute position/orientation measurement on the first pose x;. Without
this there would be no information about absolute position, as bearing
measurements are all relative.

1.2 Probabilistic Modeling

Because of measurement uncertainty, we cannot hope to recover the
true state of the world, but we can obtain a probabilistic description
of what can be inferred from the measurements. In the Bayesian prob-
ability framework, we use the language of probability theory to assign
a subjective degree of belief to uncertain events. Many excellent texts
are available and listed at the end of this section that treat this subject
in depth, which we do not have space for here.

In robotics we typically need to model a belief over continuous,
multivariate random variables x € R™. We do this using probability
density functions (PDFs) p(x) over the variables z, satisfying

/p(fv)d:r =1 (1.1)

In terms of notation, we use lowercase letters for random variables, and
uppercase letters to denote sets of them.

In SLAM we want to characterize our knowledge about the un-
knowns X, in this case robot poses and the unknown landmark posi-
tions, when given a set of observed measurements Z. Using the language
of Bayesian probability, this is simply the conditional density

p(X]2), (1.2)

and obtaining a description like this is called probabilistic inference.
A prerequisite is to first specify a probabilistic model for the variables
of interest and how they give rise to (uncertain) measurements. This is
where probabilistic graphical models enter the picture.

Probabilistic graphical models provide a mechanism to com-
pactly describe complex probability densities by exploiting the struc-
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ture in them [121]. In particular, high-dimensional probability densities
can often be factorized as a product of many factors, each of which is a
probability density over a much smaller domain. This will be explicitly
modeled when we introduce factor graphs, later in this section. How-
ever, below we first introduce a different and perhaps more familiar
graphical model, Bayesian networks, as they provide a gentler intro-
duction into generative modeling.

1.3 Bayesian Networks for Generative Modeling

Bayesian networks are an expedient graphical language for modeling
inference problems in robotics. This is because it is often easy to think
about how measurements are generated by sensors. For example, if
someone tells us the exact location of a landmark and the pose of a
robot, as well as the geometry of its sensor configuration, it is not hard
to predict what the measurement should be. And we can either assume
or learn a noise model for a particular sensor. Measurement predictions
and noise models are the core elements of a generative model, which is
well matched with the Bayesian network framework.

Formally, a Bayesian network [163] or Bayes net is a directed
graphical model where the nodes represent variables ;. We denote the
entire set of random variables of interest as © = {6;...6,}. A Bayes
net then defines a joint probability density p(©) over all variables © as
the product of conditional densities associated with each of the nodes:

p(©) 2 [ p(b)lm). (1.3)

In the equation above p(f;|r;) is the conditional density associated
with node 6;, and 7; is an assignment of values to the parents of 0;.
Hence, in a Bayes net, the factorization of the joint density is dictated
by its graph structure, in particular the node-parent relationships.

As an example, let us consider the Bayes net associated with the
toy SLAM example from Figure 1.1. In this case the random variables
of interest are © = {X, Z}, i.e., the unknown poses and landmarks X,
as well as the measurements Z. The corresponding Bayes net for this
toy example is shown in Figure 1.2, with the measurements shown in
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Figure 1.2: Bayes net for the toy SLAM example from Figure 1.1. Above we
showed measurements with square nodes, as these variables are typically observed.

boxes as they are observed. Per the general definition of Bayes nets, the
joint density p(X, Z) = p(x1,x2,x3,11,l2, 21, 29, 23, 24) is obtained as a
product of conditional densities:

p(X, Z) = p(z1)p(xz|z1)p(w3|22) (1.4)
x p(l)p(l2) (1.5)
x p(z1|z1) (1.6)
X p(z2|x1, l1)p(z3|xe, 1) p(24|23, 12). (1.7)

One can see that the joint density in this case consists of four qualita-
tively different sets of factors:

o A “Markov chain” p(x1)p(z2|z1)p(x3|z2) on the poses x1, xo, and
x3 [Eq. 1.4]. The conditional densities p(x;1|z;) might represent
prior knowledge or can be derived from known control inputs.

o “Prior densities” p(l1) and p(l2) on the landmarks [, and I3 (often
omitted in SLAM settings when there is no prior map) [Eq. 1.5].

o A conditional density p(z1|z1) corresponding to the absolute pose
measurement on the first pose z; [Eq. 1.6].

o Last but not least, a product of three conditional densities,
p(z2|x1, l1)p(23|22, 11)p(24]23, [2), corresponding to the three bear-
ing measurements on the landmarks /; and ls from the poses x1,
x9, and z3 [Eq. 1.7].
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Note that the graph structure makes an explicit statement about data
association, i.e., for every measurement z; we know which landmark
it is a measurement of. While it is possible to model unknown data
association in a graphical model context, in this text we assume that
data association is given to us as the result of a pre-processing step.

1.4 Specifying Probability Densities

The exact form of the densities above depends very much on the appli-
cation and the sensors used. The most often-used densities involve the
multivariate Gaussian distribution, with probability density

1 1
N D) = osen{ -5 lo-ull), (0

where p € R” is the mean, Y is an n X n covariance matrix, and

10wl = (0 —m =7 (60— p) (1.9)
denotes the squared Mahalanobis distance. For example, priors on un-
known quantities are often specified using a Gaussian density.

In many cases it is both justified and convenient to model mea-
surements as corrupted by zero-mean Gaussian noise. For example, a
bearing measurement from a given pose x to a given landmark [ would
be modeled as

z = h(z,l) +n, (1.10)
where h(.) is a measurement prediction function, and the noise 7
is drawn from a zero-mean Gaussian density with measurement covari-
ance R. This yields the following conditional density p(z|x,l) on the
measurement z:

(el ) = Nl ), R) = o exp {3 e, - 2}
|27 R 2
(1.11)
The measurement functions h(.) are often nonlinear in practical
robotics applications. Still, while they depend on the actual sensor
used, they are typically not difficult to reason about or write down.
The measurement function for a 2D bearing measurement is simply

h(z,l) = atan2(ly — zy,l; — ), (1.12)
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where atan2 is the well-known two-argument arctangent variant. Hence,
the final probabilistic measurement model p(z|z,[) is obtained as

1 1
p(z|x,l) = W exp {—2 |latan2(ly, — zy,ly — x4) — zH%} . (1.13)

Note that we will not always assume Gaussian measurement noise: to
cope with the occasional data association mistake, for example, many
authors have proposed the use of robust measurement densities, with
heavier tails than a Gaussian density.

Not all probability densities involved are derived from measure-
ments. For example, in the toy SLAM problem we have densities of the
form p(x¢41|z¢), specifying a probabilistic motion model which the
robot is assumed to obey. This could be derived from odometry mea-
surements, in which case we would proceed exactly as described above.
Alternatively, such a motion model could arise from known control in-
puts w. In practice, we often use a conditional Gaussian assumption,

1
p(@es1lze, ur) = exp {—2 g (e, ue) — xt-l—lHQQ} ] (1.14)

1
27|
where ¢(.) is a motion model, and @ a covariance matrix of the appro-
priate dimensionality, e.g., 3 x 3 in the case of robots operating in the
plane. Note that for robots operating in three-dimensional space, we
will need slightly more sophisticated machinery to specify densities on
nonlinear manifolds such as SE(3), as discussed in Section 6.

1.5 Simulating from a Bayes Net Model

As an aside, once a probability model is specified as a Bayes net, it
is easy to simulate from it. This is the reason why Bayes nets are the
language of choice for generative modeling, and we mention it here
because it is often beneficial to think about this when building models.

In particular, to simulate from P(©) = [1; P(8;]m;), one simply
has to topologically sort the nodes in the graph and sample in such a
way that all parent values m; are generated before sampling ¢; from
the conditional P(6;|m;), which can always be done. This technique is
called ancestral sampling [16].
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As an example, let us again consider the SLAM toy problem. Even
in this tiny problem it is easy to see how the factorization of the joint
density affords us to think locally rather than having to think globally.
Indeed, we can use the Bayes net from Figure 1.2 as a guide to simulate
from the joint density p(z1, z2, x3,1,lo, 21, 22, 23, 24) by respectively

1. sampling the poses x1, z2, and x3 from p(z1)p(xe|z1)p(xs|xe),
i.e., simulate a robot trajectory;

2. sampling l; and ls from p(l;) and p(l3), i.e., generate some plau-
sible landmarks;

3. sampling the measurements from the conditional densities

p(z1]z1), p(z2|z1,l1), p(zs|ze,l1), and p(z4|zs,l2), ie., simulate
the robot’s sensors.

Many other topological orderings are possible. For example, steps 1 and
2 above can be switched without consequence. Also, we can generate
the pose measurement z; at any time after x; is generated, etc.

1.6 Maximum a Posteriori Inference

Now that we have the means to model the world, we can infer knowledge
about the world when given information about it. Above we saw how
to fully specify a joint density P(©) in terms of a Bayes net: its factor-
ization is given by its graphical structure, and its exact computational
form by specifying the associated priors and conditional densities.

In robotics we are typically interested in the unknown state vari-
ables X, such as poses and/or landmarks, given the measurements Z.
The most often used estimator for these unknown state variables X
is the maximum a posteriori or MAP estimate, so named because
it maximizes the posterior density p(X|Z) of the states X given the
measurements Z:

XMAP - —  argmaxp(X|2) (1.15)
X

— argmax 22X

n o(7) (1.16)
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The second equation above is Bayes’ law, and expresses the posterior
as the product of the measurement density p(Z|X) and the prior p(X)
over the states, appropriately normalized by the factor p(Z).

However, a different expression of Bayes law is the key to under-
standing the true computation underlying MAP inference. Indeed, all
of the quantities in Bayes’ law as stated in (1.16) can in theory be
computed from the Bayes net. However, as the measurements Z are
given, the normalization factor p(Z) is irrelevant to the maximization
and can be dropped. In addition, while the conditional density p(Z|X)
is a properly normalized Gaussian density in Z, we are only concerned
with it as a function in the unknown states X. Hence the second and
more important form of Bayes’ law:

XMAP — argmax 1(X; Z)p(X). (1.17)
X

Here I(X;Z) is the likelihood of the states X given the mea-
surements Z, and is defined as any function proportional to p(Z|X):

(X;Z)  p(Z]X). (1.18)

The notation I(X; Z) emphasizes the fact that the likelihood is a func-
tion of X and not Z, which acts merely as a parameter in this context.

It is important to realize that conditioning on the measurements
yields likelihood functions that do not look like Gaussian densities, in
general. To see this, consider again the 2D bearing measurement density
in Equation 1.13. When written as a likelihood function we obtain

1
l(x,1;2) < exp {—2 |latan2(l, — zy,ly — 24) — ZH?%} , (1.19)

which is Gaussian in z (after normalization), but decidedly not so in
any other variable. Even in the case of a linear measurement function,
the measurement z is often of lower dimensionality than the unknown
variables it depends on. Hence, conditioning on it results in a degen-
erate Gaussian density on the unknowns, at best; it is only when we
fuse the information from several measurements that the density on
the unknowns becomes a proper probability density. In the case that
not enough measurements are available to fully constrain all variables,
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MAP inference will fail, because a unique maximizer of the posterior
(1.17) is not available.

All of the above motivates the introduction of factor graphs in the
next section. The reasons for introducing a new graphical modeling lan-
guage are (a) the distinct division between states X and measurements
Z, and (b) the fact that we are more interested in the non-Gaussian
likelihood functions, which are not proper probability densities. Hence,
the Bayes net language is rather mismatched with the actual optimiza-
tion problem that we are concerned with. Finally, we will see in Section
3 that the structure of factor graphs is intimately connected with the
computational strategies to solve large-scale inference problems.

1.7 Factor Graphs for Inference

While Bayes nets are a great language for modeling, factor graphs are
better suited to perform inference. Like Bayes nets, factor graphs allow
us to specify a joint density as a product of factors. However, they are
more general in that they can be used to specify any factored function
(X)) over a set of variables X, not just probability densities.

To motivate this, consider performing MAP inference for the toy
SLAM example. After conditioning on the observed measurements 7,
the posterior p(X|Z) can be re-written using Bayes’ law (1.16) as

p(X|Z) o p(z1)p(z2|z)p(as|zs) (1.20)
x p(l1)p(l2) (1.21)

x (z1;21) ( )

(1.23)

X U1, 1 22) (22, l1; 23) (23, l2; 24).

It is clear that the above represents a factored probability density on
the unknowns only, albeit unnormalized.

To make this factorization explicit, we use a factor graph. Figure
1.3 introduces the corresponding factor graph by example: all unknown
states X, both poses and landmarks, have a node associated with them,
as in the Bayes net. However, unlike the Bayes net case, measurements
are not represented explicitly as they are given, and hence not of inter-
est. Rather than associating each node with a conditional density, in
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Figure 1.3: Factor graph resulting from the Bayes net in Figure 1.2 on page 6 after
conditioning on the measurements 2.

factor graphs we explicitly introduce an additional node type to rep-
resent every factor in the posterior p(X|Z). In the figure, each small
black node represents a factor, and—importantly—is connected to only
those state variables it is a function of. For example, the likelihood fac-
tor (s, l2; z4) is connected only to the variable nodes x3 and 5. Using
this as a guide, it should be easy to associate each of the 9 factor nodes
in the graph with the 9 factors in the posterior p(X|Z2).

Formally a factor graph is a bipartite graph F' = (U, V, £) with two
types of nodes: factors ¢; € U and variables z; € V. Edges ¢;; € £ are
always between factor nodes and variables nodes. The set of variable
nodes adjacent to a factor ¢; is written as N (¢;), and we write X;
for an assignment to this set. With these definitions, a factor graph F
defines the factorization of a global function ¢(X) as

o(X) = [[6:(X). (1.24)

In other words, the independence relationships are encoded by the edges
ei; of the factor graph, with each factor ¢; a function of only the vari-
ables X; in its adjacency set N (¢;).

Every Bayes net can be trivially converted to a factor graph. Recall
that every node in a Bayes net denotes a conditional density on the
corresponding variable and its parent nodes. Hence, the conversion is
quite simple: every Bayes net node splits in both a variable node and a
factor node in the corresponding factor graph. The factor is connected
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to the variable node, as well as the variable nodes corresponding to
the parent nodes in the Bayes net. If some nodes in the Bayes net are
evidence nodes, i.e., they are given as known variables, we omit the
corresponding variable nodes: the known variable simply becomes a
fixed parameter in the corresponding factor.

Following this recipe, in the simple SLAM example we obtain the
following factor graph factorization,

(L1, lo, 21, 22, .CC3) = ¢1(x1)p2(x2, 1) ds3(x3, T2) (1.25)
Pa(l1)ds(l2) (1.26)

X ¢6(x1) (1.27)

X ¢r7(w1,11)ps (w2, l1) P9 (23, 12), (1.28)

where the correspondence between the factors and the original proba-
bility densities and/or likelihood factors in Equations 1.20-1.23 should
be obvious, e.g., ¢7(z1,l1) = l(z1,11; 22) < p(z2|z1, lh).

1.8 Computations Supported by Factor Graphs

While in the remainder of this document we concentrate on fast op-
timization methods for SLAM, it is of interest to ask what types of
computations are supported by factor graphs in general. Converting a
Bayes net p(X, Z) to a factor graph (by conditioning on the evidence
Z) yields a representation of the posterior ¢(X) «x p(X|Z), and it is
natural to ask what we can do with this. While in SLAM we will be
able to fully exploit the specific form of the factors to perform very
fast inference, some domain-agnostic operations that are supported are
evaluation, several optimization methods, and sampling.

Given any factor graph defining an unnormalized density ¢(X), we
can easily evaluate it for any given value, by simply evaluating every
factor and multiplying the results. Often it is easier to work in log
or negative log-space because of the small numbers involved, in which
case we have to sum as many numbers as there are factors. Evaluation
opens up the way to optimization, and nearly all gradient-agnostic
optimization methods can be applied. If the factors are differentiable
functions in continuous variables, gradient-based methods can quickly
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find local maxima of the posterior. In the case of discrete variables,
graph search methods can be applied, but they can often be quite costly.
The hardest problems involve both discrete and continuous variables.
While local or global maxima of the posterior are often of most
interest, sampling from a probability density can be used to visualize,
explore, and compute statistics and expected values associated with
the posterior. However, the ancestral sampling method from Section
1.5 only applies to directed acyclic graphs. The general sampling algo-
rithms that are most useful for factor graphs are Markov chain Monte
Carlo (MCMC) methods. One such method is Gibbs sampling, which
proceeds by sampling one variable at a time from its conditional den-
sity given all other variables it is connected to via factors. This assumes
that this conditional density can be easily obtained, however, which is
true for discrete variables but far from obvious in the general case.
Below we use factor graphs as the organizing principle for all sec-
tions on specific inference algorithms. They aptly describe the inde-
pendence assumptions and sparse nature of the large nonlinear least-
squares problems arising in robotics, and that is where we start in the
next section. But their usefulness extends far beyond that: they are
at the core of the sparse linear solvers we use as building blocks, they
clearly show the nature of filtering and incremental inference, and lead
naturally to distributed and/or parallel versions of robotics. Before we
dive in, we first lay out the roadmap for the remainder of the document.

1.9 Roadmap

In the next section, Section 2, we discuss nonlinear optimization
techniques for solving the map inference problem in SLAM. Doing so
requires repeatedly solving large sparse linear systems, but we do not go
into detail on how this is done. The resulting graph-based optimization
methods are now the most popular methods for the SLAM problem,
at least when solved offline or in batch.

In Section 3 we make the connection between factor graphs and
sparse linear algebra more explicit. While there exist efficient soft-
ware libraries to solve sparse linear systems, these are but instantiations
of a much more general algorithm: the elimination algorithm.
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In Section 4 we discuss elimination ordering strategies and their
effect on performance. This will also allow us to understand, in Section
5, the effects of marginalizing out variables, and its possibly delete-
rious effect on sparsity, especially in the SLAM case. Other inference
problems in robotics do benefit from only keeping track of the most re-
cent state estimate, which leads to filtering and/or fixed-lag smoothing
algorithms.

In Section 5 we discuss incremental factorization and re-
interpret it in terms of graphical models. We introduce the Bayes tree to
establish a connection between sparse matrix factorization and graphi-
cal models, based on which incremental smoothing and mapping algo-
rithms are developed.

While in many robotics problems we can get away with vector-
valued unknowns, 3D rotations and other nonlinear manifolds need
slightly more sophisticated machinery. Hence, in Section 6 we discuss
optimization on manifolds.

1.10 Bibliographic Remarks

The SLAM problem [174, 129, 186] has received considerable attention
in mobile robotics as it is one way to enable a robot to explore and nav-
igate previously unknown environments. In addition, in many applica-
tions the map of the environment itself is the artifact of interest, e.g., in
urban reconstruction, search-and-rescue operations, and battlefield re-
connaissance. As such, it is one of the core competencies of autonomous
robots [187]. A comprehensive review was done by Durrant-Whyte and
Bailey in 2006 [59, 6] and more recently by Cadena et al. [19], but the
field is still generating a steady stream of contributions at the top-tier
robotics conferences.

The foundational book by Pearl [163] is still one of the best places
to read about Bayesian probability and Bayesian networks, as is the
tome by Koller and Friedman [121], and the book by Darwiche [38].
Although in these works the emphasis is (mostly) on problems with
discrete-valued unknowns, they can just as easily be applied to contin-
uous estimation problems like SLAM.
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Because of their ability to represent the unnormalized posterior for
MAP inference problems, factor graphs are an ideal graphical model
for probabilistic robotics. However, factor graphs are also used exten-
sively in a variety of other computer science fields, including Boolean
satisfiability, constraint satisfaction, and machine learning. Excellent
overviews of factor graphs and their applications are given by Kschis-
chang et al. [125], and Loeliger [139].

Markov chain Monte Carlo (MCMC) and Gibbs sampling provide
a way to sample over high-dimensional state-spaces as described by
factor graphs, and are discussed in [151, 82, 55].
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A

Multifrontal Cholesky Factorization

We recover sparse multifrontal Cholesky factorization if we in-
stead use partial Cholesky factorization when eliminating a single vari-
able. To enable this, when eliminating the variable z;, the product
factor ¢(x;,S;) is handled in a slightly different way. In particular, we
define the augmented Jacobian matrix Aj 2 [A;]b;] associated with
the product factor ¢ (x;,S;), and the corresponding augmented state

72 [;55;1]. We then have

|45te5:55 - 5], = 27 (] Az, (A1)

where jA\j 2 A]TJLL is the augmented Hessian matrix associated with
the product factor ¥(x;,S;). As an example, eliminating l5 in the toy
example yields the product factor

Ay = - Ags Ags Agsbo ; (A.2)
- — b; bs + bg b

which one can see to be the sum of two outer products, corresponding
to the factors ¢5 and ¢g.

132



Full text available at: http://dx.doi.org/10.1561/1400000039

133

We partition /AXj into 4 blocks, isolating the blocks associated with
the variable x;, and perform the following partial Cholesky factoriza-

Ain Ap R] R; S
A= = ~ = J J . A3
J [ A21 A22 1 [ ST LT L ( )
The upper triangular matrix R;, satisfying R]TRj = /A\u, will be iden-

tical to the one obtained by QR factorization up to possibly sign flips
on the diagonal. The remaining blocks S and L can be computed by

tion:

)

S = R;"Ap (A.4)
L'L = §'s (A.5)
= Aoy — ALAG Ag. (A.6)

The latter computation, known as the Schur complement, has a nice
information-theoretic interpretation: we downdate the information KQQ
on the separator S; with the information we “consume” in order to
determine the eliminated variable z;. The more information /AXH we
had on z;, the more information remains on the separator S;.

After the partial Cholesky step, the algorithm proceeds by creating
a conditional density from R and S, given by

1
p(z4|S;5) O<e><p{—2 | Rjz; + T;S; —dj||§} (A7)

with [T}j|d;] = S. This conditional is exactly the same as the one we
recover via the QR path. Adding the new factor on the separator S;
corresponding to L' L needs some care: we can indeed create a new
factor, but with the corresponding error

() = exp {55 (LTL)S; (A8)

rather than the Jacobian form as used in Equation 3.20 on page 39.
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B

Lie Groups and other Manifolds

Many of the unknown variables in robotics live in well-known continu-
ous transformation groups known as Lie groups. A rigorous definition
will take us too far afield, but roughly speaking a Lie group is simply
a manifold with a smooth group operation defined on it. The most
important examples are reviewed below.

B.1 2D Rotations

One of the simplest Lie groups is the space of 2D rotations with com-
position as the group operator, also known as the Circle Group. The
easiest way to define it is as the subset of all 2 x 2 invertible matrices
that are both orthogonal and have determinant one, i.e., 2 x 2 rotation
matrices. Because of this definition, people often refer to this Lie group
the as the Special Orthogonal Group in dimension 2, written as
SO(2). Here “special” refers to the unit determinant property.

The nonlinear orthogonality and unit determinant constraints
define a nonlinear, one-dimensional manifold within the larger 4-
dimensional space of 2 x 2 invertible matrices. In fact, the manifold
has the topology of a circle, but it remains a group: matrix multiplica-
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tion of two rotation matrices in SO(2) is closed, the identity matrix I,
is in SO(2), and the inverse element of each rotation R is its transpose
RT, which is also in SO(2). Hence, SO(2) is a subgroup of the General
Linear Group GL(2) of 2 x 2 invertible matrices.

What makes this Lie group stand out from all other groups we dis-
cuss below is that the group operation is commutative: R1 Ry = RoR;
for all Ry, R2 € SO(2). This explains why people often simply repre-
sent a planar rotation with an angle 0 € R, and use scalar addition as
a proxy for the group operation. However, while matrix multiplication
respects the circle topology, scalar addition does not.

An important representation that does respect the wrap-around
property is the group of unit-norm complex numbers cos @ +isinf € C
with complex multiplication, which is isomorphic to SO(2).

In summary, these are the three most common representations used
for rotations: angles, complex numbers, and 2 x 2 rotation matrices,

R — C + SO(2) (B.1)

(B.2)

0 — cosf +isinf < C?SQ —sinf
sinf cosf

where the first arrow indicates an (undesirable) many to-one mapping.

B.2 2D Rigid Transformations

Equipped with SO(2) we can model the orientation of robots moving
in the plane. Just as it was convenient to embed the one-dimensional
manifold SO(2) in GL(2), we likewise embed both orientation R €
SO(2) and position ¢ € R? in the space of 3 x 3 matrices, as follows:

Al Rt
T= . B.3
o 33)
The above defines the Special Euclidean Group SE(2). It is a sub-
group of the general linear group GL(3), with matrix multiplication as
the group operation. The identity element is I3 € GL(3), and we have

T _pT
T—l_l% Ift] (B.4)
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and
| Bty Ry to | | RiRy Rita+1t
TlTQ_[o 1“0 1]_[ 0 1 ] (B.5)

Note that composition in SE(2) is not commutative.

For planar robots, we can use elements of SE(2) to represent the
2D pose x of the robot, i.e., z € SFE(2). We can interpret a pose
x; = T; € SE(2) as the transformation that would take us from the
origin to the coordinate frame associated with the robot’s current pose.

Relative poses are also elements of SFE(2): suppose z; = T; and
x; = T}, then we have

zj=T; =TT, 'Tj = (T ' Ty) = a1} (B.6)

E Ti_lTj is the transformation that takes x; to ;.

and hence T;
The natural group action associated with an element 7; € SE(2)
transforms points p’ € R? in coordinate frame i to points ¢¢ € R? in the

global frame by embedding both in P? using homogeneous coordinates:

¢ | | R t Pl | Rp
1| |0 1 1| 1
We write ¢9 = T; ® p, and the change from local to global coordinates

is ¢9 = R;p’ +t;, i.e., the local point p’ is rotated and then translated.
To model measurements taken from a particular robot pose z; = Tj,

(B.7)

a more important question is: if we know the location of a landmark
l; =¢ € R? in the global coordinate frame, what are its coordinates
P’ ' T
transformation follows easily from (B.7) as p' = R, (¢7 — t;).

in the robot’s frame? Since the inverse of R; is R, , the inverse

B.3 3D Rotations

The Lie group SO(3) of rotations in 3D (aka spatial rotations) is rep-
resented by the set of 3 x 3 matrices that are orthogonal and have
determinant 1. 3D rotations are important in robotics but also in nav-
igation and many other fields, and hence this Lie group is one of the
most studied and well-known structures in applied math.
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SO(3) is a three-dimensional manifold embedded within a 9-
dimensional ambient space, and forms a subgroup within GL(3) in
the same way SO(2) is a subgroup of GL(2). However, unlike planar
rotations, spatial rotations do not commute. In other words,

RiRy # RoRy (B.8)

for most R1, Ry € SO(3). Of course, since SO(2) is a subgroup of SO(3)
(keep any axis fixed), it is clear that some combinations of rotation
matrices do commute, just not all.

The subgroup relationship between SO(2) and SO(3) gives rise to
the commonly used axis-angle representation for spatial rotations. It
consists of the pair (&, 6), where the axis @ € S? is a unit vector on
the sphere and 6 € R is a rotation angle around this axis. Both can be
combined in a single three-vector w = fw. While convenient for some
operations, composition of two rotations is cumbersome and is best
achieved by converting back to rotation matrices. In addition, because
of the dependence on a scalar angle 6, there is again an undesirable
many-to-one mapping from axis-angle to SO(3).

Another, very common way to represent 3D rotations is using unit
quaternions ¢ € Q, analogous to the role unit complex numbers play
for SO(2). Quaternions, like complex numbers, have a real part and
an imaginary part, but the imaginary part in quaternions is three-
dimensional, with axes ¢, j, and k. The easiest way to introduce unit-
quaternions as a way to represent rotations is by converting from the
axis angle representation,

(w,0) — cos g + (Wal + wyj + w.k) sin g, (B.9)

which highlights that the axis @ is encoded in the imaginary part.
Unit quaternions are more compact than 3 x 3 matrices and, equipped
with quaternion multiplication, are almost isomorphic to SO(3). In-
deed, their only flaw is that there is a two-to-one mapping from Q
to SO(3): ¢ and —q represent the same rotation. Despite this minor
annoyance, they are a popular representation in robotics.

Finally, the most intuitive but often problematic representation for
3D rotations consists of using Euler angles. These are quite useful
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from a readability point of view, because rotations around identity can
be easily understood as a combination of roll ¢, pitch 6, and yaw
1)—making the three degrees of freedom palatable where rotation ma-
trices and unit quaternions obfuscate. However, far from identity, Eu-
ler angles exhibit singularities which complicate optimizing over them
when used in those regimes.

In summary, these are the four most common representations used
for spatial rotations: axis-angle, unit quaternions, and 3 x 3 rotation
matrices, and Euler angles:

S?2 xR+ Q= SO(3) + R? (B.10)

(w,0) < cosg + (Wal + wyj + w.k) sing = R+ ¢,0,1, (B.11)

where the double arrow represents the double covering property of unit
quaternions, and the last arrow indicates the undesirable many to-one
mapping from Euler angles to rotation matrices (even more so now,
because of the inherent singularities).

B.4 3D Rigid Transformations

The full 6 DOF pose of a robot operating in free space or on undulating
terrain can be represented using rigid 3D transformations. The situa-
tion is completely analogous to the 2D case in Section B.2: we embed
a rotation matrix R € SO(3) and a translation vector t € R? in a 4 x 4

Té[R t] (B.12)

matrix

0 1

to define the Special Euclidean Group SE(3) of rigid 3D trans-
formations. Again, the group operation is matrix multiplication, and
SE(3) is a subgroup of the 4 x 4 invertible matrices GL(4).

B.5 Directions in 3D

An important nonlinear manifold that is not a group is the set of all
directions in 3D space. These are useful for reasoning about a robot’s
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orientation with respect to gravity, such as measured by an accelerome-
ter for instance. Another use case is visual odometry using a monocular
camera only, in which case absolute scale is unobservable between two
frames, but translation direction is.

A direction in space is conveniently represented by a unit 3-vector,
ie,p= { T Yy z }T with the nonlinear constraint z2 + y? + 22 = 1.
In other words, the manifold of directions in 3D space is the Sphere
in 3D, typically denoted S2. It is a two-dimensional manifold, as the
nonlinear constraint takes away one degree of freedom, and indeed, the
sphere is intuitively familiar to us as a two-dimensional surface.
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