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ABSTRACT
Outlier-robust estimation is a fundamental problem and has
been extensively investigated by statisticians and practi-
tioners. The last few years have seen a convergence across
research fields towards “algorithmic robust statistics”, which
focuses on developing tractable outlier-robust techniques
for high-dimensional estimation problems. Despite this con-
vergence, research efforts across fields have been mostly
disconnected from one another. This monograph bridges
recent work on certifiable outlier-robust estimation for ge-
ometric perception in robotics and computer vision with
parallel work in robust statistics. In particular, we adapt
and extend recent results on robust linear regression (ap-
plicable to the low-outlier regime with ≪ 50% outliers)
and list-decodable regression (applicable to the high-outlier
regime with ≫ 50% outliers) to the setup commonly found
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in robotics and vision, where (i) variables (e.g., rotations,
poses) belong to a non-convex domain, (ii) measurements
are vector-valued, and (iii) the number of outliers is not
known a priori. The emphasis here is on performance guar-
antees: rather than proposing radically new algorithms, we
provide conditions on the input measurements under which
modern estimation algorithms (possibly after small modifi-
cations) are guaranteed to recover an estimate close to the
ground truth in the presence of outliers. These conditions
are what we call an “estimation contract”. The monograph
also provides numerical experiments to shed light on the
applicability of the theoretical results and to showcase the
potential of list-decodable regression algorithms in geomet-
ric perception. Besides the proposed extensions of existing
results, we believe the main contributions of this mono-
graph are (i) to unify parallel research lines by pointing out
commonalities and differences, (ii) to introduce advanced
material (e.g., sum-of-squares proofs) in an accessible and
self-contained presentation for the practitioner, and (iii) to
point out a few immediate opportunities and open questions
in outlier-robust geometric perception.
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1
Introduction

Geometric perception is the problem of estimating unknown geometric
models (e.g., poses, rotations, 3D structure) from sensor data (e.g.,
camera images, lidar scans, inertial data, wheel odometry). Geometric
perception has been at the center stage of robotics and computer vision
research since their inception, and includes problems such as object pose
(and possibly shape) estimation [131], [134], robot or camera motion
estimation [106], sensor calibration [59], Simultaneous Localization And
Mapping (SLAM) [22], and Structure from Motion (SfM) [114], to
mention a few.

At its core, geometric perception solves an estimation problem,
where, given measurements yi, i = 1, . . . , n, one has to compute a
variable of interest x◦ (the “ground truth”). For instance, in an object
pose estimation problem, x◦ is the to-be-computed 3D pose of the
object (say, a car), while the yi’s might be observations of relevant
points on the object (e.g., the wheels and the headlights of the car). The
unknown x◦ and the measurements yi are related by a measurement
(or generative) model. In this monograph, we focus our attention on the
common case where the measurements are vector-valued, i.e., yi ∈ Rdy ,
and the noise is additive, leading to measurement models in the form:

3
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4 Introduction

yi = fi(x◦) + ϵ, with yi ∈ Rdy and x◦ ∈ X ⊆ Rdx , (1.1)

where fi(·) is a known function, ϵ is the measurement noise, and X is
the domain of x◦ (e.g., the set of 3D poses in an object pose estimation
problem). As we will see in Section 3, many geometric perception
problems have measurement models in the form of eq. (1.1).1

When the noise in (1.1) is zero-mean and Gaussian, the maximum
likelihood estimate of x◦ can be computed via standard least squares:2

xLS = arg min
x∈X

n∑
i=1

∥yi − fi(x)∥2
2 . (LS)

While problem (LS) can be still hard to solve (e.g., due to potential non-
convexity of fi(·) or X), its structure —at least for common geometric
perception problems— has been extensively studied in robotics and
vision, and the literature offers a broad range of solvers, including closed-
form solutions [63], iterative local solvers [37], minimal solvers [78], and
convex relaxations [24], [25], [68], [104], [109], [134].

Outlier-robust estimation. In practice, many of the measurements
fed to the estimation process are outliers, i.e., they largely deviate from
the measurement model (1.1) and possibly do not carry any information
about x◦. In robotics and vision, the measurements yi are the result
of a pre-processing of the raw sensor data; such preprocessing is often
referred to as the perception front-end, while the estimation algorithms
that compute x◦ from the yi’s are referred to as the perception back-end.
For instance, in an object pose estimation problem, the perception
front-end extracts the position of relevant features yi on the object
from raw image pixels (typically using a neural network), while the

1Assuming additive noise comes at a small loss of generality, e.g., in SLAM and
rotation averaging the measurements belong to a smooth manifold rather than a
vector space and the noise is multiplicative. However, even in these cases, the resulting
outlier-free formulations —under suitable noise assumptions— lead to standard least
squares [59], [104], hence we believe adapting the results in this monograph to those
setups is indeed possible, see Section 9.

2Without loss of generality, we assume ϵ to have an isotropic Gaussian distribution
with identity covariance, but arbitrary covariances can be easily accommodated by
rescaling yi and fi(·) by the square root of the inverse covariance.
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back-end computes the object pose given the yi’s. The perception front-
end is prone to errors (e.g., the network may mis-detect the wheels of
the car in the image), resulting in measurements yi with large errors.
In the presence of outliers, the least squares estimator (LS) is known
to produce grossly incorrect results, hence it is desirable to adopt an
outlier-robust estimator that can correctly estimate x◦ in the presence
of many outliers. In this monograph, we do not make assumptions on
the nature of the outliers and consider the worst case where a fraction
β of measurements is arbitrarily corrupted, a setup commonly referred
to as the strong adversary model in statistics and learning [71].

The robust statistics lens. Classical robust statistics [65], [94], [105],
[117] provides many alternative formulations to (LS) that allow regaining
robustness to outliers. For instance, if the number of outliers is known,
say a fraction β of the n measurements is corrupted, we can use the Least
Trimmed Squares (LTS) estimator [105] to compute an outlier-robust
estimate:

xLTS = arg min
ω∈{0;1}n

x∈X

n∑
i=1

ωi · ∥yi − fi(x)∥2
2 , subject to

n∑
i=1

ωi = α n ,

(LTS)

where we defined the inlier rate α ≜ 1 − β, and introduced binary
variables ω ∈ {0; 1}n which are in charge of selecting the best α n

measurements (when ωi = 1, the i-th measurement is selected as an
inlier by (LTS), while ωi = 0 otherwise); in words, (LTS) selects the
α n measurements that induce the smallest error for some estimate x

and disregards the remaining measurements as outliers. Unfortunately,
the optimization problem (LTS), as well as many other popular outlier-
robust formulations, are NP-hard [13] and for a long while no tractable
algorithm was available for high-dimensional outlier-robust estimation
problems (e.g., in the problems we discuss in Section 3 and Section 9, x’s
dimension ranges from 9 to potentially more than a thousand). In recent
years, algorithmic robust statistics came to the rescue, by proposing
polynomial-time algorithms for outlier-robust estimation with strong
performance guarantees, including [15], [41], [46], [71], [102]. For in-
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6 Introduction

stance, while not explicitly recognized in the paper, the algorithm by
Klivans et al. [71] can be understood as a convex relaxation for prob-
lem (LTS) for the case where fi(·) is a real-valued linear function. Many
of these works use Lasserre’s moment relaxation [81] as an algorithmic
workhorse, and adopt the dual view of sum-of-squares relaxations [98]
to prove bounds on the quality of the estimates.

The computer vision lens. In typical robotics and vision applications,
the number of outliers is unknown, therefore outlier-robust estimators
have to simultaneously look for a suitable estimate of x◦ while searching
for a large set of inliers. In computer vision, a common formulation for
outlier-robust estimation with unknown number of outliers is consensus
maximization [32], which searches for the largest set of inliers such that
the measurements selected as inliers have a low error with respect to
some estimate:

xMC = arg max
ω∈{0;1}n

x∈X

n∑
i=1

ωi , subject to ωi · ∥yi − fi(x)∥2
2 ≤ c̄2 ,

(MC)
where the given constant c̄ ≥ 0 is the maximum error for a measure-
ment to be considered an inlier. Problem (MC) has been shown to be
inapproximable [2], [31], and the literature has been traditionally split
between fast heuristics (which do not provide performance guarantees)
and globally optimal solvers (which can compute optimal solutions but
run in worst-case exponential time). The recent work [129] shows that
for common geometric perception problems, (MC) can be written as
a polynomial optimization problem (POP) and relaxed via Lasserre’s
moment relaxation. The key insight behind [129], reviewed in Section
3, is that —for common perception problems— the domain X is a
basic semi-algebraic set (i.e., it can be written as a set of polynomial
inequalities), while with a suitable parametrization, the function fi(·)
becomes a (vector-valued) linear function.

The robotics lens. In robotics, the go-to approach for outlier-robust
estimation has been the use of M-estimators [65], which replace the least

Full text available at: http://dx.doi.org/10.1561/2300000077
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squares cost in (LS) with a robust loss function. In this monograph we
focus on a particular choice of robust loss function, the truncated least
squares (or truncated quadratic) cost:

xTLS = arg min
x∈X

n∑
i=1

min
(
∥yi − fi(x)∥2

2 , c̄2
)

= arg min
ω∈{0;1}n

x∈X

n∑
i=1

ωi · ∥yi − fi(x)∥2
2 + (1 − ωi) · c̄2 , (TLS)

where the objective is the pointwise minimum of a quadratic and a con-
stant function, i.e., it is quadratic for small residuals ∥yi − fi(x)∥2 ≤ c̄,
and becomes constant for large residuals. In the second line in (TLS)
we noticed that the truncated least squares cost can be equivalently
rewritten using auxiliary binary variables ω, by observing that for two
numbers a, b, min(a, b) = minω∈{0;1} ω ·a+(1−ω)·b. Also problem (TLS)
has been shown to be inapproximable in the worst case [2]. While tradi-
tionally problem (TLS) has been attacked using local solvers [113] or
continuation schemes [125], recent work [77], [126], [128], [129], [131] has
shown that for common perception problems, (TLS) can be written as
a POP and relaxed via Lasserre’s moment relaxation. More surprisingly,
many works have empirically observed the relaxation to be tight [126],
[128], [129], at least for reasonable levels of noise and outliers, with very
recent work [101] providing initial theoretical results to support such
empirical evidence, at least for the specific problem of rotation search.
However, the performance of these estimators is commonly demon-
strated via empirical evaluation, and the literature is still lacking more
general theoretical guarantees on the quality of the resulting estimates.

Catalyst, convergence, and contribution. Despite the heterogene-
ity of the formulations reviewed above, we observe that recent years
have witnessed a convergence across fields towards designing tractable
algorithms for high-dimensional outlier-robust estimation using moment
relaxations. A few examples include [23], [70], [71], [77], [101], [126],
[128], [129], [131]. Such a convergence has been triggered by the progress
in polynomial optimization via moment and sum-of-squares relaxations,
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starting from the seminal works [81], [89], [98], [99], [111]. At the same
time, research across fields has remained disconnected, with researchers
being mostly unaware of the parallel work in other areas.

The goal of this monograph is to bridge this gap and connect
geometric perception problems in robotics and vision to novel tools
in outlier-robust statistics. Towards this goal we adapt and extend
recent results from robust statistics to the setup and formulations
commonly found in robotics and vision. For the case with low outlier
rates (i.e., β ≪ 0.5), we adapt results from [71], which considers outlier-
robust regression using least trimmed squares (LTS) with scalar linear
measurements, to the robotics setup where the measurements are vector
valued and the variables belong to a non-convex domain; we also develop
a simple bound on the distance of the estimate from the ground truth
(while [71] focuses on bounding the residual errors for the inliers). Then,
we extend these results to the case where the number of outliers is
unknown. In particular, we compute bounds on the estimation error
(i.e., the distance between the estimate and x◦) for (MC) and (TLS).
These results constitute the first general performance guarantees for
the convex relaxations [126], [128], [129], going beyond the empirical
observations in [129] and the problem-specific optimality guarantees
in [101], [126].

Then we consider the case with high outlier rates (i.e., β ≫ 0.5),
where a majority of the measurements are outliers. While in robotics
and vision it has been observed that with random (i.e., non-adversarial)
outliers, the point estimators (MC) and (TLS) are still able to retrieve
good estimates for x◦ [126], [128], [129], [131], in the presence of adver-
sarial outliers, the estimate resulting from (LTS), (MC), and (TLS) can
be arbitrarily far from the ground truth: intuitively, since the outliers
constitute the majority of the measurements, they can agree on an
arbitrary x and form a large set of mutually consistent measurements
that are picked as solution to (LTS), (MC), and (TLS).3 In robotics

3Note that the case with a high number of adversarial outliers is often the one
encountered in practice in robotics and vision: think about a motion estimation
problem where the robot has to estimate its motion from point features detected
by the camera [106]: if there is a large moving object in front of the camera, most
features may fall on the moving object (rather that on the static portion of the
scene), leading to incorrect motion estimates.
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and related fields, this setup has been recognized to require computing
multiple estimates, in order to find one that is close to the ground truth,
ranging from early work on multi-hypothesis target tracking [6] and
particle filters [36], to recent work on multi-hypothesis smoothing [56],
[64]. However, none of these works simultaneously provide tractable
algorithms and performance guarantees for the resulting estimates. In
this monograph, we connect to the recent literature on list-decodable
regression [70], which proposes polynomial-time estimators that return
a small list of estimates such that with high probability at least one
of the estimates is close to the ground truth. In particular, we pro-
vide an adaptation of the results in [70] to account for vector-valued
measurements.

Finally, we present numerical experiments on a canonical geometric
perception problem to shed light on the theoretical results. The ex-
periments provide encouraging evidence that many of the assumptions
supporting the theoretical analysis (e.g., certifiable hypercontractivity)
are often satisfied by real data. At the same time, they reveal a large gap
between theory (which mostly guarantees performance for high-order,
computationally expensive moment relaxations) and practice (where
low-order relaxations already exhibit impressive performance). Our nu-
merical evaluation also provides the first empirical evidence that a sparse
low-order moment relaxation for list-decodable regression (based on a
modified version of the algorithm proposed in [70]) is able to accurately
recover estimates in geometric perception problems with high outlier
rates, where (LTS), (MC), and (TLS) are doomed to fail. Moreover, the
experiments show that if the measurements are generated by multiple
estimates (e.g., different subsets of measurements are generated by differ-
ent variables x◦), then our sparse moment relaxation for list-decodable
regression is able to simultaneously recover all the estimates generating
the data.4 We release open-source code to reproduce our numerical ex-
periments, including an implementation of key algorithms covered in this
monograph at https://github.com/MIT-SPARK/estimation-contracts.

4With reference to the motion estimation example in footnote 3, such an algorithm
would simultaneously recover the motion of all the objects in the scene, rather than
just the motion with respect to the object capturing most point features, which
would be quite useful in practical applications.
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10 Introduction

We remark that the emphasis in this monograph is on performance
guarantees. We do not present new algorithms (we mostly propose
small modifications to existing algorithms) but rather try to address
the question: under which conditions on the input measurements can
we guarantee that modern outlier-robust estimation algorithms based
on moment relaxations recover an estimate close to the ground truth
in the presence of outliers? These conditions are what we call an “esti-
mation contract”. Besides the proposed extensions of existing results,
we believe the main contributions of this monograph are (i) to unify
parallel research lines by pointing out commonalities and differences,
(ii) to introduce advanced material (e.g., sum-of-squares proofs) in
an accessible and self-contained presentation for the practitioner, and
(iii) to point out a few immediate opportunities and open questions in
outlier-robust geometric perception. This “unification” is expected to
benefit both practitioners and researchers in robust statistics.

On the robotics and computer vision side, this monograph provides
new and fairly general performance guarantees for robust estimation
algorithms based on moment relaxations, applied to geometric percep-
tion problems. Moreover, the monograph reviews a new proof system
(based on sum-of-squares proofs) that provides a richer language to
discuss properties of moment relaxations beyond the typical analysis
based on a manual design of dual certificates [52], [101], [104], [126].
Furthermore, it positions list-decodable regression based on moment
relaxations as a useful and computationally tractable tool for multi-
hypotheses estimation. On the robust statistics side, we hope the reader
will be intrigued by the remarks about the practical performance and
the empirical tightness of the moment relaxation of (TLS) (discussed
in greater detail in [129]) and the practical performance of a low-order
relaxation for list-decodable regression, which we believe deserve further
investigation. We also hope to attract further attention towards the case
where the number of outlier is unknown and the variables are confined
to semi-algebraic sets, which is the setup commonly encountered in
robotics and vision problems.

Monograph structure. Section 2 starts by reviewing related works
across fields. Section 3 showcases the fact that many estimation problems
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in robotics and vision can be formulated using a linear measurement
model with variables belonging to a basic semi-algebraic set. Section 4
introduces notation and preliminaries (while postponing as many details
as possible to the appendices). Section 5 succinctly states the problem
of outlier-robust estimation and our quest for estimation contracts.
Section 6 studies the case with low outlier rates and provides error
bounds for (LTS), (MC), and (TLS). Section 7 studies the case with
high outlier rates and adapts results from list-decodable regression.
Section 8 presents numerical experiments on a rotation search problem.
Section 9 discusses opportunities and open problems, and Section 10
concludes the monograph.

The appendices provide background information regarding moment
relaxations (Appendix A), pseudo-distributions (Appendix B), sum-of-
squares proofs (Appendix C), and algorithmic details about sparse list-
decodable estimation (Appendix D). The technical proofs are contained
in the Online Appendix.5

Learning paths. The main body of this monograph (up to Section 10)
is designed to be self-contained, and readers interested in getting a bird’s-
eye view of the technical tools underlying our results, the corresponding
performance guarantees, and sparse list-decodable estimation can focus
their attention on these sections. Expert readers from statistics might
find the numerical experiments of particular interest. Junior researchers
in computer vision and robotics interested in advancing this research
are recommended to carefully read Appendices A-C, which should serve
as a gentle introduction to the key technical tools. Beyond this mono-
graph, the book [60] and monograph [37] provide necessary background
information about geometric perception, the book [17] provides an in-
depth introduction to semidefinite programming and sum-of-squares
relaxations, and the notes [9] and monograph [55] provide a more formal
introduction to sum-of-squares proofs.

5http://dx.doi.org/10.1561/2300000077_app.
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A
An Algorithmic View of Lasserre’s Hierarchy of

Moment Relaxations

Here we provide an algorithmic (and somewhat unorthodox) view of
Lasserre’s hierarchy of moment relaxations [81]; we refer the reader
to [79], [80] for a more standard introduction.

Lasserre’s hierarchy provides a systematic way to relax a polynomial
optimization problem (POP) into a semidefinite (convex) program. We
start by restating (POP):

p⋆ ≜ min
x∈Rdx

{
p(x)

∣∣∣∣ hi(x) = 0, i = 1, . . . , lh
gj(x) ≥ 0, j = 1, . . . , lg

}
, (POP)

where p(x), hi(x), gj(x) are polynomials in the variable x ∈ Rdx .
The key idea behind Lasserre’s hierarchy of moment relaxations is

to (i) rewrite the polynomial optimization problem (POP) using the
moment matrix X2r,1 (ii) relax the (non-convex) rank-1 constraint on
X2r, and (iii) add redundant constraints that are trivially satisfied
in (POP) but might still improve the quality of the relaxation; as shown
below, this leads to a semidefinite program.

1Recall that the moment matrix is defined as X2r ≜ [x]r[x]Tr , where [x]r is the
vector of monomials of degree up to r. For instance, for x = [x1 ; x2] and r = 2, the
matrix X2r takes the form in eq. (4.2).
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(i) Rewriting (POP) using X2r. Recall that any polynomial of
degree up to 2r can be written as a linear function of the moment
matrix X2r (cf. Section 4.2). Therefore, we pick a positive integer
r (the order of the relaxation) such that 2r ≥ max{deg (p), deg (h1),
. . . , deg (hlh), deg (g1), . . . , deg

(
glg

)
}, such that we can express both ob-

jective function and constraints as a linear function of X2r. With this
choice of r, we can rewrite the objective and the equality constraints
in (POP) as:

objective : ⟨C1, X2r⟩ (A.1)

equality constraints : ⟨Aeq,j , X2r⟩ = 0, j = 1, . . . , lh, (A.2)

for suitable matrices C1 and Aeq,j .
(ii) Relaxing the (non-convex) rank-1 constraint on X2r. At the

previous point we noticed we can rewrite objective and constraints
in (POP) as linear (hence convex) functions of X2r. However, X2r still
belongs to the set of positive-semidefinite rank-1 matrices (since it is
defined as [x]r[x]Tr , where [x]r is a vector of monomials), which is a
non-convex set due to the rank constraint. Therefore, we simply relax
the rank constraint and only enforce:

pseudo-moment matrix : X2r ⪰ 0. (A.3)

(iii) Adding redundant constraints. Since we have relaxed (POP) by
re-parametrizing it using X2r and dropping the rank constraint, the final
step to obtain Lasserre’s relaxation consists in adding extra constraints
to make the relaxation tighter. First of all, we observe that there are
multiple repeated entries in the moment matrix (e.g., in (4.2), the entry
x1x2 appears 4 times in the matrix). Therefore, we can enforce these
entries to be the same. In general, this leads to mmom = t(dr) − d2r + 1
linear constraints, where d2r ≜

(
dx+2r

2r

)
(the size of the monomial basis

of degree up to 2r, i.e., [x]2r) and t(n) ≜ n(n+1)
2 is the dimension of Sn.

These constraints are typically called moment constraints:

moment constraints : ⟨Amom,0, X2r⟩ = 1,

⟨Amom,j , X2r⟩ = 0,

j = 1, . . . , t(dr) − d2r,

(A.4)
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94 An Algorithmic View of Lasserre’s Hierarchy of Moment Relaxations

where Amom,0 is all-zero except [Amom,0]11 = 1, and it is used to define
the constraint [X2r]11 = 1, following from the definition of the moment
matrix (see eq. (4.2)).

Second, we can also add redundant equality constraints. Simply put,
if hi = 0, then also hi · x1 = 0, hi · x2 = 0, and so on, for any monomial
we multiply by hi. Since via X2r we can represent any polynomial of
degree up to 2r, we can write as linear constraints any polynomial
equality in the form hi · [x]2r−deg(hi) = 0 (the degree of the monomials
is chosen such that the product does not exceed degree 2r). These new
equalities can again be written linearly as:

(redundant) equality constraints : ⟨Areq,ij , X2r⟩ = 0,

i = 1, . . . , lh, j = 1, . . . , d2r−deg(hi),
(A.5)

for suitable Areq,ij . Since the first entry of [x]2r−deg(hi) is always 1 (i.e.,
the monomial of order zero), eq. (A.5) already includes the original
equality constraints in (A.2).

Finally, we observe that if gj ≥ 0, then for any positive semidefinite
matrix M , it holds gj · M ⪰ 0. Since we can represent any polynomial
of order up to 2r as a linear function of X2r, we can add redundant
constraints in the form gj · X2(r−⌈deg(gj)/2⌉) ⪰ 0 (by construction gj ·
X2(r−⌈deg(gj)/2⌉) only contains polynomials of degree up to 2r). To phrase
the resulting relaxation in the standard form (SDP), it is common to
add extra matrix variables Xgj = gj · X2(r−⌈deg(gj)/2⌉) for j = 1, . . . , lg
(the localizing matrices [79, §3.2.1]) and then force these matrices to be
a linear function of X2r:

localizing matrices : Xgj ⪰ 0, j = 1, . . . , lg, (A.6)

localizing constraints : ⟨Aloc,jkh, X2r⟩ = [Xgj ]hk,

j = 1, . . . , lg, 1 ≤ h ≤ k ≤ dr−⌈deg(gj)/2⌉,
(A.7)

where the linear constraints (for some matrix Aloc,jkh) enforce each
entry of Xgj to be a linear combination of entries of the matrix X2r.

Following steps (i)-(iii) above, it is straightforward to obtain the
following semidefinite program:

f⋆
2r = min

X=(X2r,{Xgj }j∈[lg ])
{⟨C1, X2r⟩ | A(X)=b, X ⪰0}, (A.8)

Full text available at: http://dx.doi.org/10.1561/2300000077



95

where the variable X = (X2r, {Xgj }j∈[lg ]) is a collection of positive-
semidefinite matrices (cf. (A.3) and (A.9)), the objective is the one given
in (A.1), and the linear constraints A(X) = b collect all the constraints
in (A.4), (A.5), and (A.7). Problem (A.8) can be readily formulated as
a multi-block SDP in the primal form (SDP), which matches the data
format used by common SDP solvers. The matrix X2r solving (A.8) is
typically referred to as the pseudo-moment matrix.2 One can solve the
relaxation for different choices of r, leading to a hierarchy of convex
relaxations.

While we presented Lasserre’s hierarchy in a somewhat procedural
way, the importance of the hierarchy lies in its stunning theoretical
properties, that we review below.

Theorem A.1 (Lasserre’s Hierarchy [79], [81], [91]). Let −∞ < p⋆ < ∞
be the optimum of (POP) and f⋆

2r (resp. X⋆
2r) be the optimum (resp.

one optimizer) of (A.8), and assume (POP) is explicitly bounded (i.e.,
it satisfies the Archimedeanness condition in [17, Definition 3.137]),
then

(i) (lower bound and convergence) f⋆
2r converges to p⋆ from below

as r → ∞, and convergence occurs at a finite r under suitable
technical conditions [91];

(ii) (rank-one solutions) if f⋆
2r = p⋆ at some finite r, then for every

global minimizer x⋆ of (POP), X⋆
2r ≜ [x⋆]r[x⋆]Tr is optimal for

(A.8), and every rank-one optimal solution X⋆
2r of (A.8) can be

written as [x⋆]r[x⋆]Tr for some x⋆ that is optimal for (POP);

(iii) (optimality certificate) if rank (X⋆
2r) = 1 at some finite r, then

f⋆
2r = p⋆.

Theorem A.1 states that (A.8) provides a hierarchy of lower bounds
for (POP). When the relaxation is exact (p⋆ =f⋆

2r), global minimizers
of (POP) correspond to rank-one solutions of (A.8). Moreover, after
solving the convex SDP (A.8), one can check the rank of the optimal
solution X⋆

2r to obtain a certificate of global optimality.
2The rationale behind this name will become apparent in Appendix B.

Full text available at: http://dx.doi.org/10.1561/2300000077



96 An Algorithmic View of Lasserre’s Hierarchy of Moment Relaxations

Further tightening the relaxation. As we discussed above, in the
standard presentation of Lasserre’s hierarchy, one adds a localizing
matrix for each inequality constraint to enforce constraints such as
gj · X2(r−⌈deg(gj)/2⌉) ⪰ 0. However, in principle, we could also add con-
straints enforcing gj1 · gj2 · M ⪰ 0, for any pair of inequality constraints
gj1 ≥ 0 and gj2 ≥ 0, for j1, j2 ∈ [lg]. More generally, we can add con-
straints

∏
j∈S gj ·M ⪰ 0, for any subset S ⊆ [lg] as long as deg

(∏
j∈S gj

)
has degree no larger than 2r. After adding those extra constraints, we
can still phrase the resulting relaxation in the standard form (SDP), by
adding extra matrix variables XS =

∏
j∈S gj · X

2(r−
⌈∑

j∈S deg(gj)/2
⌉

)
,

and then forcing these matrices to be a linear function of X2r:

localizing matrices : XS ⪰ 0, S ⊆ [lg], (A.9)

localizing constraints : ⟨Aloc,S,kh, X2r⟩ = [XS ]hk,

S ⊆ [lg], 1 ≤ h ≤ k ≤ d
r−
⌈∑

j∈S deg(gj)/2
⌉, (A.10)

where, similarly to the standard Lasserre’s relaxation, the linear con-
straints (for some suitable matrices Aloc,S,kh) enforce each entry of XS
to be a linear combination of the entries in X2r.

The additional constraints in eq. (A.10) make the relaxation tighter
compared to the standard presentation of Lasserre’s relaxation, but
are not necessary to obtain the convergence result in Theorem A.1,
which holds regardless for explicitly bounded constraint sets. However,
these constraints become necessary to obtain convergence results akin
to Theorem A.1 for the case where the set of constraints is not explicitly
bounded (see [55, Section 3.3] and [17, p. 115] for a more extensive
discussion). For this reason, in order to maintain generality, related work
following the “proofs to algorithms” paradigm typically assumes those
constraints to be present, see, e.g., [70], [71]. These terms will indeed ap-
pear in the definitions of sos proofs and constrained pseudo-distribution,
see Appendix B. In order to keep the definitions in our monograph
consistent with [70], [71], we will also assume these terms to be present,
even though they are not strictly necessary under Assumption 3.2.
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B
Pseudo-distributions and Moment Relaxations

The start of this appendix follows standard introductions about pseudo-
distributions given in related work [9], [70], [71], [75], while later we
attempt to draw more explicit connections with the optimization ma-
chinery in Appendix A. Although such a connection is self-evident to
the expert reader (indeed pseudo-distributions are the language tradi-
tionally used to justify the moment relaxation [79]), such a connection
is often less immediate for the practitioner, in particular when taking
the algorithmic view of moment relaxations presented in Appendix A.

Pseudo-distributions. Pseudo-distributions are a generalization of the
concept of probability distribution. A standard probability distribution
µ with finite support in Rdx is simply a function µ : Rdx 7→ R such
that

∑
x∈support(µ) µ(x) = 1 and µ(x) ≥ 0 for all x. In other words,

if support(µ) is a finite collection a points in Rdx , µ assigns a non-
negative probability mass to each of these points, such that those
probabilities sum up to 1. Similarly, a pseudo-distribution µ̃ is a finitely
supported function such that

∑
x∈support(µ̃) µ̃(x) = 1 but in this case

the non-negativity condition is replaced by a milder condition (i.e., a
pseudo-distribution can assume negative values over its support).

97
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In order to formally introduce the notion of pseudo-distribution,
we start by defining the pseudo-expectation of a function f : Rdx 7→ R
under a finitely supported function µ̃:

Ẽµ̃ [f(x)] .=
∑

x∈support(µ̃)
f(x) · µ̃(x). (B.1)

We are now ready to formally define a pseudo-distribution.

Definition B.1 (Pseudo-distribution). A finitely supported function µ̃ :
Rdx 7→ R is a level-ℓ pseudo-distribution if Ẽµ̃ [1] = 1 and Ẽµ̃

[
f(x)2] ≥ 0

for all polynomials f of degree deg (f) ≤ ℓ/2.

In words, µ̃ is a function that is allowed to become negative as long
as its “expectation” (more precisely, pseudo-expectation) with respect
to every squared polynomials f(x)2 of sufficiently low degree remains
positive. It is possible to show that a level-∞ pseudo-distribution is
an actual probability distribution, since the condition Ẽµ̃

[
f(x)2] ≥ 0

would enforce µ̃ to remain positive (in this case the pseudo-expectation
becomes the traditional expectation of the distribution).

Towards reconnecting pseudo-distributions with the optimization
machinery in Appendix A, we start by observing the following link
between pseudo-distributions and pseudo-moment matrices.

Lemma B.1 (Pseudo-moment matrix [9]). Let µ̃ :Rdx 7→R be a finitely
supported function with Ẽµ̃ [1]=1. Then, µ̃ is a level-ℓ pseudo-distribu-
tion iff the pseudo-moment matrix Ẽµ̃

[
[x]ℓ/2[x]Tℓ/2

]
is positive semidefi-

nite, where [x]ℓ/2 is the vector of monomials of degree up to ℓ/2.

Now we define what it means for a pseudo-distribution to satisfy a
set of polynomial constraints.

Definition B.2 (Constrained pseudo-distribution). Let A .= {f1 ≥ 0, . . . ,

fm ≥ 0} be a set of polynomial constraints over Rdx . Let µ̃ : Rdx 7→R
be a level-ℓ pseudo-distribution. We say that µ̃ satisfies A at degree
k, denoted as µ̃

k A, if every set S ⊂ [m] and every sum-of-squares
polynomial h on Rdx with deg (h) +

∑
i∈S max{deg (fi) , k} ≤ ℓ satisfies:

Ẽµ̃

[
h ·
∏
i∈S

fi

]
≥ 0. (B.2)
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Moreover, we say that µ̃
k A holds approximately if the above inequali-

ties are satisfied up to an error of 2−dℓ
x ·∥h∥·

∏
i∈S∥fi∥, where ∥·∥ denotes

the Euclidean norm of the coefficients of the polynomial.

The notion of pseudo-distributions approximately satisfying a set
of constraints is useful to account for the practical observation that
numerical SDP solvers (which we are going to use to find pseudo-
distributions, as discussed later in this section) will only satisfy the
constraints up to some numerical tolerance, and we have to make sure
that such numerical errors do not lead us to draw incorrect conclusions
using the sos proof system (see Appendix C).

In this monograph, we make use of the following facts about pseudo-
distributions.

Fact B.2 (Linearity [8]). Let f, g be polynomials of degree at most ℓ

in indeterminate x ∈ Rdx and take α, β ∈ R. Then, for any level-ℓ
pseudo-distribution µ̃,

Ẽµ̃ [α f(x) + β g(x)] = αẼµ̃ [f(x)] + βẼµ̃ [g(x)] . (B.3)

Fact B.3 (Cauchy-Schwarz for pseudo-distributions [70]). Let f, g be
polynomials of degree at most ℓ in indeterminate x ∈ Rdx . Then, for
any level-ℓ pseudo-distribution µ̃,

Ẽµ̃ [f · g] ≤
√
Ẽµ̃ [f2] ·

√
Ẽµ̃ [g2], (B.4)

and (specializing the result above to g = 1):

Ẽµ̃ [f ]2 ≤ Ẽµ̃

[
f2
]
. (B.5)

Fact B.4 (Hölder’s inequality for pseudo-distributions [71]). Let f, g be
sos polynomials. Let p, q be positive integers such that 1/p + 1/q = 1.
Then, for any pseudo-distribution µ̃ of level ℓ ≥ pq · deg (f) · deg (g), we
have: (

Ẽµ̃ [f · g]
)pq

≤ Ẽµ̃ [fp]q · Ẽµ̃ [gq]p . (B.6)

In particular, for all even integers k ≥ 2, and polynomial f with
deg (f) · k ≤ ℓ: (

Ẽµ̃ [f ]
)k

≤ Ẽµ̃

[
fk
]

. (B.7)
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Fact B.5 (Norm inequality for pseudo-distributions). Let v be an m-vector
with polynomial entries of degree at most ℓ/2 in indeterminate x ∈ Rdx .
Then, for any degree-ℓ pseudo-distribution µ̃,∥∥∥Ẽµ̃ [v]

∥∥∥2

2
≤ Ẽµ̃

[
∥v∥2

2

]
. (B.8)

Proof. By definition, ∥v∥2
2 =

∑m
i=1 v2

i . Moreover, by (B.7),
(
Ẽµ̃ [vi]

)2
≤

Ẽµ̃
[
v2

i

]
. Therefore:

∥∥Ẽµ̃ [v]
∥∥2

2 =
m∑

i=1

(
Ẽµ̃ [vi]

)2 ≤
m∑

i=1
Ẽµ̃

[
v2

i

] linearity︷︸︸︷= Ẽµ̃

[
m∑

i=1
v2

i

]
= Ẽµ̃

[
∥v∥2

2

]
,

(B.9)

proving the claim. ■

Making the connection with moment relaxations explicit. The
non-expert reader might still be confused about the relation between
pseudo-distributions and moment relaxations. To shed some light, let
us restate our (POP):

min
x∈Rdx

p(x) (B.10)

subject to hi(x) = 0, i = 1, . . . , lh

gj(x) ≥ 0, j = 1, . . . , lg.

Now, we start by relaxing (B.10) using pseudo-distributions, and
show that this leads back to the relaxation presented in Appendix A.
In particular, we relax (B.10) to:

min
µ̃

Ẽµ̃ [p(x)] (B.11)

subject to µ̃ is a level-ℓ pseudo-distribution (B.12)

Ẽµ̃ [hi(x) · q(x)] = 0, (B.13)
for all i = 1, . . . , lh and for all q ∈ R[x], such that deg (hi · q) ≤ ℓ

Ẽµ

[∏
j∈S

gj(x) · s(x)2
]

≥ 0, (B.14)

for all S ⊆ [lg ] and for all s ∈ R[x] such that deg
(∏

j∈S
gj · s2

)
≤ ℓ.

Despite the complexity of (B.11), it is apparent that (B.11) is a relax-
ation of (B.10): for any x that is feasible for (B.10) (i.e., that satisfies
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hi(x) = 0 and gj(x) ≥ 0), we can define a (pseudo-)distribution µx sup-
ported on x (i.e., µx(x) = 1 and zero elsewhere) which is also feasible
for (B.11) (such pseudo-distribution µx is such that Ẽµx [p(x)] = p(x)
for any polynomial p, hence also preserving the objective of (B.10)).
Indeed, it is possible to show that if we require µ̃ to be an actual distri-
bution, and replace the pseudo-expectations with actual expectations,
then (B.11) becomes equivalent to (B.10), see [80] for a more extensive
discussion. The advantage of the relaxation (B.11) is its tractability:
while (B.10) is NP-hard [80], the relaxation (B.11) can be written as a
semidefinite program (SDP) and solved in polynomial time. Indeed, in
the following we show that rewriting (B.11) as an SDP leads us back to
the same moment relaxation we procedurally introduced in Appendix
A. Towards this goal, we will need some extra notation.

Preliminaries to connect problem (B.11) with Appendix A: Recall
that [x]ℓ/2 is the vector of monomials of degree up to ℓ/2 and therefore
the moment matrix Xℓ ≜ [x]ℓ/2[x]Tℓ/2 contains all monomials of degree
up to ℓ. It will be useful to define (and visualize) the pseudo-expectation
of the moment matrix: Ẽµ̃ [Xℓ]. For instance, for the case with x =
[x1 ; x2] and ℓ = 4:

Ẽµ̃ [X4] ≜


1 Ẽµ̃ [x1] Ẽµ̃ [x2] Ẽµ̃ [x2

1] Ẽµ̃ [x1x2] Ẽµ̃ [x2
2]

Ẽµ̃ [x1] Ẽµ̃ [x2
1] Ẽµ̃ [x1x2] Ẽµ̃ [x3

1] Ẽµ̃ [x2
1x2] Ẽµ̃ [x1x2

2]
Ẽµ̃ [x2] Ẽµ̃ [x1x2] Ẽµ̃ [x2

2] Ẽµ̃ [x2
1x2] Ẽµ̃ [x1x2

2] Ẽµ̃ [x3
2]

Ẽµ̃ [x2
1] Ẽµ̃ [x3

1] Ẽµ̃ [x2
1x2] Ẽµ̃ [x4

1] Ẽµ̃ [x3
1x2] Ẽµ̃ [x2

1x2
2]

Ẽµ̃ [x1x2] Ẽµ̃ [x2
1x2] Ẽµ̃ [x1x2

2] Ẽµ̃ [x3
1x2] Ẽµ̃ [x2

1x2
2] Ẽµ̃ [x1x3

2]
Ẽµ̃ [x2

2] Ẽµ̃ [x1x2
2] Ẽµ̃ [x3

2] Ẽµ̃ [x2
1x2

2] Ẽµ̃ [x1x3
2] Ẽµ̃ [x4

2]


(B.15)

In the following, we will also need a more convenient way to index the
monomials in [x]ℓ (and, as a consequence, the entries of Xℓ and Ẽµ̃ [Xℓ]).
Using standard notation, for a vector α ∈ Ndx , we write xα to denote
the monomial with exponents α (for instance, for α = [1 ; 3 ; 0 ; 5],
xα = x1x3

2x5
4). We also denote |α|≜

∑dx
i=1 αi, which is the degree of the

monomial. Using this notation, we can index with α the monomials
appearing in [x]ℓ. For instance, for ℓ = 2:

[x]2 ≜ [
[0 ; 0]︷︸︸︷

1 ;
[1 ; 0]︷︸︸︷
x1 ;

[0 ; 1]︷︸︸︷
x2 ;

[2 ; 0]︷︸︸︷
x2

1 ;
[1 ; 1]︷ ︸︸ ︷
x1x2 ;

[0 ; 2]︷︸︸︷
x2

2 ], (B.16)

where for each monomial, we reported the corresponding “index” α.
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We can similarly index the rows and columns of Xℓ and Ẽµ̃ [Xℓ] using
two indices α and β. For instance, the entry of the matrix indexed by
row α = [2 ; 0] and column α = [0 ; 1] in (B.15) will be Ẽµ̃

[
x2

1x2
]
. Note

that the monomial appearing in row α and column β of the moment
matrix Xℓ will always have exponent α + β, since, due to the definition
of the moment matrix (Xℓ ≜ [x]ℓ/2[x]Tℓ/2) its entry [Xℓ]αβ = xα · xβ

and for two monomials xα and xβ, it holds:1

xα · xβ = xα+β. (B.17)

Finally, we will conveniently use the following representation of a poly-
nomial f(x) of degree ℓ:

f(x) =
∑

α:|α|≤ℓ f̄α xα, (B.18)

where we simply observed that the polynomial is the sum of monomials
xα of degree |α|≤ ℓ, and with suitable coefficients f̄α, again indexed
by α.

We are now ready to show that both objective and constraints (B.11)
can be rewritten in a way that leads back to the moment relaxation in
Appendix A.

Rewriting the objective (B.11): To simplify the objective Ẽµ̃ [p(x)],
we note that the pseudo-expectation is a linear operator, hence:

Ẽµ̃ [p(x)]
using (B.18)︷︸︸︷= Ẽµ̃

 ∑
α:|α|≤ℓ

p̄α xα

 using Fact B.2︷︸︸︷=
∑

α:|α|≤ℓ

p̄α Ẽµ̃ [xα]

for a suitable matrix C1︷︸︸︷=
〈
C1, Ẽµ̃ [Xℓ]

〉
,

(B.19)

which indeed produces the same structure as the objective of the moment
relaxation in (A.1) with ℓ = 2r; as we will see in a while, Ẽµ̃ [Xℓ] will
become the main matrix variable in the optimization.

Rewriting the equality constraints (B.13): To simplify the constraint
Ẽµ̃ [hi(x)q(x)] = 0 (which has to hold for polynomials q of degree

1For instance, the product between the monomial x1x3
2x5

4 (namely, xα with
α = [1 ; 3 ; 0 ; 5]) and the monomial x2

1x2x3 (namely, xβ with β = [2 ; 1 ; 1 ; 0])
is (x1x3

2x5
4) · (x2

1x2x3) = x3
1x4

2x3x5
4, which corresponds to the exponent vector

[3 ; 4 ; 1 ; 5].
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deg (hi · q) ≤ ℓ) we note that it suffices to require Ẽµ̃

[
hi(x)xβ

]
= 0 for

|β|≤ ℓ − deg (hi); this follows from the fact that any polynomial is a
sum of monomials and the pseudo-expectation is a linear function. Let
us now manipulate Ẽµ̃

[
hi(x)xβ

]
= 0 as follows:

Ẽµ̃

[
hi(x)xβ

]
= 0

using (B.18) for hi(x)︷ ︸︸ ︷⇐⇒ Ẽµ̃

[∑
α

h̄i,αxαxβ

]
= 0

using (B.17)︷ ︸︸ ︷⇐⇒ Ẽµ̃

[∑
α

h̄i,αxα+β

]
= 0

using Fact B.2︷ ︸︸ ︷⇐⇒
∑
α

h̄i,αẼµ̃

[
xα+β

]
= 0

for a suitable matrix Ai,β︷ ︸︸ ︷⇐⇒
〈
Ai,β, Ẽµ̃ [Xℓ]

〉
= 0,

(B.20)

which has to be imposed for each β such that |β|≤ ℓ − deg (hi). Note
that the constraints in (B.20) capture both the equality constraints
in (A.2) (for |β|= 0) as well as the redundant constraints (A.5) (for
0 < |β|≤ ℓ − deg (hi)).

Rewriting the inequality constraints in (B.36): We simplify the
constraint Ẽµ

[∏
j∈S gj(x) · s(x)2

]
≥ 0, which has to hold for all S ⊆

[lg] and for all s ∈ R[x] such that deg
(∏

j∈S gj · s2
)

≤ ℓ. Towards
this goal, we use the representation (B.18) for s(x) and write s(x) =∑

β:|β|≤t s̄βxβ, where t ≜
⌊

ℓ−deg
(∏

j∈S gj
)

2

⌋
. Therefore, we obtain:

Ẽµ

[
gj(x) · s(x)2

]
≥ 0

expanding s2︷︸︸︷⇐⇒ Ẽµ

[
gj(x) ·

∑
α:|α|≤t

s̄αxα
∑

β:|β|≤t

s̄βxβ

]
≥ 0

(B.21)

rearranging︷︸︸︷⇐⇒ Ẽµ

[ ∑
α,β:|α|,|β|≤t

s̄αs̄βxα+βgj(x)

]
≥ 0

(B.22)

using (B.18) on
∏

S⊆[lg ]
gj (x)︷︸︸︷⇐⇒ Ẽµ

 ∑
α,β:|α|,|β|≤t

s̄αs̄βxα+β
∑

γ:|γ|≤deg
(∏

j∈S
gj (x)

) ḡS,γ xγ

 ≥ 0

(B.23)
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rearranging︷︸︸︷⇐⇒ Ẽµ

 ∑
α,β:|α|,|β|≤t

s̄αs̄β

∑
γ:|γ|≤deg

(∏
j∈S

gj (x)
) ḡS,γ xα+β+γ

 ≥ 0 (B.24)

using Fact B.2︷︸︸︷⇐⇒
∑

α,β:|α|,|β|≤t

s̄αs̄β

∑
γ:|γ|≤deg

(∏
j∈S

gj (x)
) ḡS,γ Ẽµ

[
xα+β+γ

]
≥ 0. (B.25)

Now note that |α + β + γ|≤ ℓ by construction, and hence we can write,
for a given α and β, each

∑
γ:|γ|≤deg

(∏
j∈S gj(x)

) ḡS,γẼµ

[
xα+β+γ

]
as

a linear function of Ẽµ̃ [Xℓ]. Moreover, since α and β are such that
|α|, |β|≤ t, we can group these entries into an t × t matrix XS , which
is such that:

[XS ]α,β =
〈
Aloc,S,αβ, Ẽµ̃ [Xℓ]

〉
, (B.26)

for some suitable matrix Aloc,S,αβ, such that
〈
Aloc,S,αβ, Ẽµ̃ [Xℓ]

〉
=∑

γ:|γ|≤deg
(∏

j∈S gj

) ḡi,γẼµ

[
xα+β+γ

]
. Using the matrix XS and defining

a vector s̄ ∈ Rt with entries s̄α for |α|≤ t, we rewrite (B.25) as:∑
α,β:|α|,|β|≤t

s̄αs̄β[XS ]α,β ≥ 0 ⇐⇒ s̄TXS s̄ ≥ 0. (B.27)

Since this has to hold for any s̄ (i.e., any polynomial s(x) of appropriate
degree), we conclude the constraint above is equivalent to:

XS ⪰ 0. (B.28)

Now we can easily see that (B.26) and (B.28) match the localizing
constraints we wrote in (A.7).

Rewriting (B.12): Finally, the constraint (B.12) imposes that µ̃

must be a level ℓ pseudo-distribution. However, we know from The-
orem B.1 that µ̃ is a level-ℓ pseudo-distribution if and only if the
pseudo-moment matrix Ẽµ̃

[
[x]ℓ/2[x]Tℓ/2

]
is positive semidefinite and

Ẽµ̃ [1] = 1. Therefore, we can reparametrize the objective (B.19) and
constraints (B.20), (B.26), (B.28) with a matrix variable (in place of
Ẽµ̃ [Xℓ]) that is constrained to be positive semidefinite and to have the
top-left entry equal to 1 (cf. (B.15)). This yields back the relaxation
described in Appendix A as expected.
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Constrained pseudo-distributions: A practical view So far we
have shown that taking suitable pseudo-expectations over the objective
and constraints in a polynomial optimization problem leads to a convex
relaxation, known as the moment relaxation. Now we want to shed some
light on Definition B.2 by showing that the condition (B.2) is indeed
the same as the inequality constrains in (B.36) and hence admits the
same transcription as an SDP.

Towards this goal, let us consider the following feasibility POP:

find x ∈ Rdx (B.29)
subject to hi(x) = 0, i = 1, . . . , lh (B.30)

gj(x) ≥ 0, j = 1, . . . , lg. (B.31)

This is similar to (POP), with the exception that we are looking for
a feasible solution rather than optimizing a cost function. Now note
that we can write a polynomial equality hi(x) = 0 as two inequality
constraints hi(x) ≤ 0 and −hi(x) ≤ 0. Hence, without loss of generality
we rewrite (B.29) as:

find x ∈ Rdx (B.32)
subject to fj(x) ≥ 0, j = 1, . . . , m, (B.33)

for suitable polynomials fi, i = 1, . . . , m. Similarly to what we did
earlier in this section, we relax (B.32) by using pseudo-expectations:

find µ̃ (B.34)
subject to µ̃ is a level-ℓ pseudo-distribution (B.35)

Ẽµ

[
s(x)2 ·

∏
i∈S

fi(x)
]

≥ 0, (B.36)

for every set S ∈ [m] and every s ∈ R[x] such that deg
(

s2 ·
∏

i∈S
fi

)
≤ ℓ.

First of all, we note that (B.36) matches the definition of constrained
pseudo-distribution in Definition B.2 for k = 0. Moreover, following
the same derivation as above, we can easily show that (i) (B.34) can
be transcribed as a standard SDP, and (ii) every pseudo-distribution
solving Lasserre’s relaxation of a (POP) satisfies the set of constraints
in the (POP) in the sense of Definition B.2.

Now we note that Definition B.2 allows some extra slack through
the parameter k, i.e., µ̃ satisfies A at degree k, if every set S ⊂
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[m] and every sum-of-squares polynomial h on Rdx with deg
(
s2) +∑

i∈S max{deg (fi) , k} ≤ ℓ satisfies Ẽµ̃
[
s2 ·

∏
i∈S fi

]
≥ 0. This essen-

tially means that the inequality Ẽµ̃
[
s2 ·

∏
i∈S fi

]
≥ 0 is enforced for a

smaller number of subsets S.
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C
Sum-of-Squares Proofs

Sum-of-squares proofs provide an advanced way to reason about poly-
nomial constraints and to infer properties of pseudo-distributions, or,
equivalently, properties of the moment relaxation in Appendix A. The
presentation in this section builds on [9], but also collects inference rules
from other papers, which we cite as we present the results.

Let us denote with f(x) a polynomial in variables x = [x1; x2; . . . ;
xdx ] and let A = {f1(x) ≥ 0, . . . , fm(x) ≥ 0} be a system of polynomial
constraints over Rdx . In the following, we omit the argument when
clear from the context and write f instead of f(x). A polynomial p

is sum-of-squares (sos) if there exist polynomials q1, . . . , qt such that
p = q2

1 + . . . + q2
t .

The key idea is to relate two sets of polynomial constraints using a
“sum-of-squares proof” (the definition below is the same as Definition
4.1 in the main monograph).

Definition C.1 (Sum-of-squares proof). Given a system of polynomial
constraint A and a polynomial g, a sum-of-square (sos) proof that
the system A implies g ≥ 0 consists of sum-of-squares polynomials
{pS}S⊆[m] such that:

107
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108 Sum-of-Squares Proofs

g =
∑

S⊆[m]
pS ·

∏
i∈S

fi. (C.1)

We say that the proof has degree k if for every S ⊆ [m], deg (pS ·
∏

i∈S fi)
≤ k where deg (·) denotes the degree of a polynomial. We use the
notation:

A(x) x
k {g(x) ≥ 0} or {fi(x) ≥ 0, . . . , fm(x) ≥ 0} x

k {g(x) ≥ 0}
(C.2)

to denote that there is a proof of degree at most k of the fact that
A = {fi(x) ≥ 0, . . . , fm(x) ≥ 0} implies g ≥ 0 (i.e., any x that
satisfies A(x) is such that g(x) ≥ 0). We omit the variables and write
A(x) k {g(x) ≥ 0}, when they are clear from the context. Moreover,
we write

x
k {g(x) ≥ 0} (C.3)

if there is a sum-of-squares proof that g(x) ≥ 0 for any x ∈ Rdx (i.e.,
g(x) is sum-of-squares).

From eq. (C.1), it is clear why the polynomials pS are a “proof” of
g ≥ 0 for any x satisfying A: for any x ∈ A,

∏
i∈S fi ≥ 0 by definition,

hence if we can write g as the product of a sum-of-squares (hence non-
negative) polynomial and

∏
i∈S fi, we automatically prove that g ≥ 0

whenever x ∈ A.
Sum-of-squares proofs allow us to deduce properties of pseudo-

distributions: in particular, if we have an sos proof relating two sets of
constraints, we can conclude that any pseudo-distribution satisfying a
set of constraints, must also satisfy the other. This is formalized below.

Fact C.1 (Soundness [70]). Consider a level-ℓ pseudo-distribution µ̃

such that µ̃
k A. If there exists a sum-of-squares proof that A k′

B,
then µ̃

k·k′+k′

B.

If the pseudo-distribution µ̃ satisfies A only approximately, sound-
ness continues to hold but we require an upper bound on the bit-
complexity of the sum-of-squares proof A k′

B (i.e., the number of
bits to write down the proof). In this monograph, we mostly disregard
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bit-complexity issues and refer the reader to [55, §3] for a more formal
discussion. In other words, similarly to [70], [71], we assume that all
numbers appearing in the input have bit complexity d

O(1)
x and all sos

proofs will have bit complexity d
O(ℓ)
x , which is enough to claim soundness

for the sos proof system.
Not only sos proofs allow us to infer properties of pseudo-distribu-

tions, but also the reverse is true. The following fact states that every
property of a pseudo-distribution can be derived via a sum-of-squares
proof.

Fact C.2 (Completeness [70]). Suppose ℓ ≥ k′ ≥ k and A is a system of
explicitly bounded polynomial constraints with degree at most k (i.e.,
A {∥x∥2

2 ≤ M2
x} for some finite Mx). Let {g ≥ 0} be a polynomial

constraint. If every level-ℓ pseudo-distribution that satisfies µ̃
k A also

satisfies µ̃
k′

B, then for every ϵ > 0 there is a sum-of-squares proof
A ℓ {g ≥ −ϵ}.

Sos rules. Sum-of-squares provide a proof system to reasons about
polynomial constraints. For instance, if we have an sos proof that A
implies g ≥ 0, we may want to use such a proof system to infer if
another implication also holds true, say A implies g′ ≥ 0 (for some
other polynomial g′). Reasoning in this proof system is not immediate.
For instance, the fact that p(x) ≥ 0 for some degree-k polynomial does
not necessarily imply that there is a sum-of-squares proof x

k {p(x) ≥ 0}.
Similarly, for some polynomial constraints A and polynomials g(x) and
g(x)′ with g′(x) ≥ g(x) for every x ∈ Rdx , the fact that A x

k {g(x) ≥ 0}
does not necessarily imply that A x

k {g′(x) ≥ 0}, since the latter fact
might not admit a sum-of-squares proof. In this sense, the sos proof
system is more restrictive than the typical algebraic manipulation we
are used to. Fortunately, previous work provides a toolkit of inference
rules that can be used to correctly reason over sos proofs. We collect
key facts below, mostly drawing from [43], [62], [70], [71], [86].

Fact C.3 (Inference Rules [70]). The following inference rules hold for sys-
tems of polynomial constraints A, B, C and polynomials f, g : Rdx 7→ R:
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addition: A k {f ≥ 0, g ≥ 0}
A k {f + g ≥ 0}

(C.4)

multiplication: A k {f ≥ 0} , A k′
{g ≥ 0}

A k+k′
{f · g ≥ 0}

(C.5)

transitivity: A k B , B k′
C

A k·k′
C

(C.6)

where, for two logical statements A and B, we use the standard inference
notation A

B to denote that if A is true, then B must be true.

Fact C.4 (Basics, p. 59 in [17] and p. 70 in [55]). Let p(x) be a degree-k
polynomial such that p(x) ≥ 0 for all x ∈ Rdx . Then:

x
k {p(x) ≥ 0} (C.7)

(i.e., p(x) is sos) if:

• dx = 1 (univariate case),
• k = 2 (quadratic polynomials), or
• dx = 2 and k = 4 (bivariate, quartic polynomials).

Moreover, (C.7) holds whenever p is a function over the Boolean hyper-
cube p : {0, 1}dx 7→ R.

Fact C.5 (Univariate polynomials over interval, Fact 3.7 in [70]). For any
univariate degree k polynomial p(x) ≥ 0 for x ∈ [a, b],

{x ≥ a, x ≤ b} x
k {p(x) ≥ 0} . (C.8)

Fact C.6 (Sos generalized triangle inequality, Fact 4.8 in [71]). For any
a1, a2, . . . , am

a1,a2,...,am

k


(

m∑
i=1

ai

)k

≤ mk

(
m∑

i=1
ak

i

) . (C.9)

Fact C.7 (Sos triangle inequality (same as Fact C.6 with m = 2 and
k = 2)). For any a1, a2

a,b
2 {

(a + b)2 ≤ 22a2 + 22b2
}

. (C.10)
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Fact C.8 (Sos triangle inequality 2.0, p. 18 in [71]). For any indetermi-
nates a, b, scalar δ, and even integer k:

a,b
k

δkak ≤ (2δ)k(a − b)k + (2δ)kbk. (C.11)

Fact C.9 (Sos squaring). Let f, g be sos polynomials of degree at most
k and A = {f1(x) ≥ 0, . . . , fm(x) ≥ 0} be a system of polynomial
inequalities. If A x

k′
{f ≥ g}, then A x

k′+k {f2 ≥ g2}.

Proof. The assumption A x
k

f = 0 implies that:

f − g =
∑

S⊆[m]
pS ·

∏
i∈S

fi. (C.12)

Now note that f2 − g2 = (f − g)(f + g) hence:

f2 − g2 = (f − g)(f + g) = (f + g)
∑

S⊆[m]
pS ·

∏
i∈S

fi. (C.13)

Since f, g are sos polynomial, the previous relation proves A x
k′+k {f2 ≥

g2} with sos proof (f + g) · pS and by noting that the maximum degree
appearing in (C.13) is k′ + k. ■

Fact C.10 (Sos triangle inequality with norms, Fact A.2 in [62]). Let x1
and x2 be n-length vectors of indeterminates. Then:

x1,x2
2 {

∥x1 + x2∥2
2 ≤ 2 ∥x1∥2

2 + 2 ∥x2∥2
2

}
. (C.14)

Fact C.11 (Sos generalized triangle inequality with norms). Let x1 and
x2 be n-length vectors of indeterminates and k ∈ N be even. Then:

x1,x2
k

{
∥x1 + x2∥k

2 ≤ 2k ∥x1∥k
2 + 2k ∥x2∥k

2

}
. (C.15)

Proof.

x1,x2
k ∥x1 + x2∥k

2 =
(
∥x1 + x2∥2

2

) k
2

using (C.14)︷︸︸︷
≤

(
2 ∥x1∥2

2 + 2 ∥x2∥2
2

) k
2

(C.16)
using (C.9)︷︸︸︷

≤ 2
k
2 (2 ∥x1∥2

2)
k
2 + 2

k
2 (2 ∥x2∥2)

k
2 = 2k ∥x1∥k

2 + 2k ∥x2∥k
2 .

(C.17)

■
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Fact C.12 (Sos Cauchy-Schwarz, Fact A.1 in [62]). Let x1, x2, . . . , xn

and y1, y2, . . . , yn be polynomials in some indeterminates. Then:

x1,x2,...,xn,y1,y2,...,yn

4


(

n∑
i=1

xiyi

)2

≤
(

n∑
i=1

x2
i

)(
n∑

i=1
y2

i

) , (C.18)

or, written in vector form, for two n-length vectors x and y:

x,y
4
{(

xTy
)2

≤
(
∥x∥2

2

) (
∥y∥2

2

)}
. (C.19)

Fact C.13 (Sos Hölder’s inequality, Fact 4.4 in [71]). Let fi, gi for 1 ≤
i ≤ n be sos polynomials. Let p, q be integers such that 1

p + 1
q = 1.

Then:

pq
{(

1
n

n∑
i=1

figi

)pq

≤
(

1
n

n∑
i=1

fp
i

)q ( 1
n

n∑
i=1

gq
i

)p}
. (C.20)

Fact C.14 (Sos Hölder’s inequality 2.0, Fact A.6 in [62]). Let ω1, . . . , ωn

and x1, . . . , xn be indeterminates. Let q ∈ N be a power of 2. Then:

{
ω2

i = ωi, ∀i ∈ [n]
}

ω1,...,ωn,x1,...,xn

O(q)

{(
n∑

i=1

ωixi

)q

≤

(
n∑

i=1

ω2
i

)q−1( n∑
i=1

xq
i

)}
,

(C.21)

and

{
ω2

i = ωi, ∀i ∈ [n]
}

ω1,...,ωn,x1,...,xn

O(q)

{(
n∑

i=1

ωixi

)q

≤

(
n∑

i=1

ω2
i

)q−1( n∑
i=1

ωixq
i

)}
.

(C.22)

Fact C.15 (Sos Hölder’s inequality 3.0, Fact A.3 in [43]). Let fi, gi for
1 ≤ i ≤ n be indeterminates. Then:

2


(

1
n

n∑
i=1

figi

)2

≤
(

1
n

n∑
i=1

f2
i

)(
1
n

n∑
i=1

g2
i

) . (C.23)

Fact C.16 (Lemma A.3 in [86]). Let x be indeterminate and a be a
positive real number. Then:

{x2 ≤ a2} {x ≤ a, x ≥ −a} . (C.24)
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Fact C.17 (Lemma A.2 in [86]). Let x be indeterminate and a be a
unit vector. Let A{∥x∥2= 1, (xTa)2 ≤ τ}. Then, for any b such that
∥a − b∥2 ≤ 2δ, we have:

A
{

(xTb)2 ≤ (
√

τ +
√

δ)2
}

. (C.25)

We conclude with a self-evident fact that reassures us that certain
manipulations of polynomials are easy to reason over, even in the sos
proof system.

Fact C.18 (Equalities). Let f, g be polynomials and A be a system of
polynomial inequalities. If f = g and A x

k
f = 0, then A x

k
g = 0.
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D
Sparse LIst-Decodable Estimation (SLIDE)

In this appendix, we present a variant of Algorithm 5 that empirically
returns an accurate list of estimates, as shown in Section 8.5. We start
by stating the algorithm, whose pseudocode is given in Algorithm 6.

The proposed algorithm is very close to Algorithm 5 (and is still
based on the key insights from [70]), but includes three small but
important changes. First of all, instead of solving a moment relaxation
of order r = 2, which is still expensive for large n,1 we develop a sparse
relaxation (line 1). The sparse relaxation uses the following sparse
monomial basis

m(ω, x) ≜ [1 ; ω1 ; . . . ; ωn ; x ; ω1x ; . . . ; ωnx], (D.1)

which neglects other degree-2 monomials (e.g., ωi ·ωj) that do not appear
in problem (LDR) while still giving access to the pseudo-expectations
used in Algorithm 5. Note that the sparse relaxation leads to SDPs
of more manageable size (n + 1)(dx + 1).2 Note that the idea of using

1An order-2 moment relaxation of (LDR) entails solving an SDP with a matrix
of size

(
n+dx+2

2

)
, which is already as large as 1830 for dx = 9 and n = 50, which is

the typical setup considered in our experiments. In our tests, MOSEK [88] runs out of
memory when fed an SDP of size larger than 1000.

2For instance, when dx = 9 and n = 50, the sparse relaxation leads to a more
compact SDP with a moment matrix of size 510 × 510.
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Algorithm 6: Sparse LIst-Decodable Estimation (SLIDE).
Input: input data (yi, Ai), i ∈ [n], inlier rate α.
Output: list of estimates of x◦.
/* Algorithm solves a relaxation of the following problem:

*/
/*

min
ω,x

∥ω∥2
2 , s.t. Tω,x ≜


ω2

i = ωi, i = [n]∑n
i=1 ωi = αn

ωi ·
∥∥yi − AT

i x
∥∥2

2 ≤ c̄2, i = [n]
x ∈ X


(LDR)

*//* Compute matrix X⋆ by solving SDP from sparse moment
relaxation */

1 X⋆ = solve_sparse_moment_relaxation_at_order_2 (LDR)
/* Compute list of estimates */

2 create empty list L = ∅
3 for i ∈ [n] do

4 vi =
{

X⋆
[ωix]

X⋆
[ωi]

if X⋆
[ωi] > 0

0 otherwise
5 xi = project_to_X(vi)
6 add xi to L
7 end
8 return L.

a sparse moment relaxation is not new (see Remark 10 in [129]), but
our relaxation is slightly different from [126], [129] and tailored to list-
decodable estimation. Later in this section, we provide a derivation of
the sparse moment relaxation for the rotation search problem.

The second modification is to round the estimates to the domain
X (line 5). The latter is a consequential change: we empirically noticed
that the original approach in Algorithm 5 (with our sparse relaxation)
produces estimates with norm close to zero, hence leading to large
estimation errors. Projecting the estimates to X has the effect of re-
normalizing the result and correcting scaling problems, enabling the
compelling results in Section 8.5. At the end of this section we show that
projecting to the domain X is straightforward in the rotation search
problem.
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Finally, the third modification with respect to Algorithm 5, is that
Algorithm 6 always returns n hypotheses (line 3), rather than sampling;
this makes the result deterministic and independent on the choice of
number of hypotheses (which can no longer be guided by the guarantees
in Theorem 7.1).3

Sparse moment relaxation for rotation search. Here we pro-
vide an example of sparse relaxation arising when applying SLIDE to
the rotation search problem. Let us start by tailoring the polynomial
optimization problem (LDR) to rotation search:

min
ω,R

∥ω∥2
2 , s.t.


ω2

i = ωi, i = [n]∑n
i=1 ωi = αn

ωi · ∥bi − Rai∥2≤ c̄2, i = [n]
R ∈ SO(3)

 (D.2)

where we substituted the residual errors (
∥∥∥yi − AT

i x
∥∥∥2

2
) with their

expression in the rotation search problem (∥bi − Rai∥2), and where we
made explicit that the domain is SO(3). Before presenting the relaxation,
we reparametrize (D.2) using unit quaternions: while we could directly
relax (D.2) following the approach we describe below, using quaternions
has the benefit of (i) leading to an even smaller relaxation (since the
quaternion is parametrized by dx = 4 variables instead of 9 variables
needed to write a rotation matrix) and (ii) admitting a straightforward
projection to the domain X.

Proposition D.1 (Quaternion-based reformulation of (D.2)). The poly-
nomial optimization problem (D.2) can be equivalently written as:

min
ω,q

∥ω∥2
2 , s.t.


ω2

i = ωi, i = [n]∑n
i=1 ωi = αn

ωi ·
(
∥bi∥2+∥ai∥2−2tr

(
MT

ijqqT)) ≤ c̄2, i = [n]
∥q∥2= 1


(D.3)

3Note that we can safely discard the hypotheses corresponding to X⋆
[ωi] = 0 since

those are uninformative (i.e., they always correspond to vi = 0). We only keep them
in Algorithm 6 for the sake of simplicity, such that the output list L has always size
n.
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such that any optimal solution of (D.3) can be mapped back to an
optimal solution of (D.2) and vice-versa. In (D.3), Mij is a constant
matrix whose expression depends on ai and bi.

Proof. The proof proceeds by inspection, by reparametrizing the ro-
tation R with the corresponding unit quaternion. Each unit quater-
nion corresponds to a unique rotation, hence we replace the domain
R ∈ SO(3) with the constraint that the quaternion must have unit
norm (i.e., ∥q∥2= 1). Comparing (D.2) and (D.3), we realize we only
have to rewrite the maximum-residual inequality constraint in (D.2) in
the quaternion-based form in (D.3). This derivation is largely inspired
by [126] (which presents a similar reformulation applied to a different
polynomial optimization problem), but here we present a simpler proof.
We start by observing that the rotation matrix associated to the quater-
nion q = [q1 ; q2 ; q3 ; q4] (in our notation, q4 is the scalar part of the
quaternion) is:

R =

 2(q2
1 + q2

4) − 1 2(q1q2 − q3q4) 2(q1q3 + q2q4)
2(q1q2 + q3q4) 2(q2

2 + q2
4) − 1 2(q2q3 − q1q4)

2(q1q3 − q2q4) 2(q2q3 + q1q4) 2(q2
3 + q2

4) − 1

 = (D.4)

 q2
1 + q2

4 − q2
2 − q2

3 2(q1q2 − q3q4) 2(q1q3 + q2q4)
2(q1q2 + q3q4) q2

2 + q2
4 − q2

1 − q2
3 2(q2q3 − q1q4)

2(q1q3 − q2q4) 2(q2q3 + q1q4) q2
3 + q2

4 − q2
1 − q2

2


(D.5)

where the expression in (D.5) is obtained by substituting ∥q∥2= q2
1 +

q2
2 + q2

3 + q2
4 = 1 (instead of 1) in the diagonal entries of the expression

in (D.4). Now, by inspection from (D.5), we note that:

vec(R) = P · vec(qqT) (D.6)

where:
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P ≜



1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 −1 1 0 0 0 0 −1 0 0
0 1 0 0 1 0 0 0 0 0 0 −1 0 0 −1 0

−1 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 −1 0 0 1 0 0 1 0 0 −1 0 0 0

−1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 1

 ,

vec(qqT) =



q2
1

q2q1
q3q1
q4q1
q2q1
q2

2
q3q2
q4q2
q3q1
q3q2
q2

3
q4q3
q4q1
q4q2
q4q3
q2

4


(D.7)

Equipped with these relations, we are now ready to rewrite the
inequality constraint in (D.2) as in (D.3). We develop the squared
residual ∥bi − Rai∥2 in (D.2) as follows:

∥bi − Rai∥2=( developing the squares ) (D.8)

∥bi∥2+∥ai∥2−2bT
i Rai =( recalling that for a scalar a = vec(a) ) (D.9)

∥bi∥2+∥ai∥2−2vec(bT
i Rai) =(using vec(ABC) = (CT ⊗ A)vec(B)) (D.10)

∥bi∥2+∥ai∥2−2(aT
i ⊗ bT

i )vec(R) =(using (D.6)) (D.11)

∥bi∥2+∥ai∥2−2(aT
i ⊗ bT

i )P vec(qqT) =(using tr
(

ATB
)

= vec(A)Tvec(B)) (D.12)

∥bi∥2+∥ai∥2−2tr
(

MT
ijqqT

)
(D.13)

where Mij is a 4 × 4 matrix such that vec(Mij) = ((aT
i ⊗ bT

i )P )T =
P T(ai ⊗ bi) (in other words, Mij simply rearranges the 16 entries of
the vector P T(ai ⊗ bi) into a 4 × 4 matrix). Replacing ∥bi − Rai∥2

in (D.2) with (D.13) yields the inequality in (D.3), hence proving the
claim. ■

Proposition D.2 (Sparse moment relaxation of (D.3)). The following
SDP is a convex relaxation of the non-convex optimization problem
(D.3):
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min
X∈S5(n+1)

n∑
i=1

X2
[ωi] (D.14)

s.t. X[ωi , ωi] = X[ωi], i = [n] (D.15)
n∑

i=1
X[ωi] = αn (D.16)

X[ωi] ·
(
∥bi∥2+∥ai∥2

)
− 2tr

(
MT

ijX[q , ωiqT]

)
≤ c̄2, i = [n]

(D.17)

tr
(
X[q , qT]

)
= 1 (D.18)

X ⪰ 0 (D.19)
X[1] = 1 (D.20)
X[ωiq , ωiqT] = X[q , ωiqT], i = [n] (D.21)
X[ωiqT] = X[ωi , qT], i = [n] (D.22)
X[ωiqT] = X[ωi , ωiqT], i = [n] (D.23)
X[ωiq , ωjqT] = XT

[ωiq , ωjqT], i, j = [n] (D.24)

tr
(
X[ωiq , ωjqT]

)
= X[ωi , ωj ], i, j = [n] (D.25)

where we index the rows of the matrix X according to the mono-
mials m(ω, q), index the columns of X according to the monomials
m(ω, q)T ≜ [1 , ω1 , . . . , ωn , qT , ω1qT , . . . , ωnqT], and use the nota-
tion X[i,j] to access entries of the matrix with row indexed by monomial
i and column indexed by monomial j; we also overload the notation
and write as X[i] to denote X[i,1].

Proof. While the SDP appears to be quite complicated, its constraints
should become apparent from the structure of the moment matrix built
on the sparse monomial basis m(ω, q) ≜ [1 ; ω1 ; . . . ; ωn ; q ; ω1q ; . . . ;
ωnq]:
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X = m(ω, q)m(ω, q)T =
1 ω1 . . . ωn qT ω1qT . . . ωnqT

1
ω1
...

ωn

q
ω1q

...
ωnq



1 ω1 . . . ωn qT ω1qT . . . ωnqT

∗ ω2
1 . . .

... ω1qT ω2
1qT . . . ω1ωnqT

∗ ∗
. . .

...
...

...
...

...
∗ ∗ . . . ω2

n ωnqT ω1ωnqT . . . ω2
nqT

∗ ∗ . . . ∗ qqT ω1qqT . . . ωnqqT

∗ ∗ . . . ∗ ∗ ω2
1qqT . . . ω1ωnqqT

∗ ∗ . . . ∗ ∗ ∗
. . .

...
∗ ∗ . . . ∗ ∗ ∗ . . . ω2

nqqT


(D.26)

where we also reported in gray the row and column indices described
in the statement of the proposition. We prove the proposition in two
steps. First, we show how to rewrite (D.3) using the moment matrix X

in (D.26), which leads to the objective and constraints in (D.14)-(D.18).
Second, we show that any moment matrix with the structure in (D.26)
satisfies the constraints (D.19)-(D.25), hence the feasible set of (D.14)
contains the feasible set of (D.3). Let us start by rewriting (D.3) using
the moment matrix X:

min
ω,q,X

n∑
i=1

X2
[ωi] (D.27)

s.t. X[ωi , ωi] = X[ωi], i = [n] (D.28)
n∑

i=1
X[ωi] = αn (D.29)

X[ωi] ·
(
∥bi∥2+∥ai∥2

)
− 2tr

(
MT

ijX[q , ωiqT]

)
≤ c̄2, i = [n]

(D.30)

tr
(
X[q , qT]

)
= 1 (D.31)

X = m(ω, q) · m(ω, q)T (D.32)

where m(ω, q) ≜ [1 ; ω1 ; . . . ; ωn ; q ; ω1q ; . . . ; ωnq], and we simply
noticed (from inspection of (D.26)) that X[ωi , ωi] = ω2

i , X[ωi] = ωi,
X[q , ωiqT] = ωiqqT, and tr

(
X[q , qT]

)
= tr

(
qqT

)
= qTq = ∥q∥2,

hence (D.27) just rewrites objective and constraints in (D.3) using
the entries of the moment matrix X in (D.1). Problem (D.27) is equiv-
alent to (D.3) and is still non-convex due to the non-convexity of the
constraint X = m(ω, q) · m(ω, q)T.
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Now we are only left to prove that the feasible set of (D.14) contains
the feasible set of (D.27). More precisely, we prove that any matrix that
satisfies X = m(ω, q) ·m(ω, q)T also satisfies constraints (D.19)-(D.25)
in (D.14). Clearly, any X = m(ω, q)·m(ω, q)T is such that X ⪰ 0. The
rest of the constraints can be also seen to hold by simple inspection of the
entries of the moment matrix (D.1) and recalling that our constraint
set also imposes ω2

i = ωi (for all i ∈ [n]) and tr
(
qqT

)
= ∥q∥2= 1.

Therefore, since (D.14) has the same objective of (D.27), but its feasible
set includes the feasible set of (D.27), problem (D.14) is a relaxation
of (D.27). Finally, we observe that (D.14) is a convex program, since it
minimizes a convex cost function over the cone of positive-semidefinite
matrices and subject to a set of linear constraints. ■

Rounding for rotation search. According to Algorithm 6, after
solving the sparse moment relaxation and obtaining the matrix X⋆, we
build the vectors vi from the entries of the matrix X⋆, and then project
those vectors to the domain X. In our quaternion-based formulation
of the rotation search problem (Proposition D.1), vi are 4-dimensional
vectors, while X is the set of unit quaternions. Hence projecting onto
the domain X (line 5 in Algorithm 6) only requires normalizing the
vectors vi to have unit norm, i.e., xi = vi/∥vi∥. In particular, we add
xi = vi/∥vi∥ whenever ∥vi∥> 0, while we mark an estimate as invalid
when ∥vi∥= 0 and disregard it from the evaluation.

Full text available at: http://dx.doi.org/10.1561/2300000077



References

[1] P. Agarwal, G. D. Tipaldi, L. Spinello, C. Stachniss, and W. Bur-
gard, “Robust map optimization using dynamic covariance scal-
ing,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
2013.

[2] P. Antonante, V. Tzoumas, H. Yang, and L. Carlone, “Outlier-
robust estimation: Hardness, minimally tuned algorithms, and
applications,” IEEE Trans. Robotics, vol. 38, no. 1, 2021, pp. 281–
301. url: https://arxiv.org/pdf/2007.15109.pdf.

[3] P. Awasthi, M. F. Balcan, and P. M. Long, “The power of
localization for efficiently learning linear separators with noise,”
J. ACM, vol. 63, no. 6, 2017.

[4] A. Bakshi and P. K. Kothari, “List-decodable subspace recovery:
Dimension independent error in polynomial time,” in Proc. of
the Annual ACM-SIAM Symp. on Discrete Algorithms (SODA),
ser. SODA ’21, pp. 1279–1297, 2021.

[5] M.-F. Balcan, A. Blum, and S. Vempala, “A discriminative
framework for clustering via similarity functions,” in Proceedings
of the Fortieth Annual ACM Symposium on Theory of Computing,
ser. STOC ’08, pp. 671–680, 2008.

[6] Y. Bar-Shalom and X. Li, Estimation and Tracking: principles,
techniques and software. Boston, London: Artech House, 1993.

122

Full text available at: http://dx.doi.org/10.1561/2300000077

https://arxiv.org/pdf/2007.15109.pdf


References 123

[7] B. Barak, F. Brandao, A. Harrow, J. Kelner, D. Steurer, and
Y. Zhou, “Hypercontractivity, sum-of-squares proofs, and their
applications,” in Proc. of the Annual ACM Symp. on Theory of
Computing, pp. 307–326, 2012.

[8] B. Barak, J. A. Kelner, and D. Steurer, “Rounding sum-of-
squares relaxations,” in Proceedings of the Forty-Sixth Annual
ACM Symposium on Theory of Computing, ser. STOC ’14, pp. 31–
40, 2014.

[9] B. Barak and D. Steurer, “Proofs, beliefs, and algorithms through
the lens of sum-of-squares,” in Lecture notes in preparation, 2016.
url: http://sumofsquares.org.

[10] J. T. Barron, “A general and adaptive robust loss function,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4331–4339, 2019.

[11] H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded up ro-
bust features,” in European Conf. on Computer Vision (ECCV),
2006.

[12] J. C. Bazin, Y. Seo, and M. Pollefeys, “Globally optimal consen-
sus set maximization through rotation search,” in Asian Confer-
ence on Computer Vision, Springer, pp. 539–551, 2012.

[13] T. Bernholt, “Robust estimators are hard to compute,” Dort-
mund, Technical Report 2005, 52, 2006. url: http://hdl.handle.
net/10419/22645.

[14] K. Bhatia, P. Jain, and P. Kar, “Robust regression via hard
thresholding,” in Advances in Neural Information Processing
Systems (NIPS), pp. 721–729, 2015.

[15] K. Bhatia, P. Jain, P. Kamalaruban, and P. Kar, “Consistent
robust regression,” in Advances in Neural Information Processing
Systems (NIPS), vol. 30, Curran Associates, Inc., 2017.

[16] M. J. Black and A. Rangarajan, “On the unification of line
processes, outlier rejection, and robust statistics with applications
in early vision,” Intl. J. of Computer Vision, vol. 19, no. 1, 1996,
pp. 57–91.

[17] G. Blekherman, P. A. Parrilo, and R. R. Thomas, Semidefinite
optimization and convex algebraic geometry. SIAM, 2012.

Full text available at: http://dx.doi.org/10.1561/2300000077

http://sumofsquares.org
http://hdl.handle.net/10419/22645
http://hdl.handle.net/10419/22645


124 References

[18] N. Boumal, V. Voroninski, and A. Bandeira, “The non-convex
Burer-Monteiro approach works on smooth semidefinite pro-
grams,” arXiv, 2016.

[19] J. Briales and J. Gonzalez-Jimenez, “Cartan-sync: Fast and
global SE(d)-synchronization,” IEEE Robot. Autom. Lett, vol. 2,
no. 4, 2017, pp. 2127–2134.

[20] J. Briales and J. Gonzalez-Jimenez, “Convex Global 3D Regis-
tration with Lagrangian Duality,” in IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2017.

[21] J. Briales, L. Kneip, and J. Gonzalez-Jimenez, “A certifiably glob-
ally optimal solution to the non-minimal relative pose problem,”
in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018.

[22] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza,
J. Neira, I. Reid, and J. Leonard, “Past, present, and future
of simultaneous localization and mapping: Toward the robust-
perception age,” IEEE Trans. Robotics, vol. 32, no. 6, 2016,
pp. 1309–1332. doi: 10.1109/TRO.2016.2624754.

[23] L. Carlone and G. Calafiore, “Convex relaxations for pose graph
optimization with outliers,” IEEE Robotics and Automation
Letters (RA-L), vol. 3, no. 2, 2018, pp. 1160–1167. url: https:
//arxiv.org/pdf/1801.02112.pdf.

[24] L. Carlone, G. Calafiore, C. Tommolillo, and F. Dellaert, “Planar
pose graph optimization: Duality, optimal solutions, and verifi-
cation,” IEEE Trans. Robotics, vol. 32, no. 3, 2016, pp. 545–565.
url: https://www.dropbox.com/s/peoktkct0cw42av/2015j-
TRO-dualityPGO2D.pdf?dl=0.

[25] L. Carlone and F. Dellaert, “Duality-based verification techniques
for 2D SLAM,” in IEEE Intl. Conf. on Robotics and Automation
(ICRA), pp. 4589–4596, 2015. url: https://www.dropbox.com/
s/4wtxyp817hdfnna/2015c-ICRA-duality2D.pdf?dl=0.

[26] L. Carlone, D. Rosen, G. Calafiore, J. Leonard, and F. Dellaert,
“Lagrangian duality in 3D SLAM: Verification techniques and
optimal solutions,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), pp. 125–132, 2015. url: https://doi.org/
10.48550/arXiv.1506.00746.

Full text available at: http://dx.doi.org/10.1561/2300000077

https://doi.org/10.1109/TRO.2016.2624754
https://arxiv.org/pdf/1801.02112.pdf
https://arxiv.org/pdf/1801.02112.pdf
https://www.dropbox.com/s/peoktkct0cw42av/2015j-TRO-dualityPGO2D.pdf?dl=0
https://www.dropbox.com/s/peoktkct0cw42av/2015j-TRO-dualityPGO2D.pdf?dl=0
https://www.dropbox.com/s/4wtxyp817hdfnna/2015c-ICRA-duality2D.pdf?dl=0
https://www.dropbox.com/s/4wtxyp817hdfnna/2015c-ICRA-duality2D.pdf?dl=0
https://doi.org/10.48550/arXiv.1506.00746
https://doi.org/10.48550/arXiv.1506.00746


References 125

[27] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert, “Initialization
techniques for 3D SLAM: A survey on rotation estimation and
its use in pose graph optimization,” in IEEE Intl. Conf. on
Robotics and Automation (ICRA), pp. 4597–4604, 2015. url:
https://www.dropbox.com/s/x0n5r366u33fu7x/2015c-ICRA-
initPGO3d.pdf?dl=0.

[28] M. Charikar, J. Steinhardt, and G. Valiant, “Learning from un-
trusted data,” in Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, ser. STOC 2017, pp. 47–60,
Montreal, Canada, 2017.

[29] N. Chebrolu, T. Läbe, O. Vysotska, J. Behley, and C. Stachniss,
“Adaptive robust kernels for non-linear least squares problems,”
arXiv preprint arXiv:2004.14938, 2020.

[30] Y. Chen, C. Caramanis, and S. Mannor, “Robust sparse regres-
sion under adversarial corruption,” in Intl. Conf. on Machine
Learning (ICML), vol. 28, pp. 774–782, 2013.

[31] T.-J. Chin, Z. Cai, and F. Neumann, “Robust fitting in computer
vision: Easy or hard?” In European Conf. on Computer Vision
(ECCV), 2018.

[32] T. J. Chin and D. Suter, “The maximum consensus problem:
Recent algorithmic advances,” Synthesis Lectures on Computer
Vision, vol. 7, no. 2, 2017, pp. 1–194.

[33] T.-J. Chin, P. Purkait, A. Eriksson, and D. Suter, “Efficient glob-
ally optimal consensus maximisation with tree search,” in IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
pp. 2413–2421, 2015.

[34] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active
shape models - their training and application,” Comput. Vis.
Image Underst., vol. 61, no. 1, Jan. 1995, pp. 38–59.

[35] T. D’Orsi, G. Novikov, and D. D. Steurer, “Consistent regression
when oblivious outliers overwhelm,” in Intl. Conf. on Machine
Learning (ICML), vol. 139, pp. 2297–2306, 2021.

[36] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo
Localization for mobile robots,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), 1999.

Full text available at: http://dx.doi.org/10.1561/2300000077

https://www.dropbox.com/s/x0n5r366u33fu7x/2015c-ICRA-initPGO3d.pdf?dl=0
https://www.dropbox.com/s/x0n5r366u33fu7x/2015c-ICRA-initPGO3d.pdf?dl=0


126 References

[37] F. Dellaert and M. Kaess, “Factor graphs for robot perception,”
Foundations and Trends in Robotics, vol. 6, no. 1-2, 2017, pp. 1–
139.

[38] F. Dellaert, D. Rosen, J. Wu, R. Mahony, and L. Car-
lone, “Shonan rotation averaging: Global optimality by surfing
SO(p)n,” in European Conf. on Computer Vision (ECCV), 2020.
url: https://dellaert.github.io/ShonanAveraging/.

[39] I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, and
A. Stewart, “Robust estimators in high dimensions without the
computational intractability,” in IEEE 57th Annual Symposium
on Foundations of Computer Science, IEEE, pp. 655–664, 2016.

[40] I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, and
A. Stewart, “Robust estimators in high-dimensions without the
computational intractability,” SIAM Journal on Computing,
vol. 48, no. 2, 2019, pp. 742–864. doi: 10.1137/17M1126680.

[41] I. Diakonikolas, G. Kamath, D. Kane, J. Li, J. Steinhardt, and
A. Stewart, “Sever: A robust meta-algorithm for stochastic op-
timization,” in Intl. Conf. on Machine Learning (ICML), K.
Chaudhuri and R. Salakhutdinov, Eds., ser. Proceedings of Ma-
chine Learning Research, vol. 97, pp. 1596–1606, 2019.

[42] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra,
and A. Stewart, “Robustly learning a gaussian: Getting optimal
error, efficiently,” in Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’18,
pp. 2683–2702, New Orleans, Louisiana, 2018.

[43] I. Diakonikolas, D. M. Kane, S. Karmalkar, A. Pensia, and T.
Pittas, “Robust sparse mean estimation via sum of squares,”
in Proceedings of Thirty Fifth Conference on Learning The-
ory, ser. Proceedings of Machine Learning Research, vol. 178,
pp. 4703–4763, PMLR, 2022.

[44] I. Diakonikolas, D. M. Kane, and A. Stewart, “Learning geometric
concepts with nasty noise,” in Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, ser. STOC
2018, pp. 1061–1073, 2018.

Full text available at: http://dx.doi.org/10.1561/2300000077

https://dellaert.github.io/ShonanAveraging/
https://doi.org/10.1137/17M1126680


References 127

[45] I. Diakonikolas, D. M. Kane, and A. Stewart, “List-decodable
robust mean estimation and learning mixtures of spherical gaus-
sians,” in Proceedings of the 50th Annual ACM SIGACT Sympo-
sium on Theory of Computing, ser. STOC 2018, pp. 1047–1060,
2018.

[46] I. Diakonikolas, W. Kong, and A. Stewart, “Efficient algorithms
and lower bounds for robust linear regression,” in Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, ser. SODA ’19, pp. 2745–2754, San Diego, California,
2019.

[47] K. Doherty, D. M. Rosen, and J. Leonard, “Performance guar-
antees for spectral initialization in rotation averaging and pose-
graph SLAM,” CoRR, vol. abs/2201.03773, 2022. url: https:
//arxiv.org/abs/2201.03773.

[48] S. S. Du, S. Balakrishnan, and A. Singh, “Computationally
efficient robust estimation of sparse functionals,” CoRR, vol. abs/
1702.07709, 2017. url: https://arxiv.org/abs/1702.07709.

[49] O. Enqvist, E. Ask, F. Kahl, and K. Åström, “Robust fitting
for multiple view geometry,” in European Conf. on Computer
Vision (ECCV), Springer, pp. 738–751, 2012.

[50] O. Enqvist, E. Ask, F. Kahl, and K. Åström, “Tractable algo-
rithms for robust model estimation,” Intl. J. of Computer Vision,
vol. 112, no. 1, 2015, pp. 115–129.

[51] O. Enqvist and F. Kahl, “Robust optimal pose estimation,” in
European Conf. on Computer Vision (ECCV), Springer, pp. 141–
153, 2008.

[52] A. Eriksson, C. Olsson, F. Kahl, and T.-J. Chin, “Rotation
averaging and strong duality,” IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2018.

[53] T. Fan, H. Wang, M. Rubenstein, and T. Murphey, “Efficient and
guaranteed planar pose graph optimization using the complex
number representation,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), pp. 1904–1911, 2019.

Full text available at: http://dx.doi.org/10.1561/2300000077

https://arxiv.org/abs/2201.03773
https://arxiv.org/abs/2201.03773
https://arxiv.org/abs/1702.07709


128 References

[54] M. Fischler and R. Bolles, “Random sample consensus: A para-
digm for model fitting with application to image analysis and
automated cartography,” Commun. ACM, vol. 24, 1981, pp. 381–
395.

[55] N. Fleming, P. Kothari, and T. Pitassi, “Semialgebraic proofs
and efficient algorithm design,” Foundations and Trends in The-
oretical Computer Science, vol. 14, no. 1-2, 2019, pp. 1–221.

[56] D. Fourie, J. Leonard, and M. Kaess, “A nonparametric belief so-
lution to the bayes tree,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), pp. 2189–2196, 2016.

[57] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” arXiv e-print: 1412.6572, 2014.

[58] M. Grant and S. Boyd, CVX: Matlab software for disciplined
convex programming. url: http://cvxr.com/cvx.

[59] R. Hartley, J. Trumpf, Y. Dai, and H. Li, “Rotation averaging,”
IJCV, vol. 103, no. 3, 2013, pp. 267–305.

[60] R. I. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision, Second. Cambridge University Press, 2004.

[61] T. Hitchcox and J. R. Forbes, “Mind the gap: Norm-aware adap-
tive robust loss for multivariate least-squares problems,” IEEE
Robotics and Automation Letters, vol. 7, no. 3, 2022, pp. 7116–
7123.

[62] S. B. Hopkins and J. Li, “Mixture models, robustness, and sum
of squares proofs,” in Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, ser. STOC 2018,
pp. 1021–1034, Los Angeles, CA, USA, 2018.

[63] B. K. P. Horn, “Closed-form solution of absolute orientation
using unit quaternions,” J. Opt. Soc. Amer., vol. 4, no. 4, Apr.
1987, pp. 629–642.

[64] M. Hsiao and M. Kaess, “MH-iSAM2: multi-hypothesis iSAM
using Bayes Tree and Hypo-tree,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), pp. 1274–1280, 2019.

[65] P. Huber, Robust Statistics. John Wiley & Sons, New York, NY,
1981.

Full text available at: http://dx.doi.org/10.1561/2300000077

http://cvxr.com/cvx


References 129

[66] M. Ikram, S. Khaliq, M. Anjum, and W. Hussain, “Perceptual
aliasing++: Adversarial attack for visual SLAM front-end and
back-end,” IEEE Robotics and Automation Letters, vol. 7, no. 2,
2022, pp. 4670–4677.

[67] G. Izatt, H. Dai, and R. Tedrake, “Globally optimal object pose
estimation in point clouds with mixed-integer programming,” in
Proc. of the Intl. Symp. of Robotics Research (ISRR), 2017.

[68] F. Kahl and D. Henrion, “Globally optimal estimates for geo-
metric reconstruction problems,” Intl. J. of Computer Vision,
vol. 74, no. 1, 2007, pp. 3–15.

[69] S. Karmalkar and E. Price, “Compressed sensing with adversarial
sparse noise via L1 regression,” CoRR, vol. abs/1809.08055, 2018.
url: http://arxiv.org/abs/1809.08055.

[70] S. Karmalkar, A. Klivans, and P. Kothari, “List-decodable lin-
ear regression,” in Advances in Neural Information Processing
Systems (NIPS), vol. 32, 2019.

[71] A. R. Klivans, P. K. Kothari, and R. Meka, “Efficient algorithms
for outlier-robust regression,” CoRR, vol. abs/1803.03241, 2018.
url: http://arxiv.org/abs/1803.03241.

[72] A. R. Klivans, P. M. Long, and R. A. Servedio, “Learning halfs-
paces with malicious noise,” in Automata, Languages and Pro-
gramming, S. Albers, A. Marchetti-Spaccamela, Y. Matias, S.
Nikoletseas, and W. Thomas, Eds., pp. 609–621, 2009.

[73] L. Kneip, H. Li, and Y. Seo, “UPnP: An optimal o(n) solution
to the absolute pose problem with universal applicability,” in
European Conf. on Computer Vision (ECCV), Springer, pp. 127–
142, 2014.

[74] P. K. Kothari and J. Steinhardt, “Better agnostic clustering via
relaxed tensor norms,” CoRR, vol. abs/1711.07465, 2017. url:
http://arxiv.org/abs/1711.07465.

[75] P. K. Kothari, J. Steinhardt, and D. Steurer, “Robust moment
estimation and improved clustering via sum of squares,” in Pro-
ceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, ser. STOC 2018, pp. 1035–1046, Los Angeles, CA,
USA, 2018.

Full text available at: http://dx.doi.org/10.1561/2300000077

http://arxiv.org/abs/1809.08055
http://arxiv.org/abs/1803.03241
http://arxiv.org/abs/1711.07465


130 References

[76] K. A. Lai, A. B. Rao, and S. Vempala, “Agnostic estimation of
mean and covariance,” in 2016 IEEE 57th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 665–674, IEEE
Computer Society, 2016. doi: 10.1109/FOCS.2016.76.

[77] P. Lajoie, S. Hu, G. Beltrame, and L. Carlone, “Modeling percep-
tual aliasing in SLAM via discrete-continuous graphical models,”
IEEE Robotics and Automation Letters (RA-L), 2019.

[78] V. Larsson, M. Oskarsson, K. Astrom, A. Wallis, T. Pajdla, and
Z. Kukelova, “Beyond Grobner bases: Basis selection for mini-
mal solvers,” in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pp. 3945–3954, 2018.

[79] J. Lasserre, Moments, positive polynomials and their applications,
vol. 1. World Scientific, 2010.

[80] J. Lasserre, “The Moment-SoS hierarchy,” in Int. Cong. of Math.,
vol. 4, pp. 3791–3815, 2018.

[81] J. B. Lasserre, “Global optimization with polynomials and the
problem of moments,” SIAM J. Optim., vol. 11, no. 3, 2001,
pp. 796–817.

[82] H. M. Le, T.-J. Chin, A. Eriksson, T.-T. Do, and D. Suter,
“Deterministic approximate methods for maximum consensus
robust fitting,” IEEE Trans. Pattern Anal. Machine Intell., 2019.

[83] S. H. Lee and J. Civera, “Robust single rotation averaging,”
CoRR, vol. abs/2004.00732, 2020. url: https://arxiv.org/abs/
2004.00732.

[84] H. Li, “Consensus set maximization with guaranteed global
optimality for robust geometry estimation,” in Intl. Conf. on
Computer Vision (ICCV), pp. 1074–1080, 2009.

[85] H. Li and R. Hartley, “The 3D-3D registration problem revis-
ited,” in Intl. Conf. on Computer Vision (ICCV), IEEE, pp. 1–8,
2007.

[86] T. Ma, J. Shi, and D. Steurer, “Polynomial-time tensor decompo-
sitions with sum-of-squares,” in 2016 IEEE 57th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pp. 438–446,
2016.

Full text available at: http://dx.doi.org/10.1561/2300000077

https://doi.org/10.1109/FOCS.2016.76
https://arxiv.org/abs/2004.00732
https://arxiv.org/abs/2004.00732


References 131

[87] G. Meneghetti, M. Danelljan, M. Felsberg, and K. Nordberg,
“Image alignment for panorama stitching in sparsely structured
environments,” in Scandinavian Conference on Image Analysis,
Springer, pp. 428–439, 2015.

[88] MOSEK ApS, The mosek optimization toolbox for matlab manual.
version 8.1. 2017. url: http://docs.mosek.com/8.1/toolbox/
index.html.

[89] Y. Nesterov, “Squared functional systems and optimization prob-
lems, high performance optimization,” Appl. Optim., vol. 33,
2000, pp. 405–440.

[90] N. Nguyen and T. Tran, “Exact recoverability from dense cor-
rupted observations via ℓ1-minimization,” IEEE Trans. on In-
formation Theory, vol. 59, no. 4, 2013, pp. 2017–2035.

[91] J. Nie, “Optimality conditions and finite convergence of lasserre’s
hierarchy,” Mathematical programming, vol. 146, no. 1-2, 2014,
pp. 97–121.

[92] T. Norman, N. Weinberger, and K. Levy, “Robust linear regres-
sion for general feature distribution,” ArXiv, vol. abs/2202.02080,
2022.

[93] C. Olsson, O. Enqvist, and F. Kahl, “A polynomial-time bound
for matching and registration with outliers,” in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), IEEE, pp. 1–
8, 2008.

[94] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier
Detection. John Wiley & Sons, New York, NY, 1987.

[95] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna,
P. Seiler, and P. A. Parrilo, SOSTOOLS: Sum of squares opti-
mization toolbox for MATLAB, 2013. url: http://arxiv.org/abs/
1310.4716.

[96] Á. Parra Bustos and T. J. Chin, “Guaranteed outlier removal
for rotation search,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 2165–2173, 2015.

[97] Á. Parra Bustos and T. J. Chin, “Guaranteed outlier removal
for point cloud registration with correspondences,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 40, no. 12, 2018, pp. 2868–
2882.

Full text available at: http://dx.doi.org/10.1561/2300000077

http://docs.mosek.com/8.1/toolbox/index.html
http://docs.mosek.com/8.1/toolbox/index.html
http://arxiv.org/abs/1310.4716
http://arxiv.org/abs/1310.4716


132 References

[98] P. Parrilo, “Structured semidefinite programs and semialgebraic
geometry methods in robustness and optimization,” Ph.D. dis-
sertation, California Institute of Technology, 2000.

[99] P. A. Parrilo, “Semidefinite programming relaxations for semi-
algebraic problems,” Mathematical programming, vol. 96, no. 2,
2003, pp. 293–320.

[100] D. P. Paudel, A. Habed, C. Demonceaux, and P. Vasseur, “Robust
and optimal sum-of-squares-based point-to-plane registration of
image sets and structured scenes,” in Intl. Conf. on Computer
Vision (ICCV), pp. 2048–2056, 2015.

[101] L. Peng, M. Fazlyab, and R. Vidal, Towards understanding
the semidefinite relaxations of truncated least-squares in robust
rotation search, 2022. doi: 10.48550/ARXIV.2207.08350.

[102] A. Prasad, A. S. Suggala, S. Balakrishnan, and P. Ravikumar,
“Robust estimation via robust gradient estimation,” Journal of
the Royal Statistical Society: Series B (Statistical Methodology),
vol. 82, 2020.

[103] P. Raghavendra and M. Yau, “List decodable learning via sum of
squares,” in Proceedings of the Thirty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, ser. SODA ’20, pp. 161–180,
Salt Lake City, Utah, 2020.

[104] D. Rosen, L. Carlone, A. Bandeira, and J. Leonard, “SE-Sync: A
certifiably correct algorithm for synchronization over the Special
Euclidean group,” Intl. J. of Robotics Research, 2018. url: https:
//arxiv.org/abs/1611.00128.

[105] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier
Detection. John Wiley & Sons, New York, NY, 1981.

[106] D. Scaramuzza and F. Fraundorfer, “Visual odometry: Part I
the first 30 years and fundamentals,” 2011.

[107] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion
revisited,” in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pp. 4104–4113, 2016.

[108] G. Schweighofer and A. Pinz, “Globally optimal O(n) solution
to the PnP problem for general camera models.,” in British
Machine Vision Conf. (BMVC), pp. 1–10, 2008.

Full text available at: http://dx.doi.org/10.1561/2300000077

https://doi.org/10.48550/ARXIV.2207.08350
https://arxiv.org/abs/1611.00128
https://arxiv.org/abs/1611.00128


References 133

[109] J. Shi, H. Yang, and L. Carlone, “Optimal pose and shape
estimation for category-level 3D object perception,” in Robotics:
Science and Systems (RSS), 2021.

[110] J. Shi, H. Yang, and L. Carlone, “Optimal and robust category-
level perception: Object pose and shape estimation from 2D and
3D semantic keypoints,” arXiv preprint: 2206.12498, 2022. url:
https://arxiv.org/pdf/2206.12498.pdf.

[111] N. Shor, “Nondifferentiable optimization and polynomial prob-
lems,” Nonconvex Optimization and its Applications, vol. 24,
1998.

[112] N. Sunderhauf and P. Protzel, “Towards a robust back-end
for pose graph SLAM,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), pp. 1254–1261, 2012.

[113] K. M. Tavish and T. D. Barfoot, “At all costs: A comparison
of robust cost functions for camera correspondence outliers,” in
Conf. Computer and Robot Vision, IEEE, pp. 62–69, 2015.

[114] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgib-
bon, “Bundle adjustment—a modern synthesis,” in International
workshop on vision algorithms, Springer, pp. 298–372, 1999.

[115] R. Tron, D. Rosen, and L. Carlone, “On the inclusion of de-
terminant constraints in lagrangian duality for 3D SLAM,” in
Robotics: Science and Systems (RSS), Workshop “The prob-
lem of mobile sensors: Setting future goals and indicators of
progress for SLAM”, 2015. url: https://www.dropbox.com/s/
859umrdf7ldd2kv/2015ws-rss-duality3Ddet.pdf?dl=0.

[116] E. Tsakonas, J. Jaldén, N. Sidiropoulos, and B. Ottersten, “Con-
vergence of the huber regression M-estimate in the presence of
dense outliers,” IEEE Signal Processing Letters, vol. 21, no. 10,
2014, pp. 1211–1214.

[117] J. W. Tukey, “Mathematics and the picturing of data,” Proceed-
ings of the International Congress of Mathematicians, vol. 2,
1975, pp. 523–531. url: https : / / cir . nii . ac . jp / crid /
1573950399770196096.

[118] R. H. Tütüncü, K.-C. Toh, and M. J. Todd, “Solving semidefinite-
quadratic-linear programs using SDPT3,” Mathematical program-
ming, vol. 95, no. 2, 2003, pp. 189–217.

Full text available at: http://dx.doi.org/10.1561/2300000077

https://arxiv.org/pdf/2206.12498.pdf
https://www.dropbox.com/s/859umrdf7ldd2kv/2015ws-rss-duality3Ddet.pdf?dl=0
https://www.dropbox.com/s/859umrdf7ldd2kv/2015ws-rss-duality3Ddet.pdf?dl=0
https://cir.nii.ac.jp/crid/1573950399770196096
https://cir.nii.ac.jp/crid/1573950399770196096


134 References

[119] G. Wahba, “A least squares estimate of satellite attitude,” SIAM
review, vol. 7, no. 3, 1965, pp. 409–409.

[120] J. Wang, V. Magron, J. B. Lasserre, and N. H. A. Mai, “CS-
TSSOS: Correlative and term sparsity for large-scale polynomial
optimization,” arXiv preprint arXiv:2005.02828, 2020.

[121] J. Wang, V. Magron, and J.-B. Lasserre, “Chordal-TSSOS: a
moment-SOS hierarchy that exploits term sparsity with chordal
extension,” SIAM Journal on Optimization, vol. 31, no. 1, 2021,
pp. 114–141.

[122] J. Wang, V. Magron, and J.-B. Lasserre, “TSSOS: A Moment-
SOS hierarchy that exploits term sparsity,” SIAM Journal on
Optimization, vol. 31, no. 1, 2021, pp. 30–58.

[123] T. Weisser, J. B. Lasserre, and K.-C. Toh, “Sparse-BSOS: A
bounded degree SOS hierarchy for large scale polynomial opti-
mization with sparsity,” Math. Program. Comput., vol. 10, no. 1,
2018, pp. 1–32.

[124] J. Wright and Y. Ma, “Dense error correction via ℓ1-minimiza-
tion,” IEEE Trans. on Information Theory, vol. 56, no. 7, 2010,
pp. 3540–3560.

[125] H. Yang, P. Antonante, V. Tzoumas, and L. Carlone, “Graduated
non-convexity for robust spatial perception: From non-minimal
solvers to global outlier rejection,” IEEE Robotics and Automa-
tion Letters (RA-L), vol. 5, no. 2, 2020, pp. 1127–1134. url:
https://arxiv.org/pdf/1909.08605.pdf.

[126] H. Yang and L. Carlone, “A quaternion-based certifiably optimal
solution to the Wahba problem with outliers,” in Intl. Conf. on
Computer Vision (ICCV), 2019. url: https://arxiv.org/pdf/
1905.12536.pdf.

[127] H. Yang and L. Carlone, “In perfect shape: Certifiably optimal
3D shape reconstruction from 2D landmarks,” in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2020. url:
https://arxiv.org/pdf/1911.11924.pdf.

[128] H. Yang and L. Carlone, “One ring to rule them all: Certifiably
robust geometric perception with outliers,” in Conf. on Neural
Information Processing Systems (NeurIPS), vol. 33, pp. 18 846–
18 859, 2020. url: https://arxiv.org/pdf/2006.06769.pdf.

Full text available at: http://dx.doi.org/10.1561/2300000077

https://arxiv.org/pdf/1909.08605.pdf
https://arxiv.org/pdf/1905.12536.pdf
https://arxiv.org/pdf/1905.12536.pdf
https://arxiv.org/pdf/1911.11924.pdf
https://arxiv.org/pdf/2006.06769.pdf


References 135

[129] H. Yang and L. Carlone, “Certifiably optimal outlier-robust
geometric perception: Semidefinite relaxations and scalable global
optimization,” IEEE Trans. Pattern Anal. Machine Intell., 2022.
url: https://arxiv.org/pdf/2109.03349.pdf.

[130] H. Yang, L. Liang, L. Carlone, and K. Toh, “An inexact projected
gradient method with rounding and lifting by nonlinear program-
ming for solving rank-one semidefinite relaxation of polynomial
optimization,” Mathematical Programming (MAPR), 2022. url:
https://arxiv.org/pdf/2105.14033.pdf.

[131] H. Yang, J. Shi, and L. Carlone, “TEASER: Fast and Certifiable
Point Cloud Registration,” IEEE Trans. Robotics, vol. 37, no. 2,
2020, pp. 314–333. url: https://arxiv.org/pdf/2001.07715.pdf.

[132] H. Yang, C. Doran, and J.-J. Slotine, “Dynamical pose estima-
tion,” in Intl. Conf. on Computer Vision (ICCV), pp. 5926–5935,
2021.

[133] J. Yang, H. Li, and Y. Jia, “Optimal essential matrix estimation
via inlier-set maximization,” in European Conf. on Computer
Vision (ECCV), Springer, pp. 111–126, 2014.

[134] X. Zhou, S. Leonardos, X. Hu, and K. Daniilidis, “3D shape recon-
struction from 2D landmarks: A convex formulation,” in IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2015.

Full text available at: http://dx.doi.org/10.1561/2300000077

https://arxiv.org/pdf/2109.03349.pdf
https://arxiv.org/pdf/2105.14033.pdf
https://arxiv.org/pdf/2001.07715.pdf



