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ABSTRACT

When protecting a computer system, it is often necessary to
isolate an untrusted component into a separate protection
domain and provide only controlled interaction between the
domain and the rest of the system. Software-based Fault
Isolation (SFI) establishes a logical protection domain by in-
serting dynamic checks before memory and control-transfer
instructions. Compared to other isolation mechanisms, it
enjoys the benefits of high efficiency (with less than 5%
performance overhead), being readily applicable to legacy
native code, and not relying on special hardware or OS
support. SFI has been successfully applied in many appli-
cations, including isolating OS kernel extensions, isolating
plug-ins in browsers, and isolating native libraries in the
Java Virtual Machine. In this survey article, we will discuss
the SFI policy, its main implementation and optimization
techniques, as well as an SFI formalization on an idealized
assembly language.
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1
Introduction

One fundamental idea in protecting a computer system is to have mul-
tiple protection domains in the system (Lampson, 1974). Each domain
has its own capabilities, according to the domain’s trustworthiness.
Since the introduction of protection rings and virtual memory in Mul-
tics (Schroeder and Saltzer, 1972; Saltzer, 1974), all modern operating
systems are structured to have an OS protection domain, also known
as the kernel mode, and multiple user-application domains, which are
processes in the user mode; the OS domain can execute privileged
instructions, set up virtual memory protection, and perform access con-
trol on resources; a user-application domain has to go through the OS
domain via the system-call interface to perform privileged operations.
Domains can communicate by message passing or via shared objects.
The boundaries between protection domains ensure that errors in one
domain do not affect other domains.

It is natural to use protection domains to isolate untrusted compo-
nents of a system. For instance, a web browser should isolate browser
plug-ins so that their malfunctioning would not lead to the crash or
leakage of sensitive information of the browser. In the same vein, an
operating system should isolate device drivers, which are often devel-
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3

oped by third-party vendors and have a higher bug rate than the OS
kernel. In many such situations, it is highly desirable to isolate untrusted
components in separate protection domains, grant them a minimum set
of privileges, and allow only controlled interaction between them and
privileged protection domains (Provos et al., 2003; Brumley and Song,
2004).

Many mechanisms are possible for implementing protection domains.
Table 1.1 provides a comparison among common mechanisms that can
provide application-level protection domains. Hardware-based virtual-
ization puts components into separate virtual machines and relies on
virtual machine boundaries for fault toleration and resource control.
Process-based separation puts components into separate OS processes
and relies on hardware-backed virtual memory for isolating processes.
In both hardware-based virtualization and process-based separation,
user-level instructions run unmodified at native speed and they are
fully transparent in that no special compiler is needed to recompile
applications, nor do they require developers to port their code. However,
their downside is the high-performance overhead for context switching
between domains. For instance, a process context switch may require
the flushing of the Translation Lookaside Buffer (TLB), which is the
cache for the translation from virtual to physical addresses; it also
brings adverse effect to data and instruction caches. A virtual ma-
chine context switch is even more costly as it involves the switching
between two OSes. Therefore, when components are tightly coupled
and require frequent domain crossings, separating them via virtual ma-
chines or processes is often not adopted due to the high cost of context
switches.

Another approach is through language-based isolation, which relies
on safe high-level languages for isolation. This approach fine-grained,
portable, and flexible. The Java Virtual Machine (JVM) and the Com-
mon Language Runtime (CLR, Common Language Infrastructure (CLI)
2006) enforce type-based isolation through a combination of static and
dynamic checks. Languages such as E (Miller, 2006) and Joe-E (Mettler
et al., 2010; Krishnamurthy et al., 2010) enforce a stronger level of
isolation than Java through an object-capability model. Their downside
is an overall loss of performance caused by dynamic checks. Techniques
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4 Introduction

Table 1.1: Comparison of isolation mechanisms.

Context-
switch

overhead

Per-instruction
overhead

Com-
piler

support

Software
engineering

effort

Virtual
machines

very high none no none

OS
processes

high none no none

Language-
based

isolation

low medium
(dynamic) or
none (static)

yes high

SFI low low maybe none or
medium

using pure static types (e.g., Morrisett et al., 1999) have no runtime
overhead, but require nontrivial support from developers and compilers.
One significant downside of language-based isolation is that a single lan-
guage model has to be adopted, meaning that the software-engineering
effort to rewrite legacy C/C++ code is significant.

Software-based Fault Isolation (SFI) is a software-instrumentation
technique at the machine-code level for establishing logical protection
domains within a process. The main idea is to designate a memory
region for an untrusted component and instrument dangerous instruc-
tions in the component to constrain its memory access and control
transfer behavior; it is sometimes referred to as code sandboxing. In SFI,
protection domains stay within the same process, incurring low overhead
when switching between domains. As a result, it is especially attractive
in situations when domain crossings are frequent (e.g., the interaction
between a browser and a plug-in, or the interaction between an OS and
a device driver). As we will discuss, SFI can be implemented in many
ways: in a machine-code interpreter, in a machine-code rewriter, or in-
side a compiler. When SFI is implemented in a machine-code interpreter
or rewriter, applications can run without porting by developers. In
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5

contrast, some porting effort may be required when SFI is implemented
inside a compiler, as is the case with NaCl (Yee et al., 2009).

First proposed by Wahbe et al. (1993), SFI has enjoyed many
successes thanks to its runtime efficiency, strong guarantee, and ease
of implementation. It has been implemented in several architectures,
including MIPS (Wahbe et al., 1993), x86-32 (Small, 1997; McCamant
and Morrisett, 2006; Ford and Cox, 2008; Yee et al., 2009; Zeng et al.,
2011; Zeng et al., 2013), x86-64 (Sehr et al., 2010; Deng et al., 2015),
and ARM (Sehr et al., 2010; Zhao et al., 2011; Zhou et al., 2014). It
has also been used in many applications, including isolating OS kernel
modules (Small, 1997; Erlingsson et al., 2006; Mao et al., 2011; Castro
et al., 2009), isolating plug-ins in the Chrome browser (Yee et al., 2009;
Sehr et al., 2010), and isolating native libraries in the Java Virtual
Machine (Siefers et al., 2010; Sun and Tan, 2012).

In this survey article on SFI, we will focus on the principles and com-
mon implementation techniques behind many SFI systems. Chapter 2
will give a concise definition of the SFI policy. The bulk of the article will
be in chapter 3, which presents the implementation and optimization
techniques that enforce the SFI policy. In chapter 4, we will formalize
the main constraints enforced by SFI, through a formalization of an
SFI verifier; a correctness proof of the verifier will also be discussed.
We will briefly discuss future research directions in chapter 5 and cover
stronger policies than fault isolation in chapter 6.
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