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ABSTRACT
Today, personal mobile devices like smartphones and tablets
are ubiquitous. People use mobile devices for fun, for work,
and for organizing and managing their lives, including their
finances. This became possible because over the last two
decades, mobile phones evolved from closed platforms in-
tended for voice calls and messaging to open platforms
whose functionality can be extended in myriad ways by
third party developers. Such wide-ranging scope of use also
means widely different security and privacy requirements for
those uses. The mobile device ecosystem involved multiple
different stakeholders such as mobile network operators, reg-
ulators, enterprise information technology administrators,
and of course ordinary users. So, as mobile platforms be-
came gradually open, platform security mechanisms were
incorporated into their architectures so that the security
and privacy requirements of all stakeholders could be met.
Platform security mechanisms help to isolate applications
from one another, protect persistent data and other on-
device resources (like access to location or peripherals), and
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help strengthen software against a variety of attack vectors.
All major mobile platforms incorporate comprehensive soft-
ware and hardware platform security architectures, including
mechanisms like trusted execution environments (TEEs).

Over the past decade, mobile devices have been undergo-
ing convergences in multiple dimensions. The distinction
between “mobile” and “fixed” devices has blurred. Similar
security mechanisms and concepts are being used across
different platforms, leading to similar security architectures.
Hardware enablers used to support platform security have
gradually matured. At the same time, there have also been
novel types of attacks, ranging from software attacks like
return- and data-oriented programming to hardware attacks
like side channels that exploit micro-architectural phenom-
ena. It is no longer tenable to assume that the current hard-
ware security mechanisms underpinning mobile platform
security are inviolable.

The time is therefore right to take a new look at mobile
platform security, which brings us to this monograph. We
focus on hardware platform security. The monograph is
divided into four parts: we begin by looking at the why and
how of mobile platform security, followed by a discussion on
vulnerabilities and attacks; we conclude by looking forward
discussing emerging research that explores ways of dealing
with hardware compromise, and building blocks for the next
generation of hardware platform security.

Our intent is to provide a broad overview of the current
state of practice and a glimpse of possible research directions
that can be of use to practitioners, decision makers, and
researchers.

Full text available at: http://dx.doi.org/10.1561/3300000024



Part I

Mobile Platform Security:
Why?
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1
Introduction

Today, mobile devices such as smartphones and tablets are very widely
deployed. All modern mobile device platforms incorporate sophisticated
software and hardware platform security mechanisms. To understand
how this came to be, we need to start in the late 1990s.

1.1 What motivated mobile platform security?

The mobile phone revolution was well under way by the mid 1990s.
Initially, mobile phones were simple embedded devices with fixed func-
tionality: voice calls and text messages. Early on, the mobile phone
industry recognized the power of billions of people having general-
purpose computing devices in their hands. Personal digital assistants
were already available and demonstrated the range of uses for portable,
personal general-purpose computing devices. Therefore, already by the
mid 1990s, the industry was working towards opening up mobile phone
platforms so that users gain the ability to extend their functionality, by
installing third-party software modules. This development directly led
to today’s smartphones and tablets with their “app” ecosystems.

The industry saw the potential for new types of applications like
mobile payments, public transport ticketing, and digital media consump-

4
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1.2. Stakeholders 5

tion. But it also realized that for these applications to succeed, open
mobile devices needed additional mechanisms to safeguard the security
and privacy requirements of these novel, and potentially high-value,
applications.

Furthermore, the mobile phone ecosystem already had well-establish-
ed stakeholders. They were sensitive to the security and privacy concern
that could arise in the transition from closed fixed-function devices to
open platforms. Existing commodity general-purpose computing plat-
forms at the time, like those for personal computers, did not incorporate
the platform security mechanisms necessary to address these concerns.
Consequently, they wanted to mediate this transition so that their own
interests were safeguarded. This, too, drove the development of new
platform security mechanisms. Mobile platform security architectures
emerged because of the need to address these stakeholder concerns as
mobile devices opened up (Matala et al., 2019).

1.2 Stakeholders

An important class of stakeholders are mobile network operators (MNOs)
(also known as “carriers”) who are motivated by business interests.
An example of a business interest of MNOs is the need to strongly
authenticate their subscribers. This need led to the introduction of
subscriber identity modules (SIMs) (discussed further in Section 2.2)
right from the beginning. Another example of a business interest of
MNOs is the need for robust technical mechanisms to support the
subsidy-lock business model where a MNO gives a mobile phone to a
subscriber for free or below cost, in return for a commitment to maintain
the subscription for a specified period of time. The requirement to
technically enforce subsidy locks translated into each device having
an unforgeable unique identifier and the ability to run subsidy-lock
enforcement software in a manner that cannot be bypassed.

Another, equally important, class of stakeholders are regulators
who safeguard the public good. An example of a regulatory need is
to ensure that radio-frequency transmission parameters, which are
typically calibrated for each device at the time of manufacture, cannot
be tampered with. This need can be met with secure (integrity-protected)
storage for storing these parameters.

Full text available at: http://dx.doi.org/10.1561/3300000024



6 Introduction

A third class of stakeholders are end-users. They were used to mobile
phones that were reliable and trustworthy. They expected the same
degree of reliability and trustworthiness to be maintained, even as
mobile phone platforms were opening up.

There are other stakeholders in the ecosystem, like enterprise admin-
istrators, and of course the mobile phone manufacturers —also known as
original equipment manufacturers (OEMs)—and operating system (OS)
vendors themselves. To see what kinds of mechanisms are needed to pro-
tect the interest of different stakeholders, it is necessary to understand
the threat models from the perspectives of these stakeholders.

1.3 Threat models

A threat model involves characterizing the adversary in terms of its
capabilities, and the assets that need to be protected from these ad-
versaries. For example a software adversary is assumed to be capable
of influencing one or more software modules on the victim device. The
adversary’s control may be limited to a single application (software in
user space) or can extend to privileged software like the OS itself. In
contrast, a hardware adversary can directly interact with, and possibly
manipulate, the hardware components on the victim device.

Rather than presenting an exhaustive treatment of all possible threat
models, we will illustrate the concept with three informal examples.

First, consider the threat of a user’s address book being exfiltrated
from the device by a malicious third-party application that the user
happened to install. We are concerned with a software adversary (the
third-party developer) and the asset that needs protection is the ad-
dress book. Standard hardware support (for memory management and
process isolation) combined with a good OS security architecture (pro-
viding access-controlled persistent storage for each application) would
be sufficient to provide the required protection. In Section 3 we will
discuss OS security architectures.

Next, consider the same setting as above, but with a different asset:
credentials for accessing financial transactions like online banking. While
we are still concerned with a software adversary, the value of the asset
is significantly higher, and its compromise can result in substantial

Full text available at: http://dx.doi.org/10.1561/3300000024



1.4. Chains of trust 7

losses. Consequently, relying only on OS security is not reasonable
because an OS is a complex software component with a large threat
surface for the attacker to exploit. Additional hardware support for
protecting high-value assets is justifiable. Hardware-assisted trusted
execution environments (TEEs) allow small pieces of trusted software on
a general-purpose computing device to be isolated from the rest of the
software on the same device, including the OS and other applications.
Today TEEs are ubiquitous. Nearly every smartphone or tablet is likely
to have a processor with TEE capabilities. Many personal computers
are also equipped with TEEs. The ubiquity of TEEs is not a recent
phenomenon (Ekberg et al., 2014): hardware-assisted TEEs started
to appear in mobile phones from the early 2000s. For a technology
that is so widely deployed, for so long, the origins and trajectory of
TEE technologies are poorly understood. Our primary focus in this
monograph is to explore hardware platform security for mobile devices,
with a particular emphasis on TEEs.

Finally, consider the case of technical mechanisms for subsidy-lock
enforcement. The adversary in this case is the user of the device who
has physical access to the device. The asset that the adversary wants
to compromise is the binding between the mobile device hardware
and the MNO (so that a successful attack will result in breaking the
binding, allowing the adversary to use the device with a different MNO
subscription). OS security alone is not sufficient. Since we now deal
with a potential hardware adversary, we must use hardware-security
mechanisms that can withstand physical attack.

1.4 Chains of trust

In a given scenario, the party relying on the protection mechanism trusts
the software and hardware components used to realize the mechanism.
A chain of trust refers to the process of building up this trust, starting
from one or more roots of trust. In the first example above, while OS
security is sufficient, the relying party, the user, needs to trust that
the correct OS is running on the device. Platform integrity (Section 4)
makes it possible to build up this trust. Higher level platform security
mechanisms like OS security rely on underlying building blocks like

Full text available at: http://dx.doi.org/10.1561/3300000024



8 Introduction

platform integrity (Section 4), hardware-assisted isolation (Section 5),
and cryptographic primitives realized in hardware (Section 6).

An important feature of hardware platform security mechanisms
is allowing remote relying parties to build up trust in a device. In the
second example above, a bank may need to convince itself that the user
is accessing her bank account from a secure device before allowing access.
This feature is called remote attestation, which is widely supported by
modern TEEs. In Section 5 we will discuss the chains of trust involved
in remote attestation in modern TEEs.

We begin with an overview of the history of mobile hardware plat-
form security mechanisms (Section 2), and provide an overview of OS
security (Section 3) to understand how an OS can make use of these
mechanisms. We will explore the nuts and bolts of how platform security
is implemented in today’s devices, focusing on hardware platform secu-
rity (Part II), and discuss attacks against hardware platform security
mechanisms (Part III). We will conclude with a brief foray into a future
outlook for hardware platform security (Part IV).

Notes on the scope of this monograph

The focus of this monograph is on hardware platform security in mobile
devices. We do cover OS security in Section 3, but from the perspective
of motivating hardware platform security. Mobile device platforms also
incorporate sophisticated software platform security mechanisms. We
refer readers interested in this topic to books dedicated to the topic such
as Asokan et al. (2014). We also do not cover specific high-level attacks
such as jail-breaking (removing manufacturer-imposed restrictions on
what software can be installed on a mobile device) or rooting (obtaining
the privileges of the maximally privileged “root” user on Unix-based
mobile OSs). However, the basic attacks we describe in Part III can be,
and often are, used as stepping stones for these high-level attacks.

Full text available at: http://dx.doi.org/10.1561/3300000024



2
Historical Overview

The requirements we saw in Section 1 led to mobile device and platform
vendors developing and deploying software and hardware platform
security architectures. Nokia Radio Application Processors are believed
to be the first trusted execution environments (TEEs) deployed at
a large scale (Matala et al., 2019). These were followed shortly by
Texas Instruments’ M-Shield™ (Sundaresan, 2003) and subsequently
by ARM’s TrustZone™(Alves and Felton, 2004) which represents the
overwhelming share of deployed mobile TEEs today.

In the non-mobile setting, hardware security modules (HSMs) used
in the financial sector (starting with IBM’s CryptoCard1) are an early
example of a TEE. Trusted Computing Group’s Trusted Platform
Modules (TPMs) (Arthur and Challener, 2015) are widely deployed in
personal computers, where they are used for boot integrity and disk
encryption, but they have not found common use in the mobile space.
Recently, Intel’s Software Guard Extensions (SGX) (McKeen et al.,
2016) has become the most widely studied TEE architecture, thanks
to the easy availability of both the software and hardware.2 SGX is

1https://www.ibm.com/security/cryptocards/
2https://software.intel.com/en-us/sgx

9
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10 Historical Overview

primarily deployed in cloud settings to enable confidential computing
use cases (Alibaba, 2020; McReynolds, 2021). Desktop use cases for
SGX include Blu-ray digital rights management (DRM) (Toulas, 2021)

2.1 Hardware security modules

Early examples of the inclusion of a dedicated security co-processor
were motivated by the need to perform sensitive cryptographic opera-
tions isolated from other computations in systems handling financial
transactions. Transaction processing for Europay, Mastercard and Visa
(EMV) payment cards use HSMs as the primary security device for
key management (Cryptomathic, 2017). An HSM is a discrete comput-
ing device usually encapsulated in tamper-evident coating. HSMs in
backend systems typically include specialized cryptographic hardware
accelerators to enable high throughput because they need to process
transactions in real-time. An HSM can be realized as either a stand-
alone peripheral device or as an extension board connected directly
to the internal bus of the host computer. The operational keys are
generated in the cryptographic co-processor within the HSM and are
then saved either in a keystore file or in application memory, encrypted
under the master key of that co-processor. Any HSM with an identical
master key can use those keys.

The first commercially available civilian HSMs were deployed already
in the 1970s, originally for IBM mainframes. The IBM 3845 and 3846
data encryption devices (IBM, 1977) allowed exported encryption keys
to be encrypted using the recently standardized DES algorithm. These
early HSMs included secure key entry devices (cards and PIN pads) for
master key loading, random number generation capabilities for seeding,
and persistent storage for key materials. They were instrumental in
securing early electronic banking, such as automatic teller machines
(ATMs).

2.1.1 HSMs in radio communication

HSMs are also extensively deployed for modern military software-defined
radio (SDR) communication. SDR refers to wireless communications

Full text available at: http://dx.doi.org/10.1561/3300000024



2.1. Hardware security modules 11

where the transmitter and receiver mixing, filtering, amplification, mod-
ulation/demodulation etc. occur in software instead of in conventional
radio electronics. With SDR, software-based transmission algorithms
can be downloaded and adapted over the lifecycle of the hardware.
While analog military radio equipment include dedicated cryptographic
chips for (proprietary) ciphers that are required for communication
with compatible equipment, SDR equipment have to support a large
number of cryptographic schemes, including legacy protocols and algo-
rithms. Consequently military SDR equipment, such as the U.S. Joint
Tactical Radio System (JTRS), employ embeddable HSMs specifically
designed for communication security. The Advanced INFOSEC Ma-
chine (AIM) (General Dynamics Mission Systems, 2015a) is one such
programmable, embeddable cryptographic unit developed by Motorola
in the late 1990s. It consists of a hardware platform with three inde-
pendent cryptographic processors, one for key management and two
programmable processors for traffic encryption/decryption. The key
management cryptographic engine (KMCE) is based on a 32-bit re-
duced instruction set computer (RISC) processor and includes a math
co-processor designed for public key algorithm processing. The KMCE
runs a read-only memory (ROM)-based Secure Operating System (SOS).
The SOS provides a multi-security level, multi-tasking environment for
the cryptographic applications which allowed the functionality of the
AIM to be extended by software. The chip contains the necessary build-
ing blocks to implement encryption algorithms such as DES, and the
classified SAVILLE and BATON cryptographic algorithms used by
U.S. and NATO. Its successor, AIM II (General Dynamics Mission Sys-
tems, 2015b) is specifically designed for JTRS. Around the same time,
a similar crypto-chip, called the General Crypto Device (GCD) (Lange,
1997), was developed in Europe by Dutch electronics giant Philips.

The use of HSMs such as AIM and GCD are early examples of the
use of TEEs in telecommunications. The sensitivity of military com-
munication justified the inclusion of dedicated components for security
into end devices. However, for civilian telecommunication devices, the
widespread use of TEE-technology only occurred when two conditions
were met: 1) economic incentives emerged to justify requiring strong,
hardware-based security, and 2) low-cost technological solutions that
met those requirement were developed.

Full text available at: http://dx.doi.org/10.1561/3300000024



12 Historical Overview

2.2 SIMs, mobile handsets, and smart cards

During the early 1990s, civilian wireless communication systems also
began to employ hardware-assisted security. Mobile network operators
(MNOs) required a reliable way of preventing illicit use of a subscriber
identity for making phone calls from mobile phones. For this purpose,
the subscriber identity module (SIM) card (GSMA, 2015) was developed
by Munich smart-card maker Giesecke & Devrient, who sold the first
300 SIM cards to the Finnish MNO Radiolinja in 1991. The use of SIM
cards became mandatory in the Global System for Mobile Communica-
tions (GSM) standard. Each SIM card contains an international mobile
subscriber identity (IMSI) that uniquely identifies the user of the mobile
network and a unique symmetric cryptographic key (Ki) assigned to
it by the MNO during SIM card personalization. The SIM ensures the
integrity of the IMSI and Ki, and the confidentiality of Ki. Ki allows the
MNO to authenticate the SIM card when the mobile phone connects to
the network. When the mobile phone connects, it obtains the IMSI from
the SIM card, and requests network access by transmitting the IMSI to
the MNO. The MNO looks up the corresponding Ki of the IMSI from
its subscriber database, and generates a random nonce as a challenge
which is transmitted to the mobile phone. The mobile phone passes
the challenge to the SIM card, which signs it, and returns the signed
response, which is transmitted back to the MNO by the mobile phone.
The MNO compares the signed response to the response calculated
using the MNO’s copy of the Ki. If they match, the authentication is
successful.

Modern SIM cards are based on tamper-resistant universal inte-
grated circuit card (UICC) technology (SIMalliance Ltd., 2013) similar
to smart cards. UICC cards can host multiple software applications,
typically developed using Java Card software technology (ETSI, 2012).
The applications include a SIM application for GSM, and universal
subscriber identity module (USIM) for UMTS (3G), Long-Term Evolu-
tion (4G), and 5G network authentication. MNOs can also provision
additional value-add applications to UICC cards that they issue, such
as mobile banking and phone-based money transfer. UICC application
can interface with mobile phone users or initiate actions via a card
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2.2. SIMs, mobile handsets, and smart cards 13

application toolkit (CAT) part of the mobile phone operating system
(OS): SIM Application Toolkit (STK) for GSM systems, and USIM
Application Toolkit (USAT) for later generation networks. UICCs can
support an optional bearer independent protocol (BIP), which allows
MNOs to deliver over-the-air (OTA) updates to UICC applications
either via cell broadcasts, or short message service packets.

All UICC applications are subject to authorization by the issuer
security domain (ISD), namely the MNO who issued the UICC. Conse-
quently UICCs are effectively closed application ecosystems; it is not
possible for third-party developers to leverage UICC security without
co-operating with MNOs in their region. This puts add-on services
operated by large MNOs into an advantageous position compared to
third-party alternatives, as is the case with M-Pesa (Mbiti and Weil,
2011), a money transfer application operated by Safaricom and Voda-
com, the largest mobile MNO in Kenya and Tanzania. In developing
countries, such as Kenya, low-cost feature phones are still prevalent, and
UICC applications is the only ubiquitous application platform available
to the majority of mobile phone users. Proprietary SIM overlay tech-
nology (a.k.a. “slim SIM” or “skin SIM”) (Mondato, 2014) can enable
third-party applications to operate independently of the underlying
UICC.

The SIM overlay is a computer chip embedded into a thin plastic
sheet that can be placed on top of a standard UICC card within
a mobile phone. They were originally developed to support low-cost
mobile roaming for Chinese customers traveling outside their home
province. The overlay SIM acts as an independent security device, and
allows additional functionality to be added to any mobile phone by
attaching the overlay SIM to an MNO-issued UICC. However, an overlay
SIM also has the potential to facilitate a man-in-the-middle attack by
observing sensitive data such as personal identification numbers (PINs)
being transmitted to the underlying UICC, or initiate, intercept and/or
block mobile communications or CAT instructions (GSMA, 2014). By
obtaining unauthorized access to the UICC SIM applications they could
also change MNO configuration settings.

Embedded SIMs (eSIMs) (GSMA, 2015) are secure elements physi-
cally integrated into a mobile phone. eSIM chips can be directly soldered

Full text available at: http://dx.doi.org/10.1561/3300000024
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onto the device or even embedded into the system on chip (SoC) itself.
This physical integration necessitates MNO SIM or USIM profiles to
be remotely provisioned. Additionally, unlike removable SIM cards, a
single eSIMs may need to store multiple MNO profiles simultaneously.

2.3 Processor secure environments

Towards the late 1990s, mobile phones were transitioning from closed
systems to open application platforms, for which third-party applications
could be developed using the Java programming language. While not yet
true smartphones, the feature phones of the time were gradually starting
to resemble small, general-purpose computers. This brought with it
new business opportunities, but also new challenges for device security;
regulators and MNOs needed to ensure the protection of certain pieces
of information after the mobile phone had left the manufacturing line. In
particular, regulators required that the device identity, the international
mobile equipment identifier (IMEI), remain unchanged in order to act
as a theft deterrent. IMEIs of stolen mobile phones are blacklisted by
network operators, thereby reducing the economic value of stolen mobile
phones and deterring theft (GSMA, 2019).

Similarly, radio frequency parameters, which could affect the quality
of service of other mobile phones in the area, or the safety of the user,
should also remain unchanged. MNOs, who were the primary customers
of large original equipment manufacturers (OEMs) such as Nokia, were
concerned with ensuring that their subscribers receiving subsidized
mobile devices do not break their contract terms. Consequently, they
required a strong subsidy lock mechanism (colloquially known as SIM
lock), which would tie the mobile phone to a particular MNO for the
duration of the contract. Another emerging use case was DRM for
digital content sold by the MNOs; initially ringtones, later games and
music.

Nokia was the first to pursue a hardware-enforced processor secure
environment. At the time, the security of Nokia’s Digital Core Technol-
ogy (DCT) generation phones was mainly based on obfuscated software
solutions and protected by secrecy within the organization; even within
the company, only few security professionals knew the exact design and

Full text available at: http://dx.doi.org/10.1561/3300000024
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requirements of the DCT security architecture (Matala et al., 2019).
The leading market share of Nokia made it an attractive target for
hackers who, (typically for a small fee) would “unlock” or “unbrand”
subsidy-locked phones by either reverse engineering the valid unlock
codes, or reflashing the phone with a different firmware version.

The fourth generation of DCT mobile phones included hardware
components in the form of one-time-programmable memory to aid in
the secure storage of sensitive device parameters. However, in the case
of SIM locks, the economic motives to break device security were higher
than the capabilities of the protection mechanism deployed at the time.
Consequently, the revenue losses of important MNO customers resulting
from SIM unlocking, increased the pressure to design a better security
architecture for the upcoming generation of Nokia phones.

Within Nokia the idea of a coherent, hardware-enforced platform
security originated within a team of engineers working with mobile
payments and security (Matala et al., 2019). Initial designs revolved
around introducing a discrete security co-processor to ensure the physi-
cal isolation of the security-critical operations. However, the additional
hardware chip in the bill of materials was deemed too expensive in the
extremely cost-conscious organization, whose competitive advantage
largely stemmed from its ability to keep manufacturing and components
costs in control. Instead, Nokia engineers opted to implement a logically
isolated secure processing mode within the main central processing
unit (CPU). This solution was not only more cost effective in terms of
component costs during manufacturing, but also functioned as common
hardware platform for solutions to different use cases. This processor se-
cure environment (Ekberg, 2013) would form the cornerstone of Nokia’s
Baseband 5 (BB5) generation mobile phone security architecture.

Initial hardware designs were based on Nokia’s own radio application
processors (RAPs), but from very early on Nokia collaborated with the
U.S. semiconductor and Integrated Circuit (IC) manufacturer Texas
Instruments (TI) with whom they had a close partnership at the time.
The first BB5 mobile phone, the Nokia 6630 (codename “Charlie”) was
based on TI’s Open Multimedia Applications Platform (OMAP) pro-
cessors based on the ARM architecture. TI would brand the processor
secure environment technology initially developed jointly with Nokia

Full text available at: http://dx.doi.org/10.1561/3300000024
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as M-Shield (Sundaresan, 2003). It was however in Nokia’s interest to
ensure that it could invite bids from multiple hardware manufacturers
for processors implementing a security architecture meeting Nokia’s
requirements. This became possible around 2003, when ARM proposed
to develop system-wide hardware isolation architecture for secure execu-
tion for the ARMv6-A application processor architecture which included
security extensions to the ARM SoC covering the processor, memory
controllers and peripherals. ARM’s design would become known as
TrustZone (Alves and Felton, 2004). Integrating TrustZone in ARM
processor architecture would ensure that any semiconductor manufac-
turer that implemented the TrustZone security extensions could supply
Nokia with processor chips that met their requirements.

2.4 Trusted execution environments

In Section 1, we introduced the notion of TEEs – intuitively, a TEE
is a computing environment on a device that a relying party trusts
to a greater extent than the rest of the software running on the same
device. Consider a device running a general-purpose operating system
and applications, which, following standard practice, we will refer to
as rich execution environment (REE) (GlobalPlatform, 2018c). For the
purposes of this monograph we deem the device to have a TEE capable
of running trusted code, if it has the following capabilities, possibly
based on hardware support:

1. Isolation: The ability to run trusted code strongly isolated from
the REE so that the REE cannot influence or learn the computa-
tions carried out by the trusted code,

2. Secure Storage: The ability for the trusted code to store per-
sistent data guaranteeing its integrity and confidentiality with
respect to an adversarial REE, even across reboots, and

3. (Remote) Attestation: The ability to convince a (possibly
remote) party of the presence of the above attributes, and the
characteristics of the trusted software protected by them.

Full text available at: http://dx.doi.org/10.1561/3300000024
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This is an intentionally broad definition. It encompasses both physically
distinct components—such as HSMs and TPMs—as well as processor
secure environments where the isolation is logical and is enabled by
extensions to the processor hardware.3

TEEs have largely evolved based on business needs, a number of
commercial TEEs (Table 1) have emerged over the years. For mobile
TEEs there is a framework of applicable standards, and a core set of
these has reached critical mass in industry adoption. Standardization
has followed in two contexts: 1) whenever and wherever common in-
terfaces and application programming interfaces (APIs) are needed for
interoperability, and 2) where common agreement for the formulation
of the required security level for today’s TEEs has been required.

The main standardization organization for mobile TEEs is the
GlobalPlatform (GP) consortium.4 GP provides a system architecture
document (GlobalPlatform, 2018c) that describes the main components
of the standards set related to TEEs, and how these individual stan-
dards contribute to the overall TEE system. Ostensibly the GP TEE
architecture is not tied to any particular underlying hardware mech-
anism for ensuring isolation, but is, in practice, heavily influenced by
the ARM TrustZone security architecture. Consequently GP standards
are primarily adopted by TrustZone-based TEEs. Enclave architec-
tures (Section 5.2), such as Intel SGX, do not yet have well-defined
interoperability specification. But there are on-going efforts like the
Linux Foundation’s Confidential Computing Consortium which includes
projects like the Open Enclave SDK5 to provide a common development
environment across different enclave architectures.

The GP TEE Client API (GlobalPlatform, 2010) is the common
operating system interface (endpoint) to all TEE services. The specifi-
cation primarily includes APIs for installing trusted applications (TAs)
within the TEE, and for allowing REE applications – also known as

3Sometimes the term TEE is used as a synonym for the particular instance that
we call “processor secure environments” in Section 5. The broad definition we adapt
in this monograph is consistent with the terminology used by GlobalPlatform (Glob-
alPlatform, 2018c).

4https://globalplatform.org/
5https://openenclave.io/

Full text available at: http://dx.doi.org/10.1561/3300000024
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client applications (CAs) – to communicate with their respective TAs,
defining the data interaction model and the session management for
this purpose. A separate Debug API, when available, enables a TA
developer to receive logs from his TA, and also some post-mortem data
in the case of critical crashes.

The GP TEE Internal API (GlobalPlatform, 2021a) is the specifi-
cation against which TAs are written. For the time being, it provides
C-language binding. The internal API defines the transactional model
of TAs in the form of a set of standardized callback functions that are
called when the TA is loaded, when it is connected to initially, and when
it receives an incoming command. The data formats are TA-specific, but
communication follows a paradigm of shared memory, allocated by the
caller and accessible by the TA, when an incoming message is received.
Another aspect of the internal API is the standardized programming
framework, a “libc-like” interface that provides the TA developer with
memory management, secure storage, time, peripheral access and cryp-
tographic primitives. Due to the emphasis on security, the coverage of
the cryptographic functionality in the internal API is extensive, and
features most contemporary algorithms for public and private key cryp-
tography, symmetric ciphers as well as digest and signature functions.
Optional extensions (standards) to the GP internal API includes inter-
faces to smart cards and embedded secure elements (from within the
TEE) (GlobalPlatform, 2021b), APIs by which trusted user interfaces
can be setup and controlled (GlobalPlatform, 2013; GlobalPlatform,
2018d), and a socket API for network endpoints (GlobalPlatform, 2017).

For remote administration of TEEs, two separate specifications exist.
Both are based on the notion that security domains are established on
the device in a hierarchical fashion, after which the lifecycle of a security
domain can be remotely managed, and secrets (data) and TA codes can
be remotely provisioned to it. The two variants are the TEE Management
Framework (TMF) (GlobalPlatform, 2016), and the Open Trust Protocol
(OTrP) (Pei et al., 2019; GlobalPlatform, 2019b). The latter is specified
both in the context of the GP consortium (GlobalPlatform, 2019b) and
in the context of IETF (Pei et al., 2019). Even though both protocols
accomplish the same thing, TMF is better suited to off-line (or store-and-
forward) provisioning, whereas OTrP is explicitly an online protocol.

Full text available at: http://dx.doi.org/10.1561/3300000024
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Another provisioning standard, used for virtually all smart cards
with application update functionality (including UICC cards) is GP’s
Card Specification standards (GlobalPlatform, 2018a). These define the
card commands by which software can be provisioned to the smart cards,
and how security domains, i.e., keys identifying a certain card context,
are managed. The secure communication between the provisioning entity
and the card, as used by the Card Specification standard, is defined in
the GP Secure Channel Protocols (GlobalPlatform, 2019a).

Full text available at: http://dx.doi.org/10.1561/3300000024
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Commercial TEE Deployments

Since TEE technology, and in particular TrustZone, has been deployed
in large scale, a number of TEE vendors have emerged over the years.
The majority of these are with proprietary implementations of the TEE
software stack. Table 1 lists TEE vendors for TrustZone, TrustZone-M
and the RISC-V architecture.

1https://globalplatform.org/wp-content/uploads/2019/07/01-CR-1.0_GP1800
04-Certificate-and-Certification-Report_20190712.pdf

2https://www.commoncriteriaportal.org/files/epfiles/CC%20Huawei%20iTrus
tee%20Software%20V2.0%20Security%20Target%202.1.pdf

3https://www.trustonic.com/solutions/iot-security/
4https://www.op-tee.org/
5https://www.provenrun.com/products/provencore/
6https://www.qualcomm.com/products/features/mobile-security-solutions
7https://www.rockycore.cn/index.html
8https://optimumdesk.com/it-solutions/data-loss-prevention-privacy
9https://www.sierraware.com/open-source-ARM-TrustZone.html

10https://www.trustkernel.com/en/products/tee/t6.html
11https://developer.samsung.com/teegris
12https://source.android.com/security/trusty
13https://www.taf.net.cn/Tee_detail.aspx?_ID=2349283b-6311-4617-862c-

112234544354
14https://globalplatform.org/certified-products/watchtrust-2-1-1-on-sc9860-2/
15https://globalplatform.org/wp-content/uploads/2019/09/GP-SE-2019_02-

CR-1.0_GP190006-Certificate-and-Certification-Report_20190909.pdf
16https://www.trustonic.com/technical-articles/kinibi-m/
17https://www.st.com/en/embedded-software/provencore-m.html
18https://hex-five.com/first-secure-iot-stack-riscv/
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