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Abstract

The growing popularity of Location-Based Services, allowing for the
collection of huge amounts of information regarding users’ locations,
has started raising serious privacy concerns. In this survey we analyze
the various kinds of privacy breaches that may arise in connection with
the use of location-based services, and we consider and compare some
of the mechanisms and the metrics that have been proposed to protect
the user’s privacy, focusing in particular on the comparison between
probabilistic spatial obfuscation techniques.
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1
The problems of privacy in location-based

services

In recent years, the growing popularity of mobile devices equipped with
GPS chips, in combination with the increasing availability of wireless
data connections, has led to a growing use of Location-Based Services
(LBSs), namely applications in which a user obtains, typically in real-
time, a service related to his current location. Recent studies of the Pew
Research Center show that in 2017, 77% of the adult population of the
US owns a smartphone (in comparison with 35% in 2011) [63], and
according to the same institution’s last survey about LBSs, in 2013, a
high percentage (74%) of the smartphone owners used services based
on their location [99]. Examples of LBSs include mapping applications
(e.g. Google Maps), Points of Interest (POI) retrieval (e.g. AroundMe),
coupon/discount providers (e.g. GroupOn) and location-aware social
networks (e.g. Foursquare).

LBS providers often collect and store users’ locations and mobil-
ity traces (sequences of spatio-temporal points representing the users’
itineraries), for the purpose of further utilization, possibly by a third-
party. For instance, they can be used for statistical analyses, such as
finding typical mobility patterns and popular places [74, 97]), or they
can be made public to provide additional services to users, such as
traffic information [44].

2
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3

While LBSs have demonstrated to provide enormous benefits to
individuals and society, the growing exposure of users’ location infor-
mation raises important privacy issues. Not only the experts, but also
the population at large are becoming increasingly aware of the risks,
due to the repeated cases of violations and leaks that keep appearing
on the news. For instance, on April 20th, 2011 it was discovered that
the iPhone was storing and collecting location data about the user,
syncing them with iTunes and transmitting them to Apple, all without
the user’s knowledge. More recently, the Guardian has revealed, on the
basis of the documents provided by Edward Snowden, that the NSA
and the GCHQ have been using certain smartphone apps, such as the
wildly popular Angry Birds game, to collect users’ private information
such as age, gender and location [6], again without the users’ knowl-
edge. Another case regards the Tinder application, which was found
sharing the exact latitude and longitude co-ordinates of users as well
as their birth dates and Facebook IDs [73]; even after the initial prob-
lem was fixed, it was still sharing more accurate location data than
intended, as users could be located to within 100 feet of their present
location [26].

A major source of concern about location privacy lies in the real-
ization that with sufficiently accurate data, it is possible to precisely
locate a user and track his movements throughout the day [18], giving
rise to a variety of malicious activities such as robbing or stalking. For
instance, in Wisconsin there were episodes of men tracking women with
GPS or other location devices [60]. In California, records from auto-
matic toll booths on bridges were used in divorce proceedings to prove
claims about suspicious movements of spouses [82]. The application
“Girls Around Me”, combined social media and location information
to find nearby women who did not necessarily agree to be found, allow-
ing to access their Facebook profiles with a single click [11]. Particularly
worrisome is the perspective of potential combination with the users’
most sensitive information, such as sexual orientation.

To some extent, the research and the experimentation on privacy
contribute to raise the awareness about the practical risks. For instance,
the website “Please Rob Me” [65] aggregates location check-ins and
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4 The problems of privacy in location-based services

presents them as “robbery opportunities”, pointing out the fact that
publicly announcing one’s location effectively reveals to the world that
they are not home.

1.1 Classification of threats

Following [35], we classify the concerns about the leakage of location
information into three major kinds of threats:

Tracking Threat: An adversary collecting continuously the location
updates of the user might be able to identify the user’s mobility
patterns (frequently traveled routes) and predict his present and
future location with high accuracy by leveraging typical mobility
habits [47, 94].

Identification Threat: The adversary can use the user’s traces as
quasi-identifiers to reveal his identity in an anonymized dataset.
This may happen even if the adversary accesses the user’s location
only sporadically, since he might be able to infer his frequently
visited locations, such as home and work. This is the most stud-
ied kind of threat in the literature, we expand on it in the next
section.

Profiling Threat: Mobility traces, and in particular the points of
interest that can be extracted from them, typically contain se-
mantic information that the adversary can use for profiling, that
is for infering a variety of (often sensitive) information about
the user. Examples include health clinics, religious places, areas
which may revel his sexual inclinations, etc. [5]. The practice of
location profiling is likely to increase in the future, as marketers
are becoming more and more aware of its potential to gain visibil-
ity of consumer behavior in the real world, and to help targeting
their marketing efforts. Indeed, location profiling seems to pro-
vide insights into offline activity at a level comparable to that of
web or mobile app analytics for online activity. There are already
various companies that provide this kind of services: for instance,
Urban Airship [89] offers tools that produce audience profiles by
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1.2. Identification of the user from his traces 5

combining in-app behaviors, user preferences, and location. Mo-
bility data are particularly useful, since brands can segment users
based on their current or past location.

1.2 Identification of the user from his traces

In this section we focus on the threat constituted by using location
data for fingerprinting the user, namely for finding out the identity of
the person who has originated the data. In short, the problem raises
by the fact that mobility traces may be unique to an individual, and
they can therefore allow identifying that individual like the ridges on
his finger. Apart from uniqueness, temporal correlation is also crucial
for fingerprinting, allowing an anonymized trace to be identified based
on mobility data about the same individual that have been previously
recorded.

1.2.1 Uniqueness of human mobility traces.

There have been various statistical studies aimed at showing the
uniqueness of human mobility traces. One of the most remarkable ones
is that of de Montjoye et al. [23], measuring uniqueness in the following
way. Given a set of points P , and a set of traces T , we say that P iden-
tifies a unique trace in T if there is exactly one trace in T that contains
P . Then, the uniqueness of T is defined as the percentage of traces in T
that are uniquely identified by a set of n points drawn randomly from
a random trace in T (where n is a parameter). They examined fifteen
months of human mobility traces generated by 1.5 million of individ-
uals, who were users of a certain mobile phone operator. Each time a
user interacted with the network by initiating or receiving a call or a
text message, the location of the connecting antenna was recorded in
the dataset together with the time of the event, and linked to previous
location-time points of the same user already in the dataset, via the
user id, so to form a trace (one trace for each user). The experiments
showed that human mobility traces are highly unique: In fact, with the
temporal granularity fixed to an hour, and the spatial granularity equal
to that given by the carrier’s antennas, 4 spatio-temporal points, ran-
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6 The problems of privacy in location-based services

domly drawn from a trace, were enough to uniquely identify the trace
in 95% of the cases. They also observed that the uniqueness of mobil-
ity traces decays approximately as the 1/10 power of the spatial and
temporal resolution. Hence, they concluded that even coarse datasets
provide little anonymity.

Song et al. [83] conducted similar experiments on a dataset of
location-time data generated by about a million users over a period
of a week. They considered the same notion of unique identification as
de Montjoye et al., except that they calculated the percentage of iden-
tification on all the traces instead than some randomly drawn subset.
The location of each individual was recorded every fifteen minutes. The
spatial resolution of the data (i.e., the minimum distance between two
locations) was about 0.11 km, while the diameter of the whole area
(i.e., the largest distance between two locations) was about 49 km.
Their results confirm that, even with a low resolution, location traces
can be identified with only a few spatio-temporal points. In particular,
they show that 2 points are enough to uniquely identify a trace in 60%
of the cases.

It is important to note that the implicit notion of attack considered
in the above works presupposes that the adversary is provided with
points that he had “previously seen” in a trace, and the only challenge
(for the adversary) is to be able to distinguish which trace. In contrast,
Rossi et al. [68] considered the threat posed by a “previously unseen”
set of points. Namely, they assume that the attacker has already col-
lected a set of traces T from some community of users, one trace per
user, and then, given a set of additional points P produced by one
of the users during his trajectory, they try to re-identify the user by
looking for the closest trace, namely the trace in T with the smallest
Hausdorff distance from P . They experimented with three real-world
datasets GPS mobility traces: CabSpotting [64]1, CenceMe [59] and
GeoLife [55]. The location data in these datasets have high spatial
resolution (GPS coordinates up to 5 or 6 digits precision). As for the
temporal resolution, in GeoLife and CabSpotting locations are recorded

1Althoug [68] refers to CabSpotting, the citation is relative to a mobility traces
dataset called CRAWDAD.
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1.2. Identification of the user from his traces 7

at a time interval of 1−5 seconds, while for CenceMe it is 1 hour. Con-
cerning the experiments methodology, they randomly partitioned each
dataset into a training set and a test set, where each trace contained
50% of the original GPS points. Then, they used the training set as the
traces T to identify, using sets of points P extracted randomly from
traces in the test set. They showed that, thanks to the high precision of
the GPS coordinates, on GeoLife and CenceMe just 1 spatio-temporal
point is enough to identify 90% and 96% of the traces, respectively.
With 2 points, these percentages reach 94% and 99%. The results for
CabSpotting are significantly lower: 60% for 2 points. The difference
is probably due to the nature of the data: GeoLife and CenceMe con-
tain traces left by users during their daily routines, while CabSpotting
are traces of taxi drivers in the San Francisco Bay area. The first two
contain many personal and thus unique locations, such as home and
workplace locations, while the latter is characterized by the presence
of common taxi routes and locations associated to taxi ranks.

1.2.2 Reconstructing traces from location samples

Typically, there can be various users repeatedly updating and send-
ing their positions on the map to some LBS. Hence, collecting these
locations may result in a mix-up of traces left by different individu-
als. Un-mixing the locations, i.e., reconstructing the individual traces,
can be done easily when the data are associated to some invariant at-
tribute, like, for instance, a pseudonym. Even when the data are com-
pletely anonymous, however, the traces can often still be reconstructed
by linking the location samples. Clearly, the higher is the sample fre-
quency compared to the users’ density in the area, the easier it is to
recognize a trace (cfr. Figure 1.1). In fact, the next point in a trajectory
will be at a distance determined by the speed of the user and the time
in between the two updates. The reconstruction of a trace can also be
facilitated by correlating location samples with likely routes on a map.
Finally, the task can be enhanced by using a model of typical trajec-
tories constructed on the basis of prior observations on the population
movements.

Full text available at: http://dx.doi.org/10.1561/3300000017



8 The problems of privacy in location-based services

Figure 1.1: Traces in a low (a), medium (b), and high density area (c)

The first attempt to reconstruct the traces from completely
anonymized mobility data (i.e., without any pseudonyms) was by
Gruteser et al. [42]. They used a multi-tracking algorithm to iden-
tify individual mobility traces from a collection of anonymized location
samples generated by multiple users. They tested their algorithm on
a collection of GPS traces generated by the students of a university
campus, and their experiments showed that often individuals used to
travel along the same unique route and could therefore be re-identified.
Their system however was prone to misclassification of crossing paths,
as it was unable to determine whether the paths of different individuals
actually crossed or just touched.

More recently, Tsoukaneri et al. [87] developed a mechanism called
Comber which is able to disentangle the traces by using a generic,
empirically derived histogram of user speeds. The authors evaluated
Comber with two different datasets, MDC [45] and GeoLife [55], which
consist both of GPS-based mobility traces (collected in Lausanne and
Beijing, respectively). Each of these datasets span more than a year and
include location information of about 180 users. Their results show that
Comber is able to infer the original traces of the users with more than
90% accuracy.

1.2.3 Linking traces to users’ identity

There has been a lot of research showing that it is possible to in-
fer user identities from anonymous traces, especially when the traces
are pseudonymized (i.e. the real identity has been replaced by a
pseudonym) rather than completely anonymized. Beresford and Sta-
jano [8] already pointed out that the re-identification risks of LBS’ users

Full text available at: http://dx.doi.org/10.1561/3300000017



1.2. Identification of the user from his traces 9

employing pseudonyms: they showed that almost all location traces of
AT&T Labs Cambridge employees collected from the Active Bat sys-
tem could be correctly identified by knowing the office positions of
the workers and by keeping track of the frequency of visits of a given
pseudonym to each office.

Many of the attacks on pseudonymized traces are, like the above,
based on observing the frequent presence of the pseudonyms in specific
locations that can be easily linked to a certain individual, like home
or office. For instance, Krumm [48] proposed various algorithms to in-
fer the user’s home address, and used a web search engine in order to
reveal the real identities of the subjects. Notably, Golle and Partridge
[40], using US census data, showed that knowing both locations of an
individual’s home and workplace with the precision of a census block
allowed to uniquely identify most of the U.S. working population. Fur-
thermore, even with the lower granularity of a census track, although
the average size of the anonymity set (i.e., the number of people shar-
ing the same pair) went up to 21, the location data of people who lived
and worked in different regions could still be easily re-identified.

A further study [96] investigated call records rather than census
data, using a data set of more than 30 billion call records made by
25 million cell phone users in the US. They considered the “top N”
locations for each user, inferred from the call records, and different
levels of granularity, ranging from a cell sector to whole cell (where cell
and cell sector are location units used by the phone company) to the
zip code, city, county and state. They analysed a variety of different
factors potentially impacting the size of the anonymity set, such as
the distance between the top N locations, the geographic environment
(rural vs urban), and social information (whether the size of the user’s
social network is large or small). Their result showed that, while the
top 1 location does not typically yield small anonymity sets, the top 2
and top 3 locations do, at least at the sector or cell-level granularity.
For example, with top 3 locations, 85% of the users are identifiable at
the sector level, 50% at the cell level, and 35% at the zip code level.

Even when the location data are completely anonymized (i.e., no
pseudonym is used), though, it is still possible to retrieve the user’s
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10 The problems of privacy in location-based services

identity by means of modern machine learning technologies if the at-
tacker disposes of side information about the user. Several works in the
literature have investigated this problem, particularly in the case in
which a database of users’ profiles in the form of previously collected
traces, called the training set, is available to the adversary. The work
by Rossi et al. [68] mentioned in § 1.2.1 went in this direction; however
it did not use the full power of machine learning techniques, and it was
more focused in the uniqueness of traces rather than re-identification
of the user. In general, the idea is that the adversary will use the
training set to build a representation of the users’ typical movements.
Thus each user will be associated to a mathematical model of his past
traces, playing the role of a signature. This model can be, for instance,
a Markov chain, but other models have been investigated as well. Then
the attacker will collect one or more of the victim’s (sanitized) traces,
the testing set, from which he will build a model as well. The latter
is then compared to the models of the training set, according to some
similarity criterion, and the user profile most likely to correspond to
the target user is finally selected.

De Mulder et al. [24] investigated this kind of attack on mobility
traces generated by a GSM cellular network. They developed two meth-
ods based on different models and on the cosine similarity measure, and
evaluated them on the Reality Mining dataset made available by the
MIT Media Lab, which consists of the location traces of one hundred
human subjects at MIT during the 2004−2005 academic year, collected
using one hundred instrumented Nokia 6600 smart phones. With the
best of those methods, they were able to re-identify about 80% of the
users. It is to be noted that a trace generated by a GSM network is
formed by the sequence of all cells that the user has visited along his
path, i.e., it is not possible to skip cells by “jumping” to a non-adjacent
cell. This may affect the success rate when compared with the case in
which the traces consist of locations generated dynamically with, say,
a GPS.

Ma et al. [52] considered also two kinds of adversaries: passive ones,
retrieving the testing set from a public source, and active ones that can
deliberately participate or perturb the data collection phase to gain ad-
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1.2. Identification of the user from his traces 11

ditional knowledge. The authors used four different estimators to mea-
sure the similarity between mobility traces: the Maximum Likelihood
Estimator, relying on the Euclidean distance, the Minimum Square Ap-
proach, computing the sum of the square of the difference between the
traces, the Basic Approach, which assumes that the traces might been
perturbed by uniform noise, and the Weighted Exponential Approach,
which is similar to the previous one except that no assumption is made
on the type of noise generated. The authors tested their methods on
two datasets: the CRAWDAD repository [64], recording the movements
of San Francisco YellowCabs, and a collection of traces generated by
the public buses in Shanghai city. They obtained a success rate of de-
anonymization of 80% to 90%, even in the presence of noise.

Both [52] and [24], however, took the samples to generate the test-
ing set directly from the training set. Clearly such way of proceeding
introduced a bias that may have resulted in an overly strong success
rate in the re-identification results. In fact Gambs et al. [36] showed
that there is a substantial difference in the success rate when the train-
ing set and the testing set are separated. They used a model based on
Mobility Markov Chains, namely Markov chains where the states are
locations. They considered various similarity measures between such
chains, and tested their methods on several GPS datasets, including
MDC and Geolife. For each individual, they split his mobility traces,
chronologically ordered, into two disjoint parts of approximately the
same size: the first half formed the training set, and the second half
the testing set. Thus the training and the testing data were not only
disjoint, but also separated in time. With such split, they were able to
re-identify between 35% and 45% or the users. For comparison, they
repeated the experiments also without splitting, i.e., using the same set
of traces for training and for testing, and obtained, in this case, a suc-
cess rate of almost 100%! Of course, this comparison is not completely
fair because they used as testing set exactly the same as the training
set, instead than a subset as in previous works. Nevertheless, such high
success rate shows that (1) the training set and the testing set should
be independent to avoid any bias, and (2) the Mobility Markov Chain
obtained from the traces of a user is almost always unique to the user.
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12 The problems of privacy in location-based services

1.3 The users’ point of view

The users’ concerns about location privacy, and privacy in general, vary
a lot from individual to individual, and depend on factors such as age,
education, cultural background, etc. They also tend to evolve in time,
and cases of privacy breaches that hit the news, like that of “Birds and
’leaky’ phone apps” [6], can have a huge impact on the attitude of the
population.

There have been several studies to assess people’s perceptions and
attitude towards privacy. We mention in particular the empirical re-
search conducted at CMU by Acquisti and his team, which provides a
systematic analysis of several aspects of human behavior in relation to
privacy. See [1] for a summary of their findings.

Concerning the specific case of location privacy, the concerns seem
in general less strong than for other kinds of sensitive data (such as
medical records, financial data, bank information etc.), and the studies
give mixed results. For instance, in 2014 the authors of [35] interviewed
180 smartphone users, recruited through social network announcements
and through Amazon Mechanical Turk. They chose Mechanical Turk
workers who had achieved master qualification. They obtained the fol-
lowing statistics: 78% of the participants believed that apps accessing
their location can pose privacy threats. Also, 85% of them reported that
they care about who accesses their location information (in line with
the 87% reported by the 2011 Microsoft survey [56]). Furthermore, 77%
of the users were interested in installing a privacy protection mecha-
nism. Finally, on the specific method based on the addition of random
noise, 52% of the surveyed individuals stated no problem in supplying
apps with imprecise location information to protect their privacy. Only
18% of the surveyed people objected to supplying apps with imprecise
location information.

On the other hand, in contrast with the other kinds of sensitive data
mentioned above (medical record etc.) there seem to be more willing-
ness to renounce to location privacy in exchange of compensation. For
instance, Danezis et al. [22] conducted a study on 74 undergraduates to
find how much money they would require in order to share a month’s
worth of their location data. The median price was £10 if the data were
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1.3. The users’ point of view 13

to be used for research purposes, and £20 if the data were to be used
commercially. In [49] the author says that he could we easily convince
over 250 people from his institution to give him two weeks of GPS data
recorded in their car in return for a 1% chance of winning a US$ 200
MP3 player. He asked 97 of them if he could share their location data
outside our institution, and only 20% said ‘no’. In contrast, in an exper-
iment conducted by Acquisti et al. [2] on the privacy attitude towards
payments, where people were offered the choice between a traceable
gift card of 12 US$ or an anonymous gift card of 10 US$, about half
of the people chose the second option. Incidentally, [2] main point is
to show that people value their privacy differently, depending on how
the choice privacy vs non-privacy is presented to them. In particular,
people tend to assign a different value to their privacy depending on
whether they would receive a compensation in order to disclose other-
wise private information, or rather they would pay to protect otherwise
public information.

In conclusion, location data seems to be less critical in the mind
of many people than data like financial or medical ones, but this may
be due to the lack of knowledge about the negative consequences of a
location leak. In particular, about the fact that the location can help
profiling the user with respect to more sensitive data. Furthermore,
the attitude of people concerning the protection of location informa-
tion may change during time, along with the general increase of privacy
concerns. For example, a study in [1] showed that, in the last decade,
the percentage of members in the Carnegie Mellon University Face-
book network who chose to publicly reveal personal information had
decreased steadily. For instance, over 80% of profiles publicly revealed
their birthday in 2005, but less than 20% in 2011.
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