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ABSTRACT
Interactive Imitation Learning (IIL) is a branch of Imi-
tation Learning (IL) where human feedback is provided
intermittently during robot execution allowing an online
improvement of the robot’s behavior.
In recent years, IIL has increasingly started to carve out its
own space as a promising data-driven alternative for solving
complex robotic tasks. The advantages of IIL are twofold,
1) it is data-efficient, as the human feedback guides the
robot directly towards an improved behavior (in contrast
with Reinforcement Learning (RL), where behaviors must
be discovered by trial and error), and 2) it is robust, as
the distribution mismatch between the teacher and learner
trajectories is minimized by providing feedback directly over
the learner’s trajectories (as opposed to offline IL methods
such as Behavioral Cloning).
Nevertheless, despite the opportunities that IIL presents,
its terminology, structure, and applicability are not clear

*These authors contributed equally to this work.
Carlos Celemin, Rodrigo Pérez-Dattari, Eugenio Chisari, Giovanni Franzese, Lean-
dro de Souza Rosa, Ravi Prakash, Zlatan Ajanović, Marta Ferraz, Abhinav Valada and
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tions and Trends® in Robotics: Vol. 10, No. 1-2, pp 1–197. DOI: 10.1561/2300000072.
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Full text available at: http://dx.doi.org/10.1561/2300000072



2

nor unified in the literature, slowing down its development
and, therefore, the research of innovative formulations and
discoveries.

In this work, we attempt to facilitate research in IIL and
lower entry barriers for new practitioners by providing a
survey of the field that unifies and structures it. In addition,
we aim to raise awareness of its potential, what has been
accomplished and what are still open research questions.

We organize the most relevant works in IIL in terms of
human-robot interaction (i.e., types of feedback), interfaces
(i.e., means of providing feedback), learning (i.e., models
learned from feedback and function approximators), user ex-
perience (i.e., human perception about the learning process),
applications, and benchmarks. Furthermore, we analyze sim-
ilarities and differences between IIL and RL, providing a
discussion on how the concepts offline, online, off-policy and
on-policy learning should be transferred to IIL from the RL
literature.

We particularly focus on robotic applications in the real
world and discuss their implications, limitations, and promis-
ing future areas of research.
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1
Introduction

1.1 Motivation

Existing robotic technology is still mostly limited to being used by
expert programmers who can adapt the systems to new required condi-
tions, but not flexible and adaptable by non-expert workers or end-users.
Imitation Learning (IL) has obtained considerable attention as a po-
tential direction for enabling all kinds of users to easily program the
behavior of robots or virtual agents. The teaching process takes place di-
rectly in the application context, in a natural way for humans, and does
not require engineering effort to adapt the behavior for each different
scenario.

In the case teachers (i.e., humans with knowledge about the task)
are available and able to transfer their knowledge to the agent, it is
preferred to program behaviors from recorded demonstrations rather
than tackling the problem with other Machine Learning (ML) techniques
such as Reinforcement Learning (RL), which involve additional design,
infrastructure, safety, and data efficiency challenges (Sutton and Barto,
2018), and in many cases are not applicable to physical systems due to
time and resource limitations.

3
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4 Introduction

When considering the advantages of programming robots in a natural
way, like we humans do for teaching complex skills (e.g., requiring fast
dynamics and dexterity) to others, the possibilities are not limited
to recording demonstrations, for later fitting a policy model, as it is
done in traditional IL methods (Argall et al., 2009). In practice, an
initial set of demonstrations or instructions tend to suffice to teach
very simple and easy tasks from human to human, e.g., the instructions
for opening a door, plugging a phone charger, or the user guide for
most devices we use on a daily basis. Nevertheless, for complex skills
such as playing a sport, a loop of interactions is required for learning,
because then the teacher explains/shows the student what to do by
directly correcting/evaluating its actions, improving its behavior over
past mistakes and successes. Otherwise, considering and explaining all
possible scenarios in advance would be intractable for both the teacher
and the student.

This kind of teaching is based on different types of teaching feedback,
like demonstrations, sporadic corrections, or evaluations (grading) with
value judgments or rankings. As an example, when teaching a complex
skill like playing tennis, various steps can be involved. The teacher
shows full demonstrations of the stroke themselves to the learner. When
the student tries to replicate the example, the teacher can show what a
better execution would look like. After the student performs the stroke,
the teacher could advise with voice instructions to slightly correct the
angles, velocities, or forces of the movement. Moreover, the teacher
can sporadically congratulate the student or make it clear that some
decisions were not so good. This kind of interactive teaching approach
seems to be, for humans, the most natural strategy for teaching to
perform more complex skills; therefore, it is desirable to teach robots in
the same way.

In recent years, the domains of robotics and ML have increasingly
adopted and developed these interactive teaching strategies, as can be
observed in Figure 1.1. In this work, Interactive Imitation Learning
(IIL) refers to all the methods that include the teacher in the learning
loop for training sequential decision-making systems. The objective of
this work is to survey the literature on these methods and to present
the most relevant observations in an organized structure.

Full text available at: http://dx.doi.org/10.1561/2300000072



1.1. Motivation 5

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

0

2

4

6

8

10

12

14

16

N
um

b
er

of
pa

p
er

s
History of Interactive Imitation Learning

Figure 1.1: Histogram of IIL papers (from the group of works surveyed until the
beginning of 2022) written per year.

The study of IIL methods has increased and the community has
grown because these strategies introduce additional benefits with respect
to learning paradigms such as traditional IL. Some of those advantages
are:

• A more natural or intuitive teaching approach.

• Enabling users who are non-experts at demonstrating the task to
teach successful policies.

• Obtaining richer datasets consisting of data from situations that
are not faced when learning from full demonstrations, as the
distribution of data collected is induced by the learner instead of
the teacher, avoiding data mismatch issues (see Section 2.2.6).

• More flexibility to the teachers, who are not constrained to use
only demonstrations for transferring their knowledge, but they
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6 Introduction

can use other kinds of feedback, like relative corrections, human
reinforcements, or comparisons.

• Offers alternatives to solve the correspondence problem that exists
between the space where teachers can give demonstrations and
the space where the robot executes the actions.

• Some methods have more tolerance for the teacher’s mistakes or
provide a better approach to compensate for them.

Nonetheless, there are certain challenges that should be considered
when a teacher is in the learning loop. Human teachers can be inconsis-
tent and make mistakes, there is uncertainty in their input that tries
to explain their intention, they need to learn to adapt to the changing
behavior of the learning agent, and the learning process is open-ended
(Dudley and Kristensson, 2018).

In this work, we review the context that defines the domain of IIL
and how it relates to other known learning approaches. We highlight the
most relevant aspects to be considered for teaching an agent interactively
and organize the methods according to them. This study is based on
grouping and surveying the most relevant established papers in the
literature, along with more recent follow-up works that have shown
promising contributions. All these papers were gathered in a set of works
used as reference for organizing the different classifications proposed
throughout the different sections. This set is also used for generating
the tables in Sections 3 and 4, and the plot of Figure 1.1.

One of the reasons such organization of IIL methods does not exist
so far is due to the varied terminology used by different authors to refer
to some of these methods, which in many cases, only partially overlap.
Below, we introduce most of the names and keywords used to refer to
the approaches that are relevant in this work.

1.2 Terminology Unification

In the literature, there are many terms linked to ML approaches that
enable teachers to interactively shape learning systems. As a conse-
quence, many of them are used to describe similar learning problems,

Full text available at: http://dx.doi.org/10.1561/2300000072
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Imitation Learning

Interactive 
Machine Learning

Behavioral Cloning and other 
non-interactive methods

Interactive Imitation 
Learning

Inverse RL, Offline 
RL, RL from 

demonstrations

RL 
with 
HiL

Recommender Systems, 
Interactive tools for training 

classifiers and predictors

Figure 1.2: Relationship between different sets of learning paradigms related to
the scope of this work. The intersection of IL with Interactive Machine Learning
(IML)(blue area) is what defines the scope of this work, called here IIL

which makes it difficult for practitioners (especially beginners) to have
a clear outlook of the field when studying the well-spread collection
of related papers. In this section, we introduce some of those terms
and discuss how they relate to each other, group them into sets that
partially overlap or contain some others, and provide a definition of IIL.
Based on this definition and structure, we set the bounds of the topic
of interest of this work.

Figure 1.2 depicts with a Venn Diagram the relationship between
all learning paradigms discussed below.

1.2.1 Imitation Learning

In the context of robotics, the terms Learning from Demonstration
(LfD), Programming by Demonstrations or Programming by Doing
(PbD), and IL are indistinctly used when referring to the paradigm
of enabling robots to derive controllers from human demonstrations
(Billard and Grollman, 2013). Originally, these terms have been used by
multiple authors referring to learning approaches that derive policies
from datasets of explicit teacher demonstrations of a task.

Full text available at: http://dx.doi.org/10.1561/2300000072



8 Introduction

Some recent methods enable human teachers to train robots through
evaluative feedback, like Learning from Critique (LfC), or Interactive
Reinforcement Learning (Interactive RL), in which the teachers provide
feedback that rates the desirability of the exhibited behavior during
training time. Although these approaches do not fully fit the literal
meaning of LfD or IL, some authors consider that evaluative feedback
is just one of the demonstration modes a teacher could use within a
learning process (Chernova and Thomaz, 2014), therefore they also can
be considered part of the world of IL.

Since IL is used at different levels of robot control and similar
problems, we can rephrase the definitions of LfD, PbD, and IL as
the set of ML methods that leverage teacher’s input as the source of
knowledge for training sequential decision-making systems. Most of the
time, the teacher is a human user, while in some cases it could be
another decision-making agent (e.g., a computationally expensive policy
like an Model Predictive Control (MPC) or a planner system), and it
has an understanding of either what are the objectives of the task, what
to do, how good an action/policy is, or how good is the policy with
respect to others.

In other words, methods are not considered IL if they leverage the
input of a teacher to train non-sequential decision-making systems, e.g.
an image classifier (Fails and Olsen Jr, 2003).

In the last two decades, articles have been published reviewing varied
perspectives of IL, proposing categorizations for organizing the types
of methods, identifying the benefits and drawbacks of the most known
approaches, listing the open challenges, and introducing and structuring
the field of study (Billard et al., 2008; Argall et al., 2009; Billing and
Hellström, 2010; Billard and Grollman, 2013; Chernova and Thomaz,
2014; Amershi et al., 2014; Billard et al., 2016; Hussein et al., 2017;
Lee, 2017; Calinon, 2018; Osa et al., 2018; Li et al., 2019a; Zhang et al.,
2019b; Ravichandar et al., 2020).

1.2.2 Interactive Machine Learning

There exists a considerable amount of learning methods that leverage
human teachers within the learning loop for training sequential and
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1.2. Terminology Unification 9

non-sequential decision-making systems. Through different types of
interaction, they make use of the knowledge a human has about the
process, without the need to hard-coding it. Therefore, these methods
enable users who are not expert ML practitioners to train models
according to their insights and intuition. The set of approaches that cover
all the learning loop schemes involving humans transferring knowledge
to the agent is known as IML (Amershi et al., 2014; Fails and Olsen Jr,
2003; Ware et al., 2001; Holzinger, 2016; Dudley and Kristensson, 2018;
Jiang et al., 2019).

Holzinger (2016) define “IML-approaches as algorithms that can
interact with both computational agents and human agents and can
optimize their learning behavior through these interactions”. Dudley
and Kristensson (2018) explain the contrast between IML and classical
ML as “Interactive Machine Learning is distinct from classical machine
learning in that human intelligence is applied through iterative teaching
and model refinement in a relatively tight loop of set-and-check. In other
words, the user provides additional information to the system to update
the model, and the change in the model is reviewed against the user’s
design objective”.

Some other authors refer to the same domain with a more explicit
name like Human in the Loop Machine Learning (HIL-ML) (Xin et al.,
2018; Wu et al., 2021). Other authors refer to it in a more general way,
combining the term Artificial Intelligence (AI), e.g., with Human in the
Loop Artificial Intelligence (HIL-AI) (Zanzotto, 2019), or Interactive
Artificial Intelligence (IAI) (Wenskovitch and North, 2020). Human
Centered Machine Learning (HCML) or Human Centered Artificial
Intelligence (HCAI) is a larger domain that contains all the mentioned
approaches with a human in the learning loop, additionally, it also
includes the approaches based on ML/AI that have humans in the
execution loop, i.e., systems that interact with humans as in ML/AI-
based Human-Computer Interaction (HCI) or Human-Robot Interaction
(HRI) systems.

Methods of IML serve a wide domain of applications, including clas-
sification, regression, image processing, information retrieval, anomaly
detection, among other systems (Ware et al., 2001; Fails and Olsen Jr,
2003; Amershi et al., 2012; Ngo et al., 2014; Amershi et al., 2014; Dudley
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and Kristensson, 2018; Jiang et al., 2019). It is important to clarify
that although IML methods always include a human in the learning
process, in some applications the human does not always perform as a
teacher, but rather is a user about whom the system learns through the
interactions without explicit signals, as it is the case for Recommender
Systems (Burke, 2002; Bobadilla et al., 2013; Beel et al., 2016).

Active Learning is one of the most traditional approaches of IML,
which consists of endowing the learner with capabilities for querying
the teacher for more data in specific situations. The learner is able
to choose from which data samples it learns, allowing it to learn with
higher accuracy from fewer samples (Cohn et al., 1996; Settles, 2009).

1.2.3 Interactive Imitation Learning

The set of IML covers a broad spectrum of problems it can be applied to,
including sequential and non-sequential decision-making. IL is narrower
and specific to sequential problems. Unlike IML, IL also involves methods
that learn from teachers in a sequential manner, without the need for
continuous interaction in the learning loop, as is the case of Behavioral
Cloning (BC), Inverse Reinforcement Learning (IRL), offline RL, or RL
from demonstrations, which learn from a set of demonstrations that
have been recorded before the learning process starts.

Also known as direct IL, BC (Bain and Sammut, 1995) applies su-
pervised learning to a set of previously recorded expert demonstrations,
in order to obtain a model that imitates the demonstrations. In contrast,
IRL is known as indirect IL because it uses recorded demonstrations to
obtain an objective function or reward function that explains the goal
of the task, so it can be used in an RL process for obtaining a policy
that imitates the demonstrator (Ng and Russell, 2000; Zhifei and Joo,
2012). In offline RL the principles of classical online RL are extended to
be applied over datasets of demonstrations, without collecting any new
sample during training time (Levine et al., 2020). We refer to RL from
demonstrations to the domain of all methods of classical online RL that
leverage recorded demonstrations to initialize the policy, or that keep
that data in a buffer that is continuously used for updating the policy
along with the new samples that are collected with the interactions
(Kober and Peters, 2008; Hester et al., 2018).
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The previous methods are not interactive, even though they learn
from data demonstrated by teachers. We hereby, take the term IIL
that has been previously used in the literature and redefine it as the
set of methods resulting from the intersection of the IL and IML sets.
Therefore, we can say that IIL methods involve the approaches that
learn from the knowledge provided by a teacher in the learning loop
of a sequential decision-making system. Human teachers can transfer
their knowledge to the learning agent through different modalities of
interaction, and they are able to observe the effect of their feedback
throughout the incremental learning process.

Methods of ML that actively choose or query training samples are
known as Active Learning (Settles, 2009) methods, and they aim to
increase the sampling efficiency of the learning process. It is a subset of
IML that also overlaps with the IIL domain.

It is important to make a distinction between IIL, IML, and In-
teractive Learning Systems (ILS), which is also used in the literature
and sometimes referred to as learning from interactions, or interactive
learning. ILS are real/virtual entities that learn from the interaction
with the world, a human, or another entity. This definition is comple-
mented in Cuayáhuitl et al. (2013) with the description: “A machine
can therefore be said to learn from interactions in a particular class of
tasks if its performance improves with the given interactions over time”.
The ILS that learn from the interaction with the world/environment
enclose RL methods (Sutton and Barto, 2018), wherein the agent learns
from its own experience and not from a teacher. The subset of ILS that
learn from the interaction with other agents acting as teachers results
in the same set of IIL methods, which are the focus of this work.

RL systems that obtain data from human teachers in the form of
either demonstrations or evaluations (human reinforcements) during
the learning process are known as Human in the Loop Reinforcement
Learning (HIL-RL) and are also a type of IIL.

1.3 Others Surveys and Outline

In recent years, there has been an explosion in the adoption of IL
methods. There exist a large body of surveys discussing IL from different
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points of view. In particular, Chernova and Thomaz (2014) provides a
general overview of the methodology of learning from demonstration
where different topics are analyzed, such as how the human teacher
interacts with the robot to provide demonstrations, which modeling
technique to choose (low/high level), how the human can refine an
existing task and how to incorporate interactive and active learning
components. Given the big spectrum of the paper of Chernova and
Thomaz (2014), interactive methods are mentioned as one possible
evolution of IL, but they are not the main focus of the work, and,
therefore, not analyzed in depth.

A similar collection and analysis of the literature were conducted
recently by Ravichandar et al. (2020). Here, topics such as non-expert
robot programming, data efficiency, safe learning, and performance
guarantees are discussed. The authors highlight the importance of
learning from social cues, reasoning about the availability of human
demonstrators, how to behave in their absence and how to ask for help.
However, IIL is only marginally analyzed.

Similarly, Hussein et al. (2017) propose a survey on different learning
methods for IL. The survey underlines how BC has limitations due
to errors in the demonstration and poor generalization. As a possible
solution, it is proposed to combine IL with RL, refine the policy with RL,
or use active learning. However, marginal attention is given specifically
to interactive methods.

In a recent survey, Osa et al. (2018) provide a structural analysis on
IL, focusing on BC and IRL methods. The authors mention that incre-
mental and interactive learning methods can be employed to alleviate
the covariate shift problem (Section 2.2.6) that exist in BC methods.
While they highlight the necessity of such methods from an algorithmic
and mathematical perspective on machine learning, the authors do not
provide an extensive treatment of the topic, as it is outside the scope of
their work.

The topic of Human-Centered RL is investigated by (Li et al., 2019a)
as well as Zhang et al. (2019b), where human evaluative feedback is used
to teach behaviors to learning agents. They divide the field into three
categories: learning from human reward, from interpreted human reward,
and from action-translated human reward. Although these works are
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surveying the concept of human feedback from a RL perspective, a
broader discussion of other IIL methods is not covered.

In our work, we provide a survey of the Interactive Imitation Learn-
ing literature, ranging from seminal early work to the most recent
advances. We investigate the role of IIL in the broader picture of sequen-
tial decision-making problems, with a focus on robotics applications.
Besides providing an organized view of the state-of-the-art of the field,
we aim to distill the most important takeaways and contribute a useful
perspective on the topic. Our goal is for this manuscript to be a helpful
reference for future work as well as a starting point for newcomers to the
field. Our discussion spans multiple dimensions, ranging from the type
of feedback a human teacher can provide to the agents, to the models
that are learned through this interaction, to the existing benchmarks
and applications proposed in recent years. In particular, we structure
the analysis over multiple sections as follows:

• Section 2 provides an overview of the sequential decision-making
problem and its different formulations, formalizes the IIL problem
and defines core concepts such as Feedback and Covariate Shift.

• Section 3 discusses the different modalities of feedback that a
human teacher can provide to the robot, ranging from evaluative
to preference to corrective feedback or interventions. We examine
their strengths and weaknesses, with a focus on the trade-off
between richness of information and human effort required.

• Section 4 considers the various types of models that the robot
is able to learn from the provided feedback, including policies,
transition models, and objective functions. We discuss how certain
models are best learned by specific types of feedback, and how
they are used to achieve the main objective of solving sequential
decision problems.

• Section 5 reviews auxiliary models that the robot could learn
in addition to the main objective, such as uncertainty and risk
estimation models, environment dynamics, task features and mod-
els of the human teacher. We analyze the advantages that such
models provide and the settings in which they can be adopted.
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• Section 6 discusses the different types of function approximation
and model representation strategies common in the literature,
including motion-conditioned models and deep neural networks.
We consider their advantages and disadvantages and provide
recommendations on their usage.

• Section 7 provides a comparison between on-policy and off-policy
methods with a focus on the IIL setting.

• Section 8 analyzes the special case of IIL methods used in glsrl
framework, called RL with Human in the Loop.

• Section 9 presents an overview of the interfaces used for enabling
the communication between the robot/computer and the teacher,
examining their role and importance in the learning pipeline. They
range from physical contact with the robot embodiment to external
devices such as remote controllers to contact-free approaches such
as video and voice.

• Section 10 provides an overview of the human factors to consider
in IIL, such as available human-robot interfaces, user experience,
and performance metrics, as well as guidelines on how to design
user studies in IIL.

• Section 11 surveys the principal benchmarks and datasets used
in the literature to evaluate the proposed methods as well as the
different fields of application of these algorithms, such as assistive,
household, medical or industrial robots;

• Section 12 provides a discussion of the current challenges and
opportunities in the field of IIL, as well as directions for future
work.

• Section 13 completes the survey with a summary of the main
concepts discussed as well as the most relevant takeaways and
contributions to the field.
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