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ABSTRACT
This article describes how robot innovations are adopted
during a disaster using the COVID-19 response both as a
natural experiment and a case study. The article is based on
an analysis of the R4ID dataset of 203 instances of ground
and aerial robots in 34 countries explicitly reported in the
press, social media, and scientific literature from January 24,
2020, to July 4, 2020, as being used due to the COVID-19
pandemic. While the reports do not provide sufficient detail
to ascertain gaps in specific algorithms or specific subsys-
tems, such as perception, manipulation, or autonomy, the
size and the pervasiveness of the data permits examination
of three questions: 1) how the need for a robot arises during
a disaster, 2) whether those needs are met with existing
technically mature robots, adapting existing robots, or in-
novating new robots, and 3) what are the major barriers to
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inserting robots into use during a disaster. The analysis uti-
lizes a novel formal framework consisting of a sociotechnical
work domain analysis, an extended demand analysis, and a
rating of the technical maturity of each instance using the
NASA Technical Readiness Assessment (TRA) ranking. The
relative TRA of robots is compared by work domain and
modality, followed by an in-depth examination of technically
mature Heritage systems, which accounted for 74% of the
203 instances, modified Engineering Systems (13%), and
New Systems accounting (13%). The data is also discussed
in terms of a) demand pull versus innovation push, b) avail-
ability, c) suitability, and 4) risk, leading to a formal model
of organization adoption of robotics during a disaster. The
analysis shows that organizational adoption of robotics dur-
ing a disaster embodies two of the four components of the
Unified Theory of Acceptance and Use of Technology Model
(UTAUT) (Venkatesh et al., 2003), specifically that adoption
is primarily influenced by end-users’ expectations of perfor-
mance and how much effort they need to expend to integrate
into work processes, also known as suitability and risk. The
data also suggests that a third component of UTAUT, fa-
cilitating conditions for adoption, occurs during disasters
because regulations and acquisition policies may be waived.
In addition, the data shows that the lack of availability of
some models of existing robots due to low inventory, delays
in delivery, or high purchase price facilitated conditions for
the development and adoption of new, possibly less reliable,
alternative robots. The analysis also shows that the the
adoption of robots for a disaster, regardless of work domain,
is the result of demand pull by the primary stakeholders,
not an innovation push by roboticists, as the majority of
missions were established prior to the disaster. The article
concludes with four recommendations for roboticists pur-
suing disaster robotics: 1) work with stakeholders before a
disaster to design robots to meet pre-existing established
demands, 2) design robots or software that support multi-
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ple uses so that robots can be quickly and safely adapted,
3) engage in technology transfer to integrate robots into
operational use prior to the disaster, conduct fundamental
research into formal methods for projecting the risk of us-
ing the robot in terms of direct and indirect performance
and consequences, and 4) conduct fundamental research in
design and on demand manufacturing so as to increase the
availability and functionality of low cost Heritage robots.
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1
Introduction

When a disaster occurs, it is natural for roboticists to want to help
with the immediate response to saving lives and mitigating societal
impacts. Indeed, since 2001, ground, aerial, and marine robots have
been inserted into disaster response by emergency response organiza-
tions (Murphy, 2014). Case studies of how robots have been used and
the specific capabilities of those robots appear in Murphy (2014) and
Murphy et al. (2016). Speculative articles outlining needed research in
specific mechanisms or levels of autonomy are too numerous to cite here.
These cases studies generally describe the “what” of the morphological
and functional attributes of deployed robot, not the “how” or “why”
stakeholders chose one robot over another.

What is missing is an understanding of the overall adoption process
by organizations during a disaster and the characteristics of robot
innovations that favor adoption. Adoption is a subset of the general
responsible innovation process (Nordmann, 2014) by which technologists
design and refine innovations for a high social impact application and
the pattern of diffusion of innovation in Rogers (2003) describing how
adopters decide to adopt a specific technology.

4
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It is more useful for roboticists interested in inserting their robots
in a response to understand the adoption process during an emergency
rather than the entire innovation and diffusion progression for two rea-
sons. One is that innovation during a response bypasses the responsible
innovation process, as only a subset of stakeholders are engaged in the
adoption decision and the long-term consequences and effects are not
considered. While adoption during a disaster is generally an organiza-
tional adoption, not an adoption by an individual who assumes all the
risks, the insertion of new technologies for disaster response must fit
the response organization policies. The adoption may be local, that is,
it may be limited to one unit within a larger organization (e.g., one hos-
pital in a chain) or the decisions may be temporarily driven bottom-up
(e.g., one person advocates the adoption for unit or organization).

A second reason is that diffusion of innovation during a disaster sim-
ilarly compresses or bypasses stages, and may result in only temporary
adoption. Indeed, some innovations may be highly experimental and
thus not map onto the normal diffusion of innovation process. The initial
knowledge, persuasion, decision phases of diffusion are compressed or
exceptional due to many influences. One influence is time pressure,
as the agency must make a decision quickly without a more nuanced
determination or justification, aka satisficing (Simon, 1972). A second
is social pressure, as there may be social pressure on the agency to show
that are doing something extraordinary to rise to the event. Purchasing
costs may not be the primary influence, especially for governmental
agencies, as disaster response is often covered by special funds or loans of
equipment, though clearly there would monetary limits. Indeed, as noted
in Section 2.2, Heikkilä et al. (2012) reports that reducing economic
costs is not necessarily a predictor of adoption of robotic technology.
However, Clipper (2020) reports that health insurers allowing teleoper-
ated robots as a reimbursable cost accelerated adoption for pandemic
clinical care. The influence of capital costs is expected to depend on
the monetary amount, work domain (e.g., clinical care, public safety,
private company), country, etc. Regulations are also not necessarily an
influence as most agencies and health care institutions have mechanisms
to obtain special dispensation from regulations in emergencies. The
final stage of diffusion of innovation, the confirmation/continuation step,
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6 Introduction

is not normally part of the disaster. Adoption of novel technologies is
temporary, with no obligation to insert into routine operations or for
future disasters. Indeed, Murphy (2014) shows that small ground robots
have been successfully used since 2001 for building collapses but have
not been adopted into general practice by any country.

1.1 Objectives

Understanding the adoption process can be loosely thought of as an-
swering three sets of questions that appear in UTAUT (Venkatesh et al.,
2003) and applications of UTAUT to emergency response (Moats, 2015).
The first question is: How do needs emerge? Are the use cases with
the highest societal impact known to the stakeholders a priori, are
they uncovered during the incident, or emerge in some combination?
The answer to this question provides insight on the drivers for inno-
vation, especially who would identify the use cases (e.g., stakeholders
or roboticists), and what sorts of activities roboticists can prepare in
advance to contribute to the response (e.g., have existing partnerships
with agencies, have certified robot performance for domain D, etc.).
A second question is: How robust and reliable should robots be in or-
der to be adopted? Is something better than nothing or, as posited in
Murphy (2014), robots which reproduce existing capabilities with well
understood limitations more likely to be adopted? The answer to this
question establishes whether adoption is risk-adverse; if so, focusing
on deploying or adapting existing robots may lead to higher rates of
adoption than innovating novel robots which are unlikely to be put into
service. A conservative adoption process would also imply that more
research in needed on projecting and quantifying risk. A third, related,
question is: What are the barriers to adoption during a disaster? Do
regulations or acquisition policies play notable roles? How important
is trust by the end-users? While regulations and policies are outside
of the control of roboticists, it is helpful to know whether rules can
be waived and, if so, under what circumstances. If there are no rules
or rules can be easily waived, then this might mean the decision to
adopt rests with individual stakeholders, and more research is needed
to understand their comfort with robotics.

Full text available at: http://dx.doi.org/10.1561/2300000062



1.1. Objectives 7

It should be noted that modeling the adoption process for the
response phase is different from conducting a gaps analysis or generating
a model of diffusion of innovation as the disaster or disease progressed.
An evidence-based gaps analysis is outside of the scope of this article,
in part because the majority of the reports generally do not describe
specific problems with sensors, mobility, navigation, interfaces, etc. or
areas for future improvement. However, as will be seen in this article, the
data does support extracting general attributes that influence adoption,
especially technical maturity. A model of diffusion would be interesting,
exploring questions such as: Was China an early adopter of robotics?
Did other Asian countries follow China, then Western countries follow
Asia? and Whether adoption of specific robot is influenced by cultural
perceptions of robots? But such a time- and culture-based analysis is
beyond the scope of this article; instead, this article concentrates on
what attributes of the robot itself predict adoption during a disaster.

Until the COVID-19 pandemic, generating answers to these questions
has been hampered by the lack of use cases, either for a single type of
disaster or for disaster response in general. While Murphy (2014) argues
that adoption for the response phase is highly conservative and only
robots with a proven record of performance will be deployed, that is a
heuristic assessment based on subjective interpretation of only 34 cases
in 10 countries from 2001 to 2013.

Fortunately, the COVID-19 pandemic has provided 262 reports in
the press, social media, and scientific literature from 24 January, 2020,
to 4 July, 2020, of 203 robots being used to respond to coronavirus in 34
countries. The reports clearly cover the immediate response phase in all
of the reported countries. These reports are contained in the Robotics
for Infectious Diseases (R4ID) open source database at RoboticsforInfec-
tiousDiseases.org. The size and extent of the R4ID database overcomes
the previous lack of use cases for an evidence-based model of adoption.
Even though the use cases are for a single event, a pandemic, patterns
in adoption can be expected to generalize to all disasters, following the
“all-hazards" doctrine of emergency operations (Bullock et al., 2011).
The “all-hazards" doctrine provides a generic structure for responding
to disasters by abstracting the common elements of natural, man-made,
or medical disasters.

Full text available at: http://dx.doi.org/10.1561/2300000062



8 Introduction

However, the reports in the R4ID have three limitations which
influence the level of detail that can be extracted about the adoption
process. One limitation is that the dataset is not guaranteed to be
complete. As detailed in Chapter 3, the majority of data collected was
from posts in social media and press reports using English keywords.
Some instances of robot use were likely not reported, because they
were routine or less novel or entertaining, while other more entertaining
or surprising uses were more likely to be reported even though they
might have less impact on the response. The data may not completely
reflect international use, given that 23 of the 34 countries represented
in the data had only two or less reported instances during this time
period. However, the large number of reports, and aggregating them
into a “meta-analysis”, offers evidence of general trends in adoption. A
second limitation is that the reports are not useful for identifying which
robots had a higher impact on the response and examining the adoption
process for those high-value uses. The reports typically only describe
the robot and how it is being used, often leading with unsupported
hyperbole about a particular robot being likely to revolutionize some
aspect of the response. Even the articles from robotics literature offer
no meaningful measures of impact, possibly because impact is hard to
predict or measure without a longitudinal study that examines subtle
workplace and economic factors. Therefore this article is restricted to
discussing patterns of adoption and barriers to adoption so that robots
can be more readily applied to presumably high impact tasks. The final
limitation of the data is that the reports do not capture the decision
process that led stakeholders to chose a particular robot for a use case.
With 203 reports in 34 countries, it is not feasible to conduct follow
up interview. Instead, the analysis in this article infers what influenced
those decisions from what was, and was not, deployed using a formal
analytical framework.

1.2 Approach to Conducting the Analysis

There is no established framework or methodology for explicitly com-
paring and contrasting the use of robots for different use cases within a
disaster. Previous work in disaster robotics, especially Murphy (2014),
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1.2. Approach to Conducting the Analysis 9

has focused on comparing robots for a single use case within a disaster.
Thus, in order to answer the three motivating questions, this article
creates a novel framework for comparison consisting of three compo-
nents: a sociotechnical domain analysis which establishes how robots
were used, an expanded demand analysis which infers why robots were
used, and the NASA Technical Research Assessment which classifies
what robots were used by their technical maturity. An overview of the
framework is given here and detailed later in Chapter 3.

The first component of the approach is a sociotechnical work do-
main analysis which groups instances of robot use for COVID-19 into
sociotechnical work domain categories (e.g., clinical care, public safety,
etc.) and subcategories of use cases within each sociotechnical work
domain (e.g., disinfection, delivery). Since the primary clustering is
not by robot capabilities or components (e.g., autonomy, manipulation,
sensors), the resulting taxonomy enables a broad assessment of how tech-
nology is being used, respective of nuances in implementation between
individual models of robots. The clustering based on sociotechnical
work domains also helps to clarify what factors influence adoption, for
example, a robot being used for clinical care in hospital would have to fit
a very different regulatory structure than a robot used to combat labor
shortages in a manufacturing plant. The sociotechnical work domains
and use cases are described in more detail in Section 3.2.

The second component is a post hoc demand analysis to understand
whether demand pull or innovation push is a driver for adoption of
robots into disasters. Demand analysis is important because if robots
for disasters are generally deployed to meet demand pull, then robots
can be designed or improved for those missions in advance. Furthermore,
if there is an existing demand pull, but robots were not widely available
or used, there may be an economic, regulatory, or trust barrier that
should be addressed for future disasters. A typical demand analysis is
prescriptive, where end-users, regulatory agencies, and developers are
brought together before the application of a technology to determine
responsible innovation, either where there is a clear demand (demand
pull) or the innovation supports new missions or new ways of doing
things (innovation push) as per Decker et al. (2017). In the case of
COVID-19, and other disasters, technology deployment decisions are
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10 Introduction

made rapidly by the primary stakeholder representing the end-users
(e.g., healthcare administrators, law enforcement, business owners, etc.),
thus short circuiting the prescriptive, broad engagement responsible
innovation process.

Rather than perform a prescriptive demand analysis, this article
performs a post hoc demand analysis by determining whether the stake-
holders used existing, commercially available robots. If so, the adoption
was inferred to be driven by demand pull; for example, telepresence
healthcare robots already existed before the pandemic and their use
increased, thus implying a demand pull for more robots. If robots had to
be significantly modified or built from scratch, then it was inferred that
there was an innovation push because robotics was being explored as a
mechanism for meeting novel missions. The post hoc demand analysis
methodology is described in more detail in Section 3.3.

The third component is the use of the NASA Technical Readiness As-
sessment (TRA) methodology (Hirshorn and Jefferies, 2016) to classify
the technical maturity of robots. TRA goes beyond the NASA Technical
Readiness Levels (TRL) to essentially provide a measure of the suitabil-
ity and risk of a technology for a mission within the larger sociotechnical
organization. The TRA provides a more useful categorization because
a robot can be reliable, work as designed, and be commercially avail-
able, thus earning the highest TRL level, but may be difficult to use
or have negative consequences on work flows and manpower (Straub,
2015). and thus not truly ready for operations. Thus NASA expanded
the device-centric TRL into a larger work domain-centric Technical
Readiness Assessment (TRA) classification which ranks the suitability
and risk of a technology both in terms of platform maturity (TRL) and
usability (Hirshorn and Jefferies, 2016). The TRA classifies technology
as Heritage, if it is an existing proven technology being applied to a
similar mission and work envelope, Engineering, if it is a modification
of an existing proven technology for a well-defined mission and work
envelope, or New, involving new hardware, software, a new mission, or
a different work envelope. The TRA classification process is described
in more detail in Section 3.4.
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1.3. Organization of the Article 11

1.3 Organization of the Article

The remainder of this article is organized as follows. Chapter 2 reviews
the related work in modeling the adoption of robots and prior summative
of the use of robots for the coronavirus pandemic. Next, the novel
framework for analysis is discussed in detail in Chapter 3. Using the data
in Chapter 3, Chapter 4 presents the Technical Readiness Assessment of
the 203 instances by examining the distribution of Heritage, Engineering,
or New instances overall, by the six sociotechnical work domains, and by
two modalities (unmanned ground or aerial vehicle). The analysis then
goes deeper and considers all Heritage systems (Chapter 5), Engineering
systems (Chapter 6), and New systems (Chapter 7). A discussion of the
demand analysis, availability, and risk is provided in Chapter 8 resulting
in a formal model of adoption. The article concludes with findings
for disaster robotics, then uses the model of adoption to make four
recommendations for roboticists interested in developing and deploying
technology for a disaster.
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