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ABSTRACT
Sampling-based methods are widely adopted solutions for
robot motion planning. The methods are straightforward to
implement, effective in practice for many robotic systems.
It is often possible to prove that they have desirable prop-
erties, such as probabilistic completeness and asymptotic
optimality. Nevertheless, they still face challenges as the
complexity of the underlying planning problem increases,
especially under tight computation time constraints, which
impact the quality of returned solutions or given inaccurate
models. This has motivated machine learning to improve
the computational efficiency and applicability of Sampling-
Based Motion Planners (SBMPs). This survey reviews such
integrative efforts and aims to provide a classification of the
alternative directions that have been explored in the litera-
ture. It first discusses how learning has been used to enhance
key components of SBMPs, such as node sampling, collision
detection, distance or nearest neighbor computation, local

Troy McMahon, Aravind Sivaramakrishnan, Edgar Granados and Kostas E. Bekris
(2022), “A Survey on the Integration of Machine Learning with Sampling-based
Motion Planning”, Foundations and Trends® in Robotics: Vol. 9, No. 4, pp 266–327.
DOI: 10.1561/2300000063.
©2022 T. McMahon et al.

Full text available at: http://dx.doi.org/10.1561/2300000063



2

planning, and termination conditions. Then, it highlights
planners that use learning to adaptively select between dif-
ferent implementations of such primitives in response to the
underlying problem’s features. It also covers emerging meth-
ods, which build complete machine learning pipelines that
reflect the traditional structure of SBMPs. It also discusses
how machine learning has been used to provide data-driven
models of robots, which can then be used by a SBMP. Finally,
it provides a comparative discussion of the advantages and
disadvantages of the approaches covered, and insights on pos-
sible future directions of research. An online version of this
survey can be found at: https://prx-kinodynamic.github.io/
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1
Introduction

Motion planning is the problem of finding valid paths, expressed as
sequences of configurations, or trajectories, expressed as sequences of
controls, which move a robot from a given start state to a desired goal
state while avoiding obstacles. It has applications in problems ranging
from mobile robotics (Barraquand and Latombe, 1991), manipulation
planning (Oriolo and Mongillo, 2005), graphics and animation (Kall-
mann et al., 2008), protein folding (Song and Amato, 2001) to crowd
simulation (Bayazit et al., 2002; Sud et al., 2008; Toll et al., 2012) and
multi-robot applications (Svestka and Overmars, 1995; Clark and Rock,
2001). Variations of the motion planning problem can include dynamic
constraints, which can be important in autonomous driving and aerial
vehicles (Figure 1.1).

The motion planning problem is PSPACE-Complete (Reif, 1979;
Canny, 1988; Latombe, 1991), and its complexity depends exponen-
tially on the number of degrees of freedom of the robotic system. This
makes traditional, complete methods difficult to apply for problems
with more than 4 or 5 degrees of freedom. This has motivated work on
developing sampling-based methods, which often use random samples
to explore the underlying configuration space. Examples of popular

3
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4 Introduction

Figure 1.1: Example domains where machine learning has been integrated
with sampling-based motion planning: a) grasping objects with robotic arms
(image from Chamzas et al., 2019), b) dexterous manipulation with adaptive hands
(image from Sintov et al., 2020), c) robot navigation of ground robots (image from
Granados et al., 2022), d) aerial vehicles (image from Faust et al., 2017).

Sampling-Based Motion Planners (SBMPs) include the Probabilistic
Roadmap (PRM) (Kavraki et al., 1996), the Rapidly-exploring Random
Tree (RRT) (Lavalle, 1998) and the Expansive Spaces (Hsu et al., 1997)
algorithms. Sampling-based motion planners give up on the traditional
notion of completeness and instead aim for probabilistic completeness,
which means that they are guaranteed to eventually discover a solution
if one exists but cannot confirm solution non-existence. Progress in
the field has also allowed the development of methods, such as RRT∗

and PRM∗ (Karaman and Frazzoli, 2011), which are also asymptotically
optimal, i.e., they guarantee convergence to an optimal solution if one
exists.

Full text available at: http://dx.doi.org/10.1561/2300000063
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Beyond their algorithmic properties, these methods have proven
quite effective in finding solutions for relatively high-dimensional chal-
lenges, where the traditional approaches do not scale. Their popularity
also stems from the fact that they provide flexible frameworks, which
are rather straightforward to implement and adapt for a large variety
of robotic systems. Nevertheless, they may still face challenges as the
complexity of the underlying planning problem increases:

1. Some of the challenges relate to computational efficiency, which
may be hindered from the exploration of the underlying configu-
ration space via sampling, especially when the key primitives of
these planners, such as collision checking or forward propagation
of the system’s dynamics, are computationally expensive.

2. Other issues relate to path quality. Despite the progress in under-
standing the conditions for asymptotic optimality, convergence
to high-quality solutions may be hindered in practice when naive
exploration primitives are employed, such as the random sampling
of controls.

3. Furthermore, SBMPs like most motion planning methods, typically
assume the availability of an accurate, complete model. Tradi-
tional, engineered models may be inaccurate or unable to express
all critical physical aspects of the problem or not predict how a dy-
namic environment may evolve. Furthermore, sensing constraints
may introduce partial observability and uncertainty about the
environment. These factors can limit the applicability of SBMPs.

These challenges motivate the use of machine learning to improve the
computational efficiency of SBMPs, accelerate their practical convergence
to high-quality solutions, and provide access to accurate-enough, data-
driven models, which adapt to varying environmental conditions and
sensing input.

Machine learning enables the autonomous derivation of solutions
to problems based on prior experience and data. It promises to con-
stantly improve performance by incorporating new data and identifying
solutions that engineered approaches may not be able to achieve. This

Full text available at: http://dx.doi.org/10.1561/2300000063



6 Introduction

makes machine learning especially useful for an application like robotics,
where a robotic agent must contend with an endless variety of tasks and
environments. There are also many scenarios where learned agents can
approximate costly computations. In these cases, the learned agent can
be trained to model the computations in a pre-processing step, then
used during run-time in place of the computation or as a heuristic for
it. This is especially useful in robotics, where the robot must act and
react to situations in real-time.

Fundamentally, machine learning algorithms operate by building a
model of observed data, that can predict and generalize to new examples.
This data can come from various sources: an existing dataset, through
human training or demonstration, or it can be accumulated from the
results of previous predictions that the model has made. For model-
based agents, learning is done by fitting the model’s parameters to data,
which can be done using methods such as regression or reinforcement
learning. During query time, the model is queried to give predictions
based on patterns observed in the data.

There is a large body of literature on the application of machine
learning algorithms to improve the efficiency of robotic systems in
general (Kober et al., 2013; Kroemer et al., 2019). Recently, there
has been a lot of attention on the progress of deep learning methods,
which has resulted in many efforts to utilize the corresponding tools in
robotics (Sünderhauf et al., 2018). This survey focuses specifically on
integrating machine learning tools to improve the efficiency, convergence,
and applicability of SBMPs.

This survey covers a wide breadth of robotic applications, including,
but not limited to, mobile robot navigation, manipulation planning,
and planning for systems with dynamic constraints. In particular, this
monograph first reviews the attempts to use machine learning to improve
the performance of individual primitives used by SBMPs (Section 3). It
also studies a series of planners that use machine learning to adaptively
select from a set of motion planning primitives. It then proceeds to study
a series of integrated architectures that learn an end-to-end mapping
of sensor inputs to robot trajectories or controls (Section 4). Finally, it
studies how SBMPs can operate over learned models of robotic system
that account for noise and uncertainty (Section 5).
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The survey concludes with a comparative discussion of the different
approaches covered in Sections 3 - 5. It evaluates these approaches
in terms of their impact on computational efficiency of the planner,
quality of the computed paths, and their overall applicability. It then
outlines the broad difficulties and limitations of these methods, as well
as potential directions of future work.
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