
Principles and
Implementation Techniques

of Software-Based Fault
Isolation

Full text available at: http://dx.doi.org/10.1561/3300000013

Full text available at: http://dx.doi.org/10.1561/3300000013

Principles and Implementation
Techniques of Software-Based

Fault Isolation

Gang Tan
The Pennsylvania State University

gtan@cse.psu.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/3300000013

Foundations and Trends R© in Privacy and Secruity

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

G. Tan. Principles and Implementation Techniques of Software-Based Fault Isolation.
Foundations and TrendsR© in Privacy and Secruity, vol. 1, no. 3, pp. 137–198, 2017.

ISBN: 978-1-68083-345-4
c© 2017 G. Tan

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works,
or for resale. In the rest of the world: Permission to photocopy must be obtained from the
copyright owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA;
Tel. +1 781 871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/3300000013

Foundations and Trends R© in Privacy and
Secruity

Volume 1, Issue 3, 2017
Editorial Board

Editor-in-Chief
Yonina Eldar
Technion
Israel

Editors

Pao-Chi Chang
National Central
University
Pamela Cosman
University of California,
San Diego
Michelle Effros
California Institute of
Technology
Yariv Ephraim
George Mason University
Alfonso Farina
Selex ES
Sadaoki Furui
Tokyo Institute of
Technology
Georgios Giannakis
University of Minnesota
Vivek Goyal
Boston University
Sinan Gunturk
Courant Institute
Christine Guillemot
INRIA
Robert W. Heath, Jr.
The University of Texas at
Austin

Sheila Hemami
Northeastern University
Lina Karam
Arizona State University
Nick Kingsbury
University of Cambridge
Alex Kot
Nanyang Technical
University
Jelena Kovacevic
Carnegie Mellon
University
Geert Leus
TU Delft
Jia Li
Pennsylvania State
University
Henrique Malvar
Microsoft Research
B.S. Manjunath
University of California,
Santa Barbara
Urbashi Mitra
University of Southern
California
Björn Ottersten
KTH Stockholm

Vincent Poor
Princeton University

Anna Scaglione
University of California,
Davis

Mihaela van der Shaar
University of California,
Los Angeles

Nicholas D. Sidiropoulos
Technical University of
Crete

Michael Unser
EPFL

P.P. Vaidyanathan
California Institute of
Technology

Ami Wiesel
The Hebrew University of
Jerusalem

Min Wu
University of Maryland

Josiane Zerubia
INRIA

Full text available at: http://dx.doi.org/10.1561/3300000013

Editorial Scope
Topics

Foundations and Trends R© in Privacy and Security publishes survey and
tutorial articles in the following topics:

• Access control
• Accountability
• Anonymity
• Application security
• Artifical intelligence methods in

security and privacy
• Authentication
• Big data analytics and privacy
• Cloud security
• Cyber-physical systems security

and privacy
• Distributed systems security and

privacy
• Embedded systems security and

privacy
• Forensics
• Hardware security

• Human factors in security and
privacy

• Information flow
• Intrusion detection
• Malware
• Metrics
• Mobile security and privacy
• Language-based security and

privacy
• Network security
• Privacy-preserving systems
• Protocol security
• Security and privacy policies
• Security architectures
• System security
• Web security and privacy

Information for Librarians

Foundations and Trends R© in Privacy and Security, 2017, Volume 1, 4
issues. ISSN paper version 2474-1558. ISSN online version 2474-1566.
Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/3300000013

Contents

1 Introduction 2

2 The SFI Policy 6

3 SFI Enforcement 9
3.1 Enforcing the data-access policy 13

3.1.1 Data region specialization 14
3.1.2 Integrity-only isolation 15
3.1.3 Address masking 16
3.1.4 Guard zones . 18
3.1.5 Guarding changes instead of uses 22
3.1.6 Finding scratch registers 23
3.1.7 Architecture-specific optimizations 24
3.1.8 Applicability in dynamic binary translation 24

3.2 Enforcing the control-flow policy 25
3.2.1 Indirect-jump control-flow enforcement 27
3.2.2 Interaction with the outside world 31

3.3 Portable enforcement . 34

Full text available at: http://dx.doi.org/10.1561/3300000013

4 SFI Verification and Formalization 36
4.1 Operational semantics . 38
4.2 Modeling an SFI verifier 42
4.3 Verifier correctness . 44

5 Future Directions 48

6 Going Beyond Fault Isolation 52

7 Conclusions 55

8 Acknowledgments 56

Full text available at: http://dx.doi.org/10.1561/3300000013

Principles and Implementation
Techniques of Software-Based
Fault Isolation
Gang Tan1

1Pennsylvania State University; gtan@cse.psu.edu

ABSTRACT

When protecting a computer system, it is often necessary to
isolate an untrusted component into a separate protection
domain and provide only controlled interaction between the
domain and the rest of the system. Software-based Fault
Isolation (SFI) establishes a logical protection domain by in-
serting dynamic checks before memory and control-transfer
instructions. Compared to other isolation mechanisms, it
enjoys the benefits of high efficiency (with less than 5%
performance overhead), being readily applicable to legacy
native code, and not relying on special hardware or OS
support. SFI has been successfully applied in many appli-
cations, including isolating OS kernel extensions, isolating
plug-ins in browsers, and isolating native libraries in the
Java Virtual Machine. In this survey article, we will discuss
the SFI policy, its main implementation and optimization
techniques, as well as an SFI formalization on an idealized
assembly language.

Gang Tan (2017), “Principles and Implementation Techniques of Software-Based
Fault Isolation”, Foundations and TrendsR© in Privacy and Secruity: Vol. 1, No. 3,
pp 137–198. DOI: 10.1561/3300000013.

Full text available at: http://dx.doi.org/10.1561/3300000013

1
Introduction

One fundamental idea in protecting a computer system is to have mul-
tiple protection domains in the system (Lampson, 1974). Each domain
has its own capabilities, according to the domain’s trustworthiness.
Since the introduction of protection rings and virtual memory in Mul-
tics (Schroeder and Saltzer, 1972; Saltzer, 1974), all modern operating
systems are structured to have an OS protection domain, also known
as the kernel mode, and multiple user-application domains, which are
processes in the user mode; the OS domain can execute privileged
instructions, set up virtual memory protection, and perform access con-
trol on resources; a user-application domain has to go through the OS
domain via the system-call interface to perform privileged operations.
Domains can communicate by message passing or via shared objects.
The boundaries between protection domains ensure that errors in one
domain do not affect other domains.

It is natural to use protection domains to isolate untrusted compo-
nents of a system. For instance, a web browser should isolate browser
plug-ins so that their malfunctioning would not lead to the crash or
leakage of sensitive information of the browser. In the same vein, an
operating system should isolate device drivers, which are often devel-

2

Full text available at: http://dx.doi.org/10.1561/3300000013

3

oped by third-party vendors and have a higher bug rate than the OS
kernel. In many such situations, it is highly desirable to isolate untrusted
components in separate protection domains, grant them a minimum set
of privileges, and allow only controlled interaction between them and
privileged protection domains (Provos et al., 2003; Brumley and Song,
2004).

Many mechanisms are possible for implementing protection domains.
Table 1.1 provides a comparison among common mechanisms that can
provide application-level protection domains. Hardware-based virtual-
ization puts components into separate virtual machines and relies on
virtual machine boundaries for fault toleration and resource control.
Process-based separation puts components into separate OS processes
and relies on hardware-backed virtual memory for isolating processes.
In both hardware-based virtualization and process-based separation,
user-level instructions run unmodified at native speed and they are
fully transparent in that no special compiler is needed to recompile
applications, nor do they require developers to port their code. However,
their downside is the high-performance overhead for context switching
between domains. For instance, a process context switch may require
the flushing of the Translation Lookaside Buffer (TLB), which is the
cache for the translation from virtual to physical addresses; it also
brings adverse effect to data and instruction caches. A virtual ma-
chine context switch is even more costly as it involves the switching
between two OSes. Therefore, when components are tightly coupled
and require frequent domain crossings, separating them via virtual ma-
chines or processes is often not adopted due to the high cost of context
switches.

Another approach is through language-based isolation, which relies
on safe high-level languages for isolation. This approach fine-grained,
portable, and flexible. The Java Virtual Machine (JVM) and the Com-
mon Language Runtime (CLR, Common Language Infrastructure (CLI)
2006) enforce type-based isolation through a combination of static and
dynamic checks. Languages such as E (Miller, 2006) and Joe-E (Mettler
et al., 2010; Krishnamurthy et al., 2010) enforce a stronger level of
isolation than Java through an object-capability model. Their downside
is an overall loss of performance caused by dynamic checks. Techniques

Full text available at: http://dx.doi.org/10.1561/3300000013

4 Introduction

Table 1.1: Comparison of isolation mechanisms.

Context-
switch

overhead

Per-instruction
overhead

Com-
piler

support

Software
engineering

effort

Virtual
machines

very high none no none

OS
processes

high none no none

Language-
based

isolation

low medium
(dynamic) or
none (static)

yes high

SFI low low maybe none or
medium

using pure static types (e.g., Morrisett et al., 1999) have no runtime
overhead, but require nontrivial support from developers and compilers.
One significant downside of language-based isolation is that a single lan-
guage model has to be adopted, meaning that the software-engineering
effort to rewrite legacy C/C++ code is significant.

Software-based Fault Isolation (SFI) is a software-instrumentation
technique at the machine-code level for establishing logical protection
domains within a process. The main idea is to designate a memory
region for an untrusted component and instrument dangerous instruc-
tions in the component to constrain its memory access and control
transfer behavior; it is sometimes referred to as code sandboxing. In SFI,
protection domains stay within the same process, incurring low overhead
when switching between domains. As a result, it is especially attractive
in situations when domain crossings are frequent (e.g., the interaction
between a browser and a plug-in, or the interaction between an OS and
a device driver). As we will discuss, SFI can be implemented in many
ways: in a machine-code interpreter, in a machine-code rewriter, or in-
side a compiler. When SFI is implemented in a machine-code interpreter
or rewriter, applications can run without porting by developers. In

Full text available at: http://dx.doi.org/10.1561/3300000013

5

contrast, some porting effort may be required when SFI is implemented
inside a compiler, as is the case with NaCl (Yee et al., 2009).

First proposed by Wahbe et al. (1993), SFI has enjoyed many
successes thanks to its runtime efficiency, strong guarantee, and ease
of implementation. It has been implemented in several architectures,
including MIPS (Wahbe et al., 1993), x86-32 (Small, 1997; McCamant
and Morrisett, 2006; Ford and Cox, 2008; Yee et al., 2009; Zeng et al.,
2011; Zeng et al., 2013), x86-64 (Sehr et al., 2010; Deng et al., 2015),
and ARM (Sehr et al., 2010; Zhao et al., 2011; Zhou et al., 2014). It
has also been used in many applications, including isolating OS kernel
modules (Small, 1997; Erlingsson et al., 2006; Mao et al., 2011; Castro
et al., 2009), isolating plug-ins in the Chrome browser (Yee et al., 2009;
Sehr et al., 2010), and isolating native libraries in the Java Virtual
Machine (Siefers et al., 2010; Sun and Tan, 2012).

In this survey article on SFI, we will focus on the principles and com-
mon implementation techniques behind many SFI systems. Chapter 2
will give a concise definition of the SFI policy. The bulk of the article will
be in chapter 3, which presents the implementation and optimization
techniques that enforce the SFI policy. In chapter 4, we will formalize
the main constraints enforced by SFI, through a formalization of an
SFI verifier; a correctness proof of the verifier will also be discussed.
We will briefly discuss future research directions in chapter 5 and cover
stronger policies than fault isolation in chapter 6.

Full text available at: http://dx.doi.org/10.1561/3300000013

References

Abadi, M., M. Budiu, Ú. Erlingsson, and J. Ligatti. 2005. “Control-flow
integrity”. In: 12th ACM Conference on Computer and Communi-
cations Security (CCS). 340–353.

Akritidis, P., C. Cadar, C. Raiciu, M. Costa, and M. Castro. 2008.
“Preventing Memory Error Exploits with WIT”. In: IEEE Symposium
on Security and Privacy (S&P). 263–277.

Ansel, J., P. Marchenko, Ú. Erlingsson, E. Taylor, B. Chen, D. Schuff, D.
Sehr, C. Biffle, and B. Yee. 2011. “Language-Independent Sandbox-
ing of Just-In-Time Compilation and Self-Modifying Code”. In: ACM
Conference on Programming Language Design and Implementation
(PLDI). 355–366.

Barth, A., C. Jackson, C. Reis, and G. Chrome. 2008. “The security
architecture of the Chromium browser”. Tech. rep.

Bittau, A., P. Marchenko, M. Handley, and B. Karp. 2008. “Wedge:
splitting applications into reduced-privilege compartments”. In: Pro-
ceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation. 309–322.

Bruening, D., Q. Zhao, and S. Amarasinghe. 2012. “Transparent Dy-
namic Instrumentation”. In: Proceedings of the 8th ACM SIG-
PLAN/SIGOPS Conference on Virtual Execution Environments.
133–144.

57

Full text available at: http://dx.doi.org/10.1561/3300000013

58 References

Brumley, D. and D. Song. 2004. “Privtrans: Automatically Partition-
ing Programs for Privilege Separation”. In: 13th Usenix Security
Symposium. 57–72.

Candea, G., S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. 2004.
“Microreboot — A Technique for Cheap Recovery”. In: USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI).
31–44.

Castro, M., M. Costa, and T. Harris. 2006. “Securing Software by En-
forcing Data-flow Integrity”. In: USENIX Symposium on Operating
Systems Design and Implementation (OSDI). 147–160.

Castro, M., M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Don-
nelly, P. Barham, and R. Black. 2009. “Fast byte-granularity software
fault isolation”. In: ACM SIGOPS Symposium on Operating Systems
Principles (SOSP). 45–58.

Chen, S., J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. 2005. “Non-
control-data attacks are realistic threats”. In: 14th Usenix Security
Symposium. 177–192.

Common Language Infrastructure (CLI). 2006. 4th. Standard ECMA-
335. Ecma International.

Criswell, J., A. Lenharth, D. Dhurjati, and V. Adve. 2007. “Secure
virtual architecture: a safe execution environment for commodity
operating systems”. SIGOPS Oper. Syst. Rev. 41(6): 351–366.

Deng, L., Q. Zeng, and Y. Liu. 2015. “ISboxing: An Instruction Sub-
stitution Based Data Sandboxing for x86 Untrusted Libraries”. In:
30th Inernational Conference on ICT Systems Security and Privacy
Protection. 386–400.

Dhurjati, D. and V. S. Adve. 2006. “Backwards-compatible array bounds
checking for C with very low overhead”. In: International Conference
on Software engineering (ICSE). 162–171.

Donovan, A., R. Muth, B. Chen, and D. Sehr. 2010. “PNaCl: Portable
Native Client Executables (white paper)”. http://src.chromium.org/
viewvc/native_client/data/site/pnacl.pdf.

Erlingsson, Ú., M. Abadi, M. Vrable, M. Budiu, and G. Necula. 2006.
“XFI: Software Guards for System Address Spaces”. In: USENIX
Symposium on Operating Systems Design and Implementation (OSDI).
75–88.

Full text available at: http://dx.doi.org/10.1561/3300000013

http://src.chromium.org/viewvc/native_client/data/site/pnacl.pdf
http://src.chromium.org/viewvc/native_client/data/site/pnacl.pdf

References 59

Ford, B. and R. Cox. 2008. “Vx32: Lightweight User-level Sandboxing
on the x86”. In: USENIX Annual Technical Conference. 293–306.

Furr, M. and J. Foster. 2005. “Checking type safety of foreign function
calls.” In: ACM Conference on Programming Language Design and
Implementation (PLDI). 62–72.

“Intel Software Guard Extensions (Intel SGX)”. 2016. https://software.
intel.com/en-us/sgx.

Jaleel, A. 2010. “Memory characterization of workloads using instrument-
ation-driven simulation”. url: http://www.jaleels .org/ajaleel/
workload/SPECanalysis.pdf.

Kiriansky, V., D. Bruening, and S. Amarasinghe. 2002. “Secure Execu-
tion via Program Shepherding”. In: 11th Usenix Security Symposium.
191–206.

Kondoh, G. and T. Onodera. 2008. “Finding bugs in Java Native Inter-
face programs”. In: ISSTA ’08: Proceedings of the 2008 International
Symposium on Software Testing and Analysis. New York, NY, USA:
ACM. 109–118.

Krishnamurthy, A., A. Mettler, and D. Wagner. 2010. “Fine-grained
privilege separation for web applications”. In: Proceedings of the
19th International Conference on World Wide Web (WWW ’10).
551–560.

Kroll, J. A., G. Stewart, and A. W. Appel. 2014. “Portable Software
Fault Isolation”. In: CSF. 18–32.

Kuznetsov, V., L. Szekeres, M. Payer, G. Candea, R. Sekar, and D.
Song. 2014. “Code-Pointer Integrity”. In: USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 147–163.

Lampson, B. W. 1974. “Protection”. SIGOPS Oper. Syst. Rev. 8(1):
18–24.

Leroy, X. 2006. “Formal certification of a compiler back-end or: program-
ming a compiler with a proof assistant”. In: 33rd ACM Symposium
on Principles of Programming Languages (POPL). 42–54.

Liu, S., G. Tan, and T. Jaeger. 2017. “PtrSplit: Supporting General
Pointers in Automatic Program Partitioning”. In: 24th ACM Confer-
ence on Computer and Communications Security (CCS). To appear.

Full text available at: http://dx.doi.org/10.1561/3300000013

https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
http://www.jaleels.org/ajaleel/workload/SPECanalysis.pdf
http://www.jaleels.org/ajaleel/workload/SPECanalysis.pdf

60 References

Mao, Y., H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F. Kaashoek.
2011. “Software fault isolation with API integrity and multi-principal
modules”. In: SOSP. 115–128.

McCamant, S. 2006. “A machine-checked safety-proof for a CISC-
compatible SFI technique”. Tech. rep. No. 2006-035. MIT Computer
Science and Artificial Intelligence Laboratory.

McCamant, S. and G. Morrisett. 2006. “Evaluating SFI for a CISC
Architecture”. In: 15th Usenix Security Symposium.

Mettler, A., D. Wagner, and T. Close. 2010. “Joe-E: A Security-Oriented
Subset of Java”. In: Network and Distributed System Security Sym-
posium (NDSS).

Miller, M. 2006. “Robust composition: towards a unified approach to
access control and concurrency control”. PhD thesis. Baltimore, MD:
Johns Hopkins University.

Morrisett, G., G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan. 2012.
“RockSalt: Better, Faster, Stronger SFI for the x86”. In: ACM Confer-
ence on Programming Language Design and Implementation (PLDI).
395–404.

Morrisett, G., D. Walker, K. Crary, and N. Glew. 1999. “From System F
to Typed Assembly Language”. ACM Transactions on Programming
Languages and Systems. 21(3): 527–568.

Nagarakatte, S., J. Zhao, M. M. K. Martin, and S. Zdancewic. 2009.
“SoftBound: highly compatible and complete spatial memory safety
for C”. In: ACM Conference on Programming Language Design and
Implementation (PLDI). 245–258.

“Native Client Security Contest”. 2009. https://developer.chrome.com/
native-client/community/security-contest.

Necula, G., S. McPeak, and W. Weimer. 2002. “CCured: type-safe
retrofitting of legacy code”. In: 29th ACM Symposium on Principles
of Programming Languages (POPL). Portland, Oregon. 128–139.

Niu, B. and G. Tan. 2013. “Monitor Integrity Protection with Space
Efficiency and Separate Compilation”. In: 20th ACM Conference on
Computer and Communications Security (CCS).

Full text available at: http://dx.doi.org/10.1561/3300000013

https://developer.chrome.com/native-client/community/security-contest
https://developer.chrome.com/native-client/community/security-contest

References 61

Payer, M. and T. Gross. 2011. “Fine-grained user-space security through
virtualization”. In: Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual execution Environments (VEE
’11). 157–168.

Provos, N., M. Friedl, and P. Honeyman. 2003. “Preventing privilege
escalation”. In: 12th Usenix Security Symposium. 231–242.

Saltzer, J. H. 1974. “Protection and the Control of Information Sharing
in Multics”. Communications of the ACM. 17(7): 388–402.

Schroeder, M. D. and J. H. Saltzer. 1972. “A Hardware Architecture
for Implementing Protection Rings”. Communications of the ACM.
15(3): 157–170.

Scott, K. and J. Davidson. 2002. “Safe Virtual Execution Using Software
Dynamic Translation”. In: Proceedings of the 18th Annual Computer
Security Applications Conference. ACSAC ’02. 209–218.

Sehr, D., R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf,
B. Yee, and B. Chen. 2010. “Adapting Software Fault Isolation
to Contemporary CPU Architectures”. In: 19th Usenix Security
Symposium. 1–12.

Seltzer, M. I., Y. Endo, C. Small, and K. A. Smith. 1996. “Deal-
ing with Disaster: Surviving Misbehaved Kernel Extensions”. In:
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI). 213–227.

Shacham, H. 2007. “The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86)”. In: 14th ACM Con-
ference on Computer and Communications Security (CCS). 552–
561.

Siefers, J., G. Tan, and G. Morrisett. 2010. “Robusta: Taming the
Native Beast of the JVM”. In: 17th ACM Conference on Computer
and Communications Security (CCS). 201–211.

Small, C. 1997. “A tool for constructing safe extensible C++ systems”.
In: COOTS’97: Proceedings of the 3rd conference on USENIX Con-
ference on Object-Oriented Technologies (COOTS). 174–184.

Sun, M. and G. Tan. 2012. “JVM-Portable Sandboxing of Java’s Native
Libraries”. In: 17th European Symposium on Research in Computer
Security (ESORICS). 842–858.

Full text available at: http://dx.doi.org/10.1561/3300000013

62 References

Tan, G. and J. Croft. 2008. “An empirical security study of the native
code in the JDK”. In: 17th Usenix Security Symposium. 365–377.

Wahbe, R., S. Lucco, T. Anderson, and S. Graham. 1993. “Efficient
Software-Based Fault Isolation”. In: ACM SIGOPS Symposium on
Operating Systems Principles (SOSP). New York: ACM Press. 203–
216.

Yee, B., D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar. 2009. “Native Client: A Sandbox for
Portable, Untrusted x86 Native Code”. In: IEEE Symposium on
Security and Privacy (S&P).

Yongzheng Wu Jun Sun, Y. L. and J. S. Dong. 2013. “Automatically par-
tition software into least privilege components using dynamic data
dependency analysis”. In: International Conference on Automated
Software Engineering (ASE). 323–333.

Zeng, B., G. Tan, and Ú. Erlingsson. 2013. “Strato: A Retargetable
Framework for Low-Level Inlined-Reference Monitors”. In: 22nd
Usenix Security Symposium. 369–382.

Zeng, B., G. Tan, and G. Morrisett. 2011. “Combining control-flow
integrity and static analysis for efficient and validated data sandbox-
ing”. In: 18th ACM Conference on Computer and Communications
Security (CCS). 29–40.

Zhang, Y., A. Juels, M. K. Reiter, and T. Ristenpart. 2012. “Cross-
VM Side Channels and Their Use to Extract Private Keys”. In:
19th ACM Conference on Computer and Communications Security
(CCS). 305–316.

Zhao, L., G. Li, B. D. Sutter, and J. Regehr. 2011. “ARMor: Fully
Verified Software Fault Isolation”. In: 11th Intl. Conf. on Embedded
Software. ACM.

Zhou, Y., X. Wang, Y. Chen, and Z. Wang. 2014. “ARMlock: Hardware-
based Fault Isolation for ARM”. In: 21st ACM Conference on Com-
puter and Communications Security (CCS). 558–569.

Full text available at: http://dx.doi.org/10.1561/3300000013

	Editor-in-Chief
	Editors
	Introduction
	The SFI Policy
	SFI Enforcement
	Enforcing the data-access policy
	Data region specialization
	Integrity-only isolation
	Address masking
	Guard zones
	Guarding changes instead of uses
	Finding scratch registers
	Architecture-specific optimizations
	Applicability in dynamic binary translation

	Enforcing the control-flow policy
	Indirect-jump control-flow enforcement
	Interaction with the outside world

	Portable enforcement

	SFI Verification and Formalization
	Operational semantics
	Modeling an SFI verifier
	Verifier correctness

	Future Directions
	Going Beyond Fault Isolation
	Conclusions
	Acknowledgments
	References

