
Hardware Platform Security
for Mobile Devices

Full text available at: http://dx.doi.org/10.1561/3300000024

Other titles in Foundations and Trends® in Privacy and Security

Expressing Information Flow Properties
Elisavet Kozyri, Stephen Chong and Andrew C. Myers
ISBN: 978-1-68083-936-4

Accountability in Computing: Concepts and Mechanisms
Joan Feigenbaum, Aaron D. Jaggard and Rebecca N. Wright
ISBN: 978-1-68083-784-1

A Pragmatic Introduction to Secure Multi-Party Computation
David Evans, Vladimir Kolesnikov and Mike Rosulek
ISBN: 978-1-68083-508-3

Contextual Integrity through the Lens of Computer Science
Sebastian Benthall, Seda Gurses and Helen Nissenbaum
ISBN: 978-1-68083-384-3

Methods for Location Privacy: A comparative overview
Kostantinos Chatzikokolakis, Ehab ElSalamouny, Catuscia Palamidessi
and Pazii Anna
ISBN: 978-1-68083-366-9

Full text available at: http://dx.doi.org/10.1561/3300000024

Hardware Platform Security for
Mobile Devices

Lachlan J. Gunn
Aalto University

Finland
lachlan@gunn.ee

N. Asokan
University of Waterloo

Canada
asokan@acm.org

Jan-Erik Ekberg
Huawei
Finland

Hans Liljestrand
University of Waterloo

Canada

Vijayanand Nayani
Huawei
Finland

Thomas Nyman
Aalto University

Finland

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/3300000024

Foundations and Trends® in Privacy and Security

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

L. J. Gunn et al.. Hardware Platform Security for Mobile Devices. Foundations and
Trends® in Privacy and Security, vol. 3, no. 3-4, pp. 214–394, 2022.

ISBN: 978-1-68083-977-7
© 2022 L. J. Gunn et al.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/3300000024

Foundations and Trends® in Privacy and Security
Volume 3, Issue 3-4, 2022

Editorial Board

Editors-in-Chief
Anupam Datta
Carnegie Mellon University, USA

Jeannette Wing
Columbia University, USA

Editors

Martín Abadi
Google and University of California,
Santa Cruz
Michael Backes
Saarland University
Dan Boneh
Stanford University, USA
Véronique Cortier
LORIA, CNRS, France
Lorrie Cranor
Carnegie Mellon University
Cédric Fournet
Microsoft Research
Virgil Gligor
Carnegie Mellon University
Jean-Pierre Hubaux
EPFL

Deirdre Mulligan
University of California, Berkeley

Andrew Myers
Cornell University

Helen Nissenbaum
New York University

Michael Reiter
University of North Carolina

Shankar Sastry
University of California, Berkeley

Dawn Song
University of California, Berkeley

Daniel Weitzner
Massachusetts Institute of Technology

Full text available at: http://dx.doi.org/10.1561/3300000024

Editorial Scope
Topics

Foundations and Trends® in Privacy and Security publishes survey and
tutorial articles in the following topics:

• Access control
• Accountability
• Anonymity
• Application security
• Artifical intelligence methods in

security and privacy
• Authentication
• Big data analytics and privacy
• Cloud security
• Cyber-physical systems security

and privacy
• Distributed systems security and

privacy
• Embedded systems security and

privacy
• Forensics
• Hardware security

• Human factors in security and
privacy

• Information flow
• Intrusion detection
• Malware
• Metrics
• Mobile security and privacy
• Language-based security and

privacy
• Network security
• Privacy-preserving systems
• Protocol security
• Security and privacy policies
• Security architectures
• System security
• Web security and privacy

Information for Librarians

Foundations and Trends® in Privacy and Security, 2022, Volume 3, 4
issues. ISSN paper version 2474-1558. ISSN online version 2474-1566.
Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/3300000024

Contents

I Mobile Platform Security: Why? 3

1 Introduction 4
1.1 What motivated mobile platform security? 4
1.2 Stakeholders . 5
1.3 Threat models . 6
1.4 Chains of trust . 7

2 Historical Overview 9
2.1 Hardware security modules 10
2.2 SIMs, mobile handsets, and smart cards 12
2.3 Processor secure environments 14
2.4 Trusted execution environments 16

II Mobile Platform Security: How? 20

3 Operating System Security 21
3.1 General concepts . 23
3.2 Run-time hardware assistance 38
3.3 Conclusions . 40

Full text available at: http://dx.doi.org/10.1561/3300000024

4 Platform Integrity 42
4.1 Supply chain security . 42
4.2 Boot integrity . 49
4.3 Secure storage . 52

5 Hardware-assisted Isolation Mechanisms 56
5.1 Split-world architectures 59
5.2 Enclave architectures . 71
5.3 Security co-processors and multi-TEE architectures 76

6 Cryptographic Hardware 82
6.1 Cryptographic modules 83
6.2 Random number generators 86

7 Run-time Protection Mechanisms 88
7.1 Intel 64 architecture . 89
7.2 ARMv8-A architecture . 94
7.3 CHERI . 100

III What Can Go Wrong? 102

8 Software-level Attacks 103
8.1 Memory vulnerabilities . 104
8.2 Code-injection attacks . 105
8.3 Code-reuse attacks . 106
8.4 Data-only attacks . 107
8.5 Attacks on TEEs . 108
8.6 Attacks on hardware-assisted memory defenses 109

9 CPU-level Attacks 111
9.1 Side-channel attacks . 111
9.2 Fault-injection attacks . 115

10 Physical Attacks 118
10.1 Power analysis . 119
10.2 Electromagnetic emissions 122

Full text available at: http://dx.doi.org/10.1561/3300000024

10.3 Fault-injection attacks . 123
10.4 Microscopy and probing attacks 125

IV What Next? 127

11 Dealing with Hardware Compromise 128
11.1 Multiple TEEs . 129
11.2 Application-specific techniques 130

12 Towards Next-generation TEEs 132
12.1 CPU-based TEE architectures 132
12.2 Beyond TEEs . 138
12.3 Conclusion . 144

Appendix 147

References 150

Full text available at: http://dx.doi.org/10.1561/3300000024

Hardware Platform Security for
Mobile Devices
Lachlan J. Gunn1, N. Asokan2, Jan-Erik Ekberg3, Hans Liljestrand2,
Vijayanand Nayani3 and Thomas Nyman1

1Aalto University, Finland; lachlan@gunn.ee
2University of Waterloo, Canada; asokan@acm.org
3Huawei, Finland

ABSTRACT
Today, personal mobile devices like smartphones and tablets
are ubiquitous. People use mobile devices for fun, for work,
and for organizing and managing their lives, including their
finances. This became possible because over the last two
decades, mobile phones evolved from closed platforms in-
tended for voice calls and messaging to open platforms
whose functionality can be extended in myriad ways by
third party developers. Such wide-ranging scope of use also
means widely different security and privacy requirements for
those uses. The mobile device ecosystem involved multiple
different stakeholders such as mobile network operators, reg-
ulators, enterprise information technology administrators,
and of course ordinary users. So, as mobile platforms be-
came gradually open, platform security mechanisms were
incorporated into their architectures so that the security
and privacy requirements of all stakeholders could be met.
Platform security mechanisms help to isolate applications
from one another, protect persistent data and other on-
device resources (like access to location or peripherals), and

Lachlan J. Gunn, N. Asokan, Jan-Erik Ekberg, Hans Liljestrand, Vijayanand Nayani
and Thomas Nyman (2022), “Hardware Platform Security for Mobile Devices”,
Foundations and Trends® in Privacy and Security: Vol. 3, No. 3-4, pp 214–394. DOI:
10.1561/3300000024.
©2022 L. J. Gunn et al.

Full text available at: http://dx.doi.org/10.1561/3300000024

2

help strengthen software against a variety of attack vectors.
All major mobile platforms incorporate comprehensive soft-
ware and hardware platform security architectures, including
mechanisms like trusted execution environments (TEEs).

Over the past decade, mobile devices have been undergo-
ing convergences in multiple dimensions. The distinction
between “mobile” and “fixed” devices has blurred. Similar
security mechanisms and concepts are being used across
different platforms, leading to similar security architectures.
Hardware enablers used to support platform security have
gradually matured. At the same time, there have also been
novel types of attacks, ranging from software attacks like
return- and data-oriented programming to hardware attacks
like side channels that exploit micro-architectural phenom-
ena. It is no longer tenable to assume that the current hard-
ware security mechanisms underpinning mobile platform
security are inviolable.

The time is therefore right to take a new look at mobile
platform security, which brings us to this monograph. We
focus on hardware platform security. The monograph is
divided into four parts: we begin by looking at the why and
how of mobile platform security, followed by a discussion on
vulnerabilities and attacks; we conclude by looking forward
discussing emerging research that explores ways of dealing
with hardware compromise, and building blocks for the next
generation of hardware platform security.

Our intent is to provide a broad overview of the current
state of practice and a glimpse of possible research directions
that can be of use to practitioners, decision makers, and
researchers.

Full text available at: http://dx.doi.org/10.1561/3300000024

Part I

Mobile Platform Security:
Why?

Full text available at: http://dx.doi.org/10.1561/3300000024

1
Introduction

Today, mobile devices such as smartphones and tablets are very widely
deployed. All modern mobile device platforms incorporate sophisticated
software and hardware platform security mechanisms. To understand
how this came to be, we need to start in the late 1990s.

1.1 What motivated mobile platform security?

The mobile phone revolution was well under way by the mid 1990s.
Initially, mobile phones were simple embedded devices with fixed func-
tionality: voice calls and text messages. Early on, the mobile phone
industry recognized the power of billions of people having general-
purpose computing devices in their hands. Personal digital assistants
were already available and demonstrated the range of uses for portable,
personal general-purpose computing devices. Therefore, already by the
mid 1990s, the industry was working towards opening up mobile phone
platforms so that users gain the ability to extend their functionality, by
installing third-party software modules. This development directly led
to today’s smartphones and tablets with their “app” ecosystems.

The industry saw the potential for new types of applications like
mobile payments, public transport ticketing, and digital media consump-

4

Full text available at: http://dx.doi.org/10.1561/3300000024

1.2. Stakeholders 5

tion. But it also realized that for these applications to succeed, open
mobile devices needed additional mechanisms to safeguard the security
and privacy requirements of these novel, and potentially high-value,
applications.

Furthermore, the mobile phone ecosystem already had well-establish-
ed stakeholders. They were sensitive to the security and privacy concern
that could arise in the transition from closed fixed-function devices to
open platforms. Existing commodity general-purpose computing plat-
forms at the time, like those for personal computers, did not incorporate
the platform security mechanisms necessary to address these concerns.
Consequently, they wanted to mediate this transition so that their own
interests were safeguarded. This, too, drove the development of new
platform security mechanisms. Mobile platform security architectures
emerged because of the need to address these stakeholder concerns as
mobile devices opened up (Matala et al., 2019).

1.2 Stakeholders

An important class of stakeholders are mobile network operators (MNOs)
(also known as “carriers”) who are motivated by business interests.
An example of a business interest of MNOs is the need to strongly
authenticate their subscribers. This need led to the introduction of
subscriber identity modules (SIMs) (discussed further in Section 2.2)
right from the beginning. Another example of a business interest of
MNOs is the need for robust technical mechanisms to support the
subsidy-lock business model where a MNO gives a mobile phone to a
subscriber for free or below cost, in return for a commitment to maintain
the subscription for a specified period of time. The requirement to
technically enforce subsidy locks translated into each device having
an unforgeable unique identifier and the ability to run subsidy-lock
enforcement software in a manner that cannot be bypassed.

Another, equally important, class of stakeholders are regulators
who safeguard the public good. An example of a regulatory need is
to ensure that radio-frequency transmission parameters, which are
typically calibrated for each device at the time of manufacture, cannot
be tampered with. This need can be met with secure (integrity-protected)
storage for storing these parameters.

Full text available at: http://dx.doi.org/10.1561/3300000024

6 Introduction

A third class of stakeholders are end-users. They were used to mobile
phones that were reliable and trustworthy. They expected the same
degree of reliability and trustworthiness to be maintained, even as
mobile phone platforms were opening up.

There are other stakeholders in the ecosystem, like enterprise admin-
istrators, and of course the mobile phone manufacturers —also known as
original equipment manufacturers (OEMs)—and operating system (OS)
vendors themselves. To see what kinds of mechanisms are needed to pro-
tect the interest of different stakeholders, it is necessary to understand
the threat models from the perspectives of these stakeholders.

1.3 Threat models

A threat model involves characterizing the adversary in terms of its
capabilities, and the assets that need to be protected from these ad-
versaries. For example a software adversary is assumed to be capable
of influencing one or more software modules on the victim device. The
adversary’s control may be limited to a single application (software in
user space) or can extend to privileged software like the OS itself. In
contrast, a hardware adversary can directly interact with, and possibly
manipulate, the hardware components on the victim device.

Rather than presenting an exhaustive treatment of all possible threat
models, we will illustrate the concept with three informal examples.

First, consider the threat of a user’s address book being exfiltrated
from the device by a malicious third-party application that the user
happened to install. We are concerned with a software adversary (the
third-party developer) and the asset that needs protection is the ad-
dress book. Standard hardware support (for memory management and
process isolation) combined with a good OS security architecture (pro-
viding access-controlled persistent storage for each application) would
be sufficient to provide the required protection. In Section 3 we will
discuss OS security architectures.

Next, consider the same setting as above, but with a different asset:
credentials for accessing financial transactions like online banking. While
we are still concerned with a software adversary, the value of the asset
is significantly higher, and its compromise can result in substantial

Full text available at: http://dx.doi.org/10.1561/3300000024

1.4. Chains of trust 7

losses. Consequently, relying only on OS security is not reasonable
because an OS is a complex software component with a large threat
surface for the attacker to exploit. Additional hardware support for
protecting high-value assets is justifiable. Hardware-assisted trusted
execution environments (TEEs) allow small pieces of trusted software on
a general-purpose computing device to be isolated from the rest of the
software on the same device, including the OS and other applications.
Today TEEs are ubiquitous. Nearly every smartphone or tablet is likely
to have a processor with TEE capabilities. Many personal computers
are also equipped with TEEs. The ubiquity of TEEs is not a recent
phenomenon (Ekberg et al., 2014): hardware-assisted TEEs started
to appear in mobile phones from the early 2000s. For a technology
that is so widely deployed, for so long, the origins and trajectory of
TEE technologies are poorly understood. Our primary focus in this
monograph is to explore hardware platform security for mobile devices,
with a particular emphasis on TEEs.

Finally, consider the case of technical mechanisms for subsidy-lock
enforcement. The adversary in this case is the user of the device who
has physical access to the device. The asset that the adversary wants
to compromise is the binding between the mobile device hardware
and the MNO (so that a successful attack will result in breaking the
binding, allowing the adversary to use the device with a different MNO
subscription). OS security alone is not sufficient. Since we now deal
with a potential hardware adversary, we must use hardware-security
mechanisms that can withstand physical attack.

1.4 Chains of trust

In a given scenario, the party relying on the protection mechanism trusts
the software and hardware components used to realize the mechanism.
A chain of trust refers to the process of building up this trust, starting
from one or more roots of trust. In the first example above, while OS
security is sufficient, the relying party, the user, needs to trust that
the correct OS is running on the device. Platform integrity (Section 4)
makes it possible to build up this trust. Higher level platform security
mechanisms like OS security rely on underlying building blocks like

Full text available at: http://dx.doi.org/10.1561/3300000024

8 Introduction

platform integrity (Section 4), hardware-assisted isolation (Section 5),
and cryptographic primitives realized in hardware (Section 6).

An important feature of hardware platform security mechanisms
is allowing remote relying parties to build up trust in a device. In the
second example above, a bank may need to convince itself that the user
is accessing her bank account from a secure device before allowing access.
This feature is called remote attestation, which is widely supported by
modern TEEs. In Section 5 we will discuss the chains of trust involved
in remote attestation in modern TEEs.

We begin with an overview of the history of mobile hardware plat-
form security mechanisms (Section 2), and provide an overview of OS
security (Section 3) to understand how an OS can make use of these
mechanisms. We will explore the nuts and bolts of how platform security
is implemented in today’s devices, focusing on hardware platform secu-
rity (Part II), and discuss attacks against hardware platform security
mechanisms (Part III). We will conclude with a brief foray into a future
outlook for hardware platform security (Part IV).

Notes on the scope of this monograph

The focus of this monograph is on hardware platform security in mobile
devices. We do cover OS security in Section 3, but from the perspective
of motivating hardware platform security. Mobile device platforms also
incorporate sophisticated software platform security mechanisms. We
refer readers interested in this topic to books dedicated to the topic such
as Asokan et al. (2014). We also do not cover specific high-level attacks
such as jail-breaking (removing manufacturer-imposed restrictions on
what software can be installed on a mobile device) or rooting (obtaining
the privileges of the maximally privileged “root” user on Unix-based
mobile OSs). However, the basic attacks we describe in Part III can be,
and often are, used as stepping stones for these high-level attacks.

Full text available at: http://dx.doi.org/10.1561/3300000024

2
Historical Overview

The requirements we saw in Section 1 led to mobile device and platform
vendors developing and deploying software and hardware platform
security architectures. Nokia Radio Application Processors are believed
to be the first trusted execution environments (TEEs) deployed at
a large scale (Matala et al., 2019). These were followed shortly by
Texas Instruments’ M-Shield™ (Sundaresan, 2003) and subsequently
by ARM’s TrustZone™(Alves and Felton, 2004) which represents the
overwhelming share of deployed mobile TEEs today.

In the non-mobile setting, hardware security modules (HSMs) used
in the financial sector (starting with IBM’s CryptoCard1) are an early
example of a TEE. Trusted Computing Group’s Trusted Platform
Modules (TPMs) (Arthur and Challener, 2015) are widely deployed in
personal computers, where they are used for boot integrity and disk
encryption, but they have not found common use in the mobile space.
Recently, Intel’s Software Guard Extensions (SGX) (McKeen et al.,
2016) has become the most widely studied TEE architecture, thanks
to the easy availability of both the software and hardware.2 SGX is

1https://www.ibm.com/security/cryptocards/
2https://software.intel.com/en-us/sgx

9

Full text available at: http://dx.doi.org/10.1561/3300000024

https://www.ibm.com/security/cryptocards/
https://software.intel.com/en-us/sgx

10 Historical Overview

primarily deployed in cloud settings to enable confidential computing
use cases (Alibaba, 2020; McReynolds, 2021). Desktop use cases for
SGX include Blu-ray digital rights management (DRM) (Toulas, 2021)

2.1 Hardware security modules

Early examples of the inclusion of a dedicated security co-processor
were motivated by the need to perform sensitive cryptographic opera-
tions isolated from other computations in systems handling financial
transactions. Transaction processing for Europay, Mastercard and Visa
(EMV) payment cards use HSMs as the primary security device for
key management (Cryptomathic, 2017). An HSM is a discrete comput-
ing device usually encapsulated in tamper-evident coating. HSMs in
backend systems typically include specialized cryptographic hardware
accelerators to enable high throughput because they need to process
transactions in real-time. An HSM can be realized as either a stand-
alone peripheral device or as an extension board connected directly
to the internal bus of the host computer. The operational keys are
generated in the cryptographic co-processor within the HSM and are
then saved either in a keystore file or in application memory, encrypted
under the master key of that co-processor. Any HSM with an identical
master key can use those keys.

The first commercially available civilian HSMs were deployed already
in the 1970s, originally for IBM mainframes. The IBM 3845 and 3846
data encryption devices (IBM, 1977) allowed exported encryption keys
to be encrypted using the recently standardized DES algorithm. These
early HSMs included secure key entry devices (cards and PIN pads) for
master key loading, random number generation capabilities for seeding,
and persistent storage for key materials. They were instrumental in
securing early electronic banking, such as automatic teller machines
(ATMs).

2.1.1 HSMs in radio communication

HSMs are also extensively deployed for modern military software-defined
radio (SDR) communication. SDR refers to wireless communications

Full text available at: http://dx.doi.org/10.1561/3300000024

2.1. Hardware security modules 11

where the transmitter and receiver mixing, filtering, amplification, mod-
ulation/demodulation etc. occur in software instead of in conventional
radio electronics. With SDR, software-based transmission algorithms
can be downloaded and adapted over the lifecycle of the hardware.
While analog military radio equipment include dedicated cryptographic
chips for (proprietary) ciphers that are required for communication
with compatible equipment, SDR equipment have to support a large
number of cryptographic schemes, including legacy protocols and algo-
rithms. Consequently military SDR equipment, such as the U.S. Joint
Tactical Radio System (JTRS), employ embeddable HSMs specifically
designed for communication security. The Advanced INFOSEC Ma-
chine (AIM) (General Dynamics Mission Systems, 2015a) is one such
programmable, embeddable cryptographic unit developed by Motorola
in the late 1990s. It consists of a hardware platform with three inde-
pendent cryptographic processors, one for key management and two
programmable processors for traffic encryption/decryption. The key
management cryptographic engine (KMCE) is based on a 32-bit re-
duced instruction set computer (RISC) processor and includes a math
co-processor designed for public key algorithm processing. The KMCE
runs a read-only memory (ROM)-based Secure Operating System (SOS).
The SOS provides a multi-security level, multi-tasking environment for
the cryptographic applications which allowed the functionality of the
AIM to be extended by software. The chip contains the necessary build-
ing blocks to implement encryption algorithms such as DES, and the
classified SAVILLE and BATON cryptographic algorithms used by
U.S. and NATO. Its successor, AIM II (General Dynamics Mission Sys-
tems, 2015b) is specifically designed for JTRS. Around the same time,
a similar crypto-chip, called the General Crypto Device (GCD) (Lange,
1997), was developed in Europe by Dutch electronics giant Philips.

The use of HSMs such as AIM and GCD are early examples of the
use of TEEs in telecommunications. The sensitivity of military com-
munication justified the inclusion of dedicated components for security
into end devices. However, for civilian telecommunication devices, the
widespread use of TEE-technology only occurred when two conditions
were met: 1) economic incentives emerged to justify requiring strong,
hardware-based security, and 2) low-cost technological solutions that
met those requirement were developed.

Full text available at: http://dx.doi.org/10.1561/3300000024

12 Historical Overview

2.2 SIMs, mobile handsets, and smart cards

During the early 1990s, civilian wireless communication systems also
began to employ hardware-assisted security. Mobile network operators
(MNOs) required a reliable way of preventing illicit use of a subscriber
identity for making phone calls from mobile phones. For this purpose,
the subscriber identity module (SIM) card (GSMA, 2015) was developed
by Munich smart-card maker Giesecke & Devrient, who sold the first
300 SIM cards to the Finnish MNO Radiolinja in 1991. The use of SIM
cards became mandatory in the Global System for Mobile Communica-
tions (GSM) standard. Each SIM card contains an international mobile
subscriber identity (IMSI) that uniquely identifies the user of the mobile
network and a unique symmetric cryptographic key (Ki) assigned to
it by the MNO during SIM card personalization. The SIM ensures the
integrity of the IMSI and Ki, and the confidentiality of Ki. Ki allows the
MNO to authenticate the SIM card when the mobile phone connects to
the network. When the mobile phone connects, it obtains the IMSI from
the SIM card, and requests network access by transmitting the IMSI to
the MNO. The MNO looks up the corresponding Ki of the IMSI from
its subscriber database, and generates a random nonce as a challenge
which is transmitted to the mobile phone. The mobile phone passes
the challenge to the SIM card, which signs it, and returns the signed
response, which is transmitted back to the MNO by the mobile phone.
The MNO compares the signed response to the response calculated
using the MNO’s copy of the Ki. If they match, the authentication is
successful.

Modern SIM cards are based on tamper-resistant universal inte-
grated circuit card (UICC) technology (SIMalliance Ltd., 2013) similar
to smart cards. UICC cards can host multiple software applications,
typically developed using Java Card software technology (ETSI, 2012).
The applications include a SIM application for GSM, and universal
subscriber identity module (USIM) for UMTS (3G), Long-Term Evolu-
tion (4G), and 5G network authentication. MNOs can also provision
additional value-add applications to UICC cards that they issue, such
as mobile banking and phone-based money transfer. UICC application
can interface with mobile phone users or initiate actions via a card

Full text available at: http://dx.doi.org/10.1561/3300000024

2.2. SIMs, mobile handsets, and smart cards 13

application toolkit (CAT) part of the mobile phone operating system
(OS): SIM Application Toolkit (STK) for GSM systems, and USIM
Application Toolkit (USAT) for later generation networks. UICCs can
support an optional bearer independent protocol (BIP), which allows
MNOs to deliver over-the-air (OTA) updates to UICC applications
either via cell broadcasts, or short message service packets.

All UICC applications are subject to authorization by the issuer
security domain (ISD), namely the MNO who issued the UICC. Conse-
quently UICCs are effectively closed application ecosystems; it is not
possible for third-party developers to leverage UICC security without
co-operating with MNOs in their region. This puts add-on services
operated by large MNOs into an advantageous position compared to
third-party alternatives, as is the case with M-Pesa (Mbiti and Weil,
2011), a money transfer application operated by Safaricom and Voda-
com, the largest mobile MNO in Kenya and Tanzania. In developing
countries, such as Kenya, low-cost feature phones are still prevalent, and
UICC applications is the only ubiquitous application platform available
to the majority of mobile phone users. Proprietary SIM overlay tech-
nology (a.k.a. “slim SIM” or “skin SIM”) (Mondato, 2014) can enable
third-party applications to operate independently of the underlying
UICC.

The SIM overlay is a computer chip embedded into a thin plastic
sheet that can be placed on top of a standard UICC card within
a mobile phone. They were originally developed to support low-cost
mobile roaming for Chinese customers traveling outside their home
province. The overlay SIM acts as an independent security device, and
allows additional functionality to be added to any mobile phone by
attaching the overlay SIM to an MNO-issued UICC. However, an overlay
SIM also has the potential to facilitate a man-in-the-middle attack by
observing sensitive data such as personal identification numbers (PINs)
being transmitted to the underlying UICC, or initiate, intercept and/or
block mobile communications or CAT instructions (GSMA, 2014). By
obtaining unauthorized access to the UICC SIM applications they could
also change MNO configuration settings.

Embedded SIMs (eSIMs) (GSMA, 2015) are secure elements physi-
cally integrated into a mobile phone. eSIM chips can be directly soldered

Full text available at: http://dx.doi.org/10.1561/3300000024

14 Historical Overview

onto the device or even embedded into the system on chip (SoC) itself.
This physical integration necessitates MNO SIM or USIM profiles to
be remotely provisioned. Additionally, unlike removable SIM cards, a
single eSIMs may need to store multiple MNO profiles simultaneously.

2.3 Processor secure environments

Towards the late 1990s, mobile phones were transitioning from closed
systems to open application platforms, for which third-party applications
could be developed using the Java programming language. While not yet
true smartphones, the feature phones of the time were gradually starting
to resemble small, general-purpose computers. This brought with it
new business opportunities, but also new challenges for device security;
regulators and MNOs needed to ensure the protection of certain pieces
of information after the mobile phone had left the manufacturing line. In
particular, regulators required that the device identity, the international
mobile equipment identifier (IMEI), remain unchanged in order to act
as a theft deterrent. IMEIs of stolen mobile phones are blacklisted by
network operators, thereby reducing the economic value of stolen mobile
phones and deterring theft (GSMA, 2019).

Similarly, radio frequency parameters, which could affect the quality
of service of other mobile phones in the area, or the safety of the user,
should also remain unchanged. MNOs, who were the primary customers
of large original equipment manufacturers (OEMs) such as Nokia, were
concerned with ensuring that their subscribers receiving subsidized
mobile devices do not break their contract terms. Consequently, they
required a strong subsidy lock mechanism (colloquially known as SIM
lock), which would tie the mobile phone to a particular MNO for the
duration of the contract. Another emerging use case was DRM for
digital content sold by the MNOs; initially ringtones, later games and
music.

Nokia was the first to pursue a hardware-enforced processor secure
environment. At the time, the security of Nokia’s Digital Core Technol-
ogy (DCT) generation phones was mainly based on obfuscated software
solutions and protected by secrecy within the organization; even within
the company, only few security professionals knew the exact design and

Full text available at: http://dx.doi.org/10.1561/3300000024

2.3. Processor secure environments 15

requirements of the DCT security architecture (Matala et al., 2019).
The leading market share of Nokia made it an attractive target for
hackers who, (typically for a small fee) would “unlock” or “unbrand”
subsidy-locked phones by either reverse engineering the valid unlock
codes, or reflashing the phone with a different firmware version.

The fourth generation of DCT mobile phones included hardware
components in the form of one-time-programmable memory to aid in
the secure storage of sensitive device parameters. However, in the case
of SIM locks, the economic motives to break device security were higher
than the capabilities of the protection mechanism deployed at the time.
Consequently, the revenue losses of important MNO customers resulting
from SIM unlocking, increased the pressure to design a better security
architecture for the upcoming generation of Nokia phones.

Within Nokia the idea of a coherent, hardware-enforced platform
security originated within a team of engineers working with mobile
payments and security (Matala et al., 2019). Initial designs revolved
around introducing a discrete security co-processor to ensure the physi-
cal isolation of the security-critical operations. However, the additional
hardware chip in the bill of materials was deemed too expensive in the
extremely cost-conscious organization, whose competitive advantage
largely stemmed from its ability to keep manufacturing and components
costs in control. Instead, Nokia engineers opted to implement a logically
isolated secure processing mode within the main central processing
unit (CPU). This solution was not only more cost effective in terms of
component costs during manufacturing, but also functioned as common
hardware platform for solutions to different use cases. This processor se-
cure environment (Ekberg, 2013) would form the cornerstone of Nokia’s
Baseband 5 (BB5) generation mobile phone security architecture.

Initial hardware designs were based on Nokia’s own radio application
processors (RAPs), but from very early on Nokia collaborated with the
U.S. semiconductor and Integrated Circuit (IC) manufacturer Texas
Instruments (TI) with whom they had a close partnership at the time.
The first BB5 mobile phone, the Nokia 6630 (codename “Charlie”) was
based on TI’s Open Multimedia Applications Platform (OMAP) pro-
cessors based on the ARM architecture. TI would brand the processor
secure environment technology initially developed jointly with Nokia

Full text available at: http://dx.doi.org/10.1561/3300000024

16 Historical Overview

as M-Shield (Sundaresan, 2003). It was however in Nokia’s interest to
ensure that it could invite bids from multiple hardware manufacturers
for processors implementing a security architecture meeting Nokia’s
requirements. This became possible around 2003, when ARM proposed
to develop system-wide hardware isolation architecture for secure execu-
tion for the ARMv6-A application processor architecture which included
security extensions to the ARM SoC covering the processor, memory
controllers and peripherals. ARM’s design would become known as
TrustZone (Alves and Felton, 2004). Integrating TrustZone in ARM
processor architecture would ensure that any semiconductor manufac-
turer that implemented the TrustZone security extensions could supply
Nokia with processor chips that met their requirements.

2.4 Trusted execution environments

In Section 1, we introduced the notion of TEEs – intuitively, a TEE
is a computing environment on a device that a relying party trusts
to a greater extent than the rest of the software running on the same
device. Consider a device running a general-purpose operating system
and applications, which, following standard practice, we will refer to
as rich execution environment (REE) (GlobalPlatform, 2018c). For the
purposes of this monograph we deem the device to have a TEE capable
of running trusted code, if it has the following capabilities, possibly
based on hardware support:

1. Isolation: The ability to run trusted code strongly isolated from
the REE so that the REE cannot influence or learn the computa-
tions carried out by the trusted code,

2. Secure Storage: The ability for the trusted code to store per-
sistent data guaranteeing its integrity and confidentiality with
respect to an adversarial REE, even across reboots, and

3. (Remote) Attestation: The ability to convince a (possibly
remote) party of the presence of the above attributes, and the
characteristics of the trusted software protected by them.

Full text available at: http://dx.doi.org/10.1561/3300000024

2.4. Trusted execution environments 17

This is an intentionally broad definition. It encompasses both physically
distinct components—such as HSMs and TPMs—as well as processor
secure environments where the isolation is logical and is enabled by
extensions to the processor hardware.3

TEEs have largely evolved based on business needs, a number of
commercial TEEs (Table 1) have emerged over the years. For mobile
TEEs there is a framework of applicable standards, and a core set of
these has reached critical mass in industry adoption. Standardization
has followed in two contexts: 1) whenever and wherever common in-
terfaces and application programming interfaces (APIs) are needed for
interoperability, and 2) where common agreement for the formulation
of the required security level for today’s TEEs has been required.

The main standardization organization for mobile TEEs is the
GlobalPlatform (GP) consortium.4 GP provides a system architecture
document (GlobalPlatform, 2018c) that describes the main components
of the standards set related to TEEs, and how these individual stan-
dards contribute to the overall TEE system. Ostensibly the GP TEE
architecture is not tied to any particular underlying hardware mech-
anism for ensuring isolation, but is, in practice, heavily influenced by
the ARM TrustZone security architecture. Consequently GP standards
are primarily adopted by TrustZone-based TEEs. Enclave architec-
tures (Section 5.2), such as Intel SGX, do not yet have well-defined
interoperability specification. But there are on-going efforts like the
Linux Foundation’s Confidential Computing Consortium which includes
projects like the Open Enclave SDK5 to provide a common development
environment across different enclave architectures.

The GP TEE Client API (GlobalPlatform, 2010) is the common
operating system interface (endpoint) to all TEE services. The specifi-
cation primarily includes APIs for installing trusted applications (TAs)
within the TEE, and for allowing REE applications – also known as

3Sometimes the term TEE is used as a synonym for the particular instance that
we call “processor secure environments” in Section 5. The broad definition we adapt
in this monograph is consistent with the terminology used by GlobalPlatform (Glob-
alPlatform, 2018c).

4https://globalplatform.org/
5https://openenclave.io/

Full text available at: http://dx.doi.org/10.1561/3300000024

https://globalplatform.org/
https://openenclave.io/

18 Historical Overview

client applications (CAs) – to communicate with their respective TAs,
defining the data interaction model and the session management for
this purpose. A separate Debug API, when available, enables a TA
developer to receive logs from his TA, and also some post-mortem data
in the case of critical crashes.

The GP TEE Internal API (GlobalPlatform, 2021a) is the specifi-
cation against which TAs are written. For the time being, it provides
C-language binding. The internal API defines the transactional model
of TAs in the form of a set of standardized callback functions that are
called when the TA is loaded, when it is connected to initially, and when
it receives an incoming command. The data formats are TA-specific, but
communication follows a paradigm of shared memory, allocated by the
caller and accessible by the TA, when an incoming message is received.
Another aspect of the internal API is the standardized programming
framework, a “libc-like” interface that provides the TA developer with
memory management, secure storage, time, peripheral access and cryp-
tographic primitives. Due to the emphasis on security, the coverage of
the cryptographic functionality in the internal API is extensive, and
features most contemporary algorithms for public and private key cryp-
tography, symmetric ciphers as well as digest and signature functions.
Optional extensions (standards) to the GP internal API includes inter-
faces to smart cards and embedded secure elements (from within the
TEE) (GlobalPlatform, 2021b), APIs by which trusted user interfaces
can be setup and controlled (GlobalPlatform, 2013; GlobalPlatform,
2018d), and a socket API for network endpoints (GlobalPlatform, 2017).

For remote administration of TEEs, two separate specifications exist.
Both are based on the notion that security domains are established on
the device in a hierarchical fashion, after which the lifecycle of a security
domain can be remotely managed, and secrets (data) and TA codes can
be remotely provisioned to it. The two variants are the TEE Management
Framework (TMF) (GlobalPlatform, 2016), and the Open Trust Protocol
(OTrP) (Pei et al., 2019; GlobalPlatform, 2019b). The latter is specified
both in the context of the GP consortium (GlobalPlatform, 2019b) and
in the context of IETF (Pei et al., 2019). Even though both protocols
accomplish the same thing, TMF is better suited to off-line (or store-and-
forward) provisioning, whereas OTrP is explicitly an online protocol.

Full text available at: http://dx.doi.org/10.1561/3300000024

2.4. Trusted execution environments 19

Another provisioning standard, used for virtually all smart cards
with application update functionality (including UICC cards) is GP’s
Card Specification standards (GlobalPlatform, 2018a). These define the
card commands by which software can be provisioned to the smart cards,
and how security domains, i.e., keys identifying a certain card context,
are managed. The secure communication between the provisioning entity
and the card, as used by the Card Specification standard, is defined in
the GP Secure Channel Protocols (GlobalPlatform, 2019a).

Full text available at: http://dx.doi.org/10.1561/3300000024

Appendix

Full text available at: http://dx.doi.org/10.1561/3300000024

Commercial TEE Deployments

Since TEE technology, and in particular TrustZone, has been deployed
in large scale, a number of TEE vendors have emerged over the years.
The majority of these are with proprietary implementations of the TEE
software stack. Table 1 lists TEE vendors for TrustZone, TrustZone-M
and the RISC-V architecture.

1https://globalplatform.org/wp-content/uploads/2019/07/01-CR-1.0_GP1800
04-Certificate-and-Certification-Report_20190712.pdf

2https://www.commoncriteriaportal.org/files/epfiles/CC%20Huawei%20iTrus
tee%20Software%20V2.0%20Security%20Target%202.1.pdf

3https://www.trustonic.com/solutions/iot-security/
4https://www.op-tee.org/
5https://www.provenrun.com/products/provencore/
6https://www.qualcomm.com/products/features/mobile-security-solutions
7https://www.rockycore.cn/index.html
8https://optimumdesk.com/it-solutions/data-loss-prevention-privacy
9https://www.sierraware.com/open-source-ARM-TrustZone.html

10https://www.trustkernel.com/en/products/tee/t6.html
11https://developer.samsung.com/teegris
12https://source.android.com/security/trusty
13https://www.taf.net.cn/Tee_detail.aspx?_ID=2349283b-6311-4617-862c-

112234544354
14https://globalplatform.org/certified-products/watchtrust-2-1-1-on-sc9860-2/
15https://globalplatform.org/wp-content/uploads/2019/09/GP-SE-2019_02-

CR-1.0_GP190006-Certificate-and-Certification-Report_20190909.pdf
16https://www.trustonic.com/technical-articles/kinibi-m/
17https://www.st.com/en/embedded-software/provencore-m.html
18https://hex-five.com/first-secure-iot-stack-riscv/

148

Full text available at: http://dx.doi.org/10.1561/3300000024

https://globalplatform.org/wp-content/uploads/2019/07/01-CR-1.0_GP180004-Certificate-and-Certification-Report_20190712.pdf
https://globalplatform.org/wp-content/uploads/2019/07/01-CR-1.0_GP180004-Certificate-and-Certification-Report_20190712.pdf
https://www.commoncriteriaportal.org/files/epfiles/CC%20Huawei%20iTrustee%20Software%20V2.0%20Security%20Target%202.1.pdf
https://www.commoncriteriaportal.org/files/epfiles/CC%20Huawei%20iTrustee%20Software%20V2.0%20Security%20Target%202.1.pdf
https://www.trustonic.com/solutions/iot-security/
https://www.op-tee.org/
https://www.provenrun.com/products/provencore/
https://www.qualcomm.com/products/features/mobile-security-solutions
https://www.rockycore.cn/index.html
https://optimumdesk.com/it-solutions/data-loss-prevention-privacy
https://www.sierraware.com/open-source-ARM-TrustZone.html
https://www.trustkernel.com/en/products/tee/t6.html
https://developer.samsung.com/teegris
https://source.android.com/security/trusty
https://www.taf.net.cn/Tee_detail.aspx?_ID=2349283b-6311-4617-862c-112234544354
https://www.taf.net.cn/Tee_detail.aspx?_ID=2349283b-6311-4617-862c-112234544354
https://globalplatform.org/certified-products/watchtrust-2-1-1-on-sc9860-2/
https://globalplatform.org/wp-content/uploads/2019/09/GP-SE-2019_02-CR-1.0_GP190006-Certificate-and-Certification-Report_20190909.pdf
https://globalplatform.org/wp-content/uploads/2019/09/GP-SE-2019_02-CR-1.0_GP190006-Certificate-and-Certification-Report_20190909.pdf
https://www.trustonic.com/technical-articles/kinibi-m/
https://www.st.com/en/embedded-software/provencore-m.html
https://hex-five.com/first-secure-iot-stack-riscv/

12.3. Conclusion 149

T
ab

le
1:

C
om

m
er

ci
al

T
EE

im
pl

em
en

ta
tio

ns
.T

he
G

lo
ba

lP
la

tfo
rm

(G
P)

C
er

tifi
ca

tio
n

co
lu

m
n

in
di

ca
te

s
T

EE
s

th
at

ha
ve

re
ce

iv
ed

T
EE

In
iti

al
C

on
fig

ur
at

io
n

v1
.1

fu
nc

tio
na

lc
er

tifi
ca

tio
n

an
d/

or
T

EE
Se

cu
rit

y
ce

rt
ifi

ca
tio

n
ac

co
rd

in
g

to
ht

tp
s:/

/g
lo

ba
lp

la
tfo

rm
.o

rg
/c

er
tifi

ed
-p

ro
du

ct
s/

.

G
P

C
er

tifi
ca

tio
n

T
EE

Ve
nd

or
Fu

nc
tio

na
l

Se
cu

rit
y

Li
ce

ns
e

N
ot

e

T
ru

st
Z

on
e

C
lo

ud
Li

nk
T

EE
1

Pi
ng

to
ug

e
Se

m
ic

on
du

ct
or

✓
✓

pr
op

rie
ta

ry
iT

ru
st

ee
2

H
ua

w
ei

pr
op

rie
ta

ry
Fo

rm
er

ly
Se

cu
re

C
or

e
K

in
ib

i3
Tr

us
to

ni
c

✓
pr

op
rie

ta
ry

Fo
rm

er
ly

M
ob

ic
or

e
an

d
<

t-
ba

se
O

P-
T

EE
4

Li
na

ro
B

SD
2-

C
la

us
e

Pr
ov

en
C

or
e5

Pr
ov

e
&

R
un

pr
op

rie
ta

ry
Q

ua
lc

om
m

T
EE

6
Q

ua
lc

om
m

pr
op

rie
ta

ry
Fo

rm
er

ly
Q

SE
E

R
oc

ky
C

or
e7

Su
zh

ou
R

on
g

C
ar

d
In

te
lli

ge
nt

Te
ch

no
lo

gy
✓

pr
op

rie
ta

ry
Se

cu
riT

EE
8

So
la

ci
a

pr
op

rie
ta

ry
Si

er
ra

T
EE

9
Si

er
ra

W
ar

e
pr

op
rie

ta
ry

T
610

Tr
us

tK
er

ne
l

G
N

U
G

PL
T

EE
G

R
IS

11
Sa

m
su

ng
✓

pr
op

rie
ta

ry
G

P
ce

rt
ifi

ca
tio

n
fo

r
M

ed
ia

te
k

M
T

67
37

T
T

LK
N

V
ID

IA
C

or
po

ra
tio

n,
20

15
N

vi
di

a
M

IT
Tr

us
ty

12
G

oo
gl

e
M

IT
T

U
R

B
O

T
EE

13
Ea

st
co

m
pe

ac
e

Te
ch

no
lo

gi
es

✓
pr

op
rie

ta
ry

Yu
no

s
T

EE
Ta

ob
ao

So
ftw

ar
e

✓
pr

op
rie

ta
ry

W
AT

C
H

T
R

U
ST

14
W

at
ch

da
ta

✓
✓

pr
op

rie
ta

ry
U

pt
eq

N
FC

42
2

v1
.0

15
G

em
al

to
(T

ha
le

s
G

ro
up

)
✓

pr
op

rie
ta

ry
T

ru
st

Z
on

e-
M

K
in

ib
i-M

16
Tr

us
to

ni
c

N
/A

pr
op

rie
ta

ry
Pr

ov
en

C
or

e-
M

17
Pr

ov
e

&
R

un
N

/A
pr

op
rie

ta
ry

R
IS

C
-V

M
ul

tiZ
on

e18
H

ex
Fi

ve
Se

cu
rit

y
N

/A
M

IT

Full text available at: http://dx.doi.org/10.1561/3300000024

https://globalplatform.org/certified-products/
https://globalplatform.org/certified-products/

References

Abadi, M., M. Budiu, Ú. Erlingsson, and J. Ligatti. (2005). “Control-
Flow Integrity”. In: Proceedings of the 2005 ACM Conference on
Computer and Communications Security. doi: 10.1145/1102120.110
2165.

Advanced Micro Devices, Inc. (2021). AMD64 Architecture Program-
mer’s Manual. url: https://www.amd.com/system/files/TechDocs
/40332.pdf (accessed on 01/16/2022).

Akritidis, P., M. Costa, M. Castro, and S. Hand. (2009). “Baggy Bounds
Checking: An Efficient and Backwards-Compatible Defense against
Out-of-bounds Errors”. In: Proceedings of the 2009 USENIX Security
Symposium.

Alder, F. (2019). “TEE2 – Combining Trusted Hardware to Enhance
the Security of TEEs”. Technical University of Darmstadt. url:
https://falder.org/tee2-thesis.pdf.

Alibaba. (2020). “Alibaba Cloud Released Industry’s First Trusted and
Virtualized Instance with Support for SGX 2.0 and TPM”. url:
https://www.alibabacloud.com/blog/alibaba-cloud-released-indus
trys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-
0-and-tpm_596821 (accessed on 01/29/2021).

Alves, T. and D. Felton. (2004). “TrustZone: Integrated Hardware and
Software Security”. Information Quarterly. 3(4): 18–24.

150

Full text available at: http://dx.doi.org/10.1561/3300000024

https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1102120.1102165
https://www.amd.com/system/files/TechDocs/40332.pdf
https://www.amd.com/system/files/TechDocs/40332.pdf
https://falder.org/tee2-thesis.pdf
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821

References 151

Android Open Source Project. (2015). Android 6.0 Compatibility Defi-
nition.

Android Open Source Project. (2020a). HWAddressSanitizer. url: http
s://source.android.com/devices/tech/debug/hwasan (accessed on
10/27/2020).

Android Open Source Project. (2020b). Scudo. url: https://source.and
roid.com/devices/tech/debug/scudo (accessed on 10/27/2020).

Apple. (2018). “Data protection”. url: https://support.apple.com/gui
de/security/data-protection-overview-secf6276da8a/web (accessed
on 03/06/2022).

Apple Inc. (2018a). “Apple T2 Security Chip Security Overview”. url:
https://www.apple.com/mac/docs/Apple_T2_Security_Chip
_Overview.pdf.

Apple Inc. (2018b). “iOS Security — iOS 12”. url: https://www.apple
.com/business/site/docs/iOS_Security_Guide.pdf.

Apple Inc. (2020a). Preparing Your App to Work with Pointer Authen-
tication. url: https://developer.apple.com/documentation/security
/preparing_your_app_to_work_with_pointer_authentication
(accessed on 10/27/2020).

Apple Inc. (2020b). Swift. url: https://developer.apple.com/swift/
(accessed on 10/25/2020).

“Apple Platform Security”. (2020). Apple.
Apple. Inc. (2020c). “About FaceID Advanced technology”. url: https:

//support.apple.com/en-gb/HT208108 (accessed on 03/06/2022).
Arbaugh, W. A., D. J. Farber, and J. M. Smith. (1997). “A secure and

reliable bootstrap architecture”. In: Proceedings of the 1997 IEEE
Symposium on Security and Privacy. IEEE.

ARM Ltd. (2009). “ARM Security Technology - Building a Secure
System using TrustZone Technology”. url: http://infocenter.arm.c
om/help/topic/com.arm.doc.prd29-genc-009492c.

ARM Ltd. (2016). “SMC Calling Convention”. url: http://infocenter
.arm.com/help/topic/com.arm.doc.prd29-genc-009492c.

ARM Ltd. (2017a). “Power State Coordination Interface”. url: http:
//http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc
.den0022d.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://source.android.com/devices/tech/debug/hwasan
https://source.android.com/devices/tech/debug/hwasan
https://source.android.com/devices/tech/debug/scudo
https://source.android.com/devices/tech/debug/scudo
https://support.apple.com/guide/security/data-protection-overview-secf6276da8a/web
https://support.apple.com/guide/security/data-protection-overview-secf6276da8a/web
https://www.apple.com/mac/docs/Apple_T2_Security_Chip_Overview.pdf
https://www.apple.com/mac/docs/Apple_T2_Security_Chip_Overview.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://developer.apple.com/documentation/security/preparing_your_app_to_work_with_pointer_authentication
https://developer.apple.com/documentation/security/preparing_your_app_to_work_with_pointer_authentication
https://developer.apple.com/swift/
https://support.apple.com/en-gb/HT208108
https://support.apple.com/en-gb/HT208108
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c
http://http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022d
http://http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022d
http://http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022d

152 References

ARM Ltd. (2017b). “Software Delegated Exception Interface”. url:
http://http://infocenter.arm.com/help/topic/com.arm.doc.den00
54a.

ARM Ltd. (2018a). “Arm TrustZone technology for ARMv8-M Archi-
tecture, Version 2.1”. url: https://static.docs.arm.com/100690/020
1/armv8_m_architecture_trustzone_technology_100690_0201
_01_en.pdf.

ARM Ltd. (2018b). “Arm® Platform Security Architecture Trusted
Base System Architecture for Arm®v6-M, Arm®v7-M and Arm®v8-
M 1.0”. ARM. url: https://armkeil.blob.core.windows.net/develop
er/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0083-
PSA_TBSA-M_1.0-bet1.pdf.

ARM Ltd. (2019a). “Armv8-M Architecture Reference Manual, Version
A.k”. url: http://infocenter.arm.com/help/topic/com.arm.doc.ddi
0553a.k/DDI0553A_k_armv8m_arm.pdf.

ARM Ltd. (2019b). “Armv8.5-A Memory Tagging Extension”. White
Paper.

ARM Ltd. (2019c). “Isolation using virtualization in the Secure world:
Secure world software architecture on Armv8.4, Version 1.0”. url:
https://developer.arm.com/-/media/Files/pdf/Isolation_using_v
irtualization_in_the_Secure_World_Whitepaper.pdf.

ARM Ltd. (2020a). “Armv8-A architecture reference manual, DDI
0487F.c”. No. DDI 0487F.c.

ARM Ltd. (2021a). “Hardware Accelerated Crypto|Mbed OS 5 Docu-
mentation”. url: https://os.mbed.com/docs/mbed-os/v6.15/portin
g/hardware-accelerated-crypto.html.

ARM Ltd. (2021b). “Unlocking the power of data with ARM CCA”.
url: https://community.arm.com/developer/ip-products/processor
s/b/processors-ip-blog/posts/unlocking-the-power-of-data-with-a
rm-cca (accessed on 03/06/2022).

Arm Ltd. (2020a). Arm Morello Program. Arm Developer. url: https:
//developer.arm.com/architectures/cpu-architecture/a-profile/mo
rello (accessed on 11/29/2020).

Full text available at: http://dx.doi.org/10.1561/3300000024

http://http://infocenter.arm.com/help/topic/com.arm.doc.den0054a
http://http://infocenter.arm.com/help/topic/com.arm.doc.den0054a
https://static.docs.arm.com/100690/0201/armv8_m_architecture_trustzone_technology_100690_0201_01_en.pdf
https://static.docs.arm.com/100690/0201/armv8_m_architecture_trustzone_technology_100690_0201_01_en.pdf
https://static.docs.arm.com/100690/0201/armv8_m_architecture_trustzone_technology_100690_0201_01_en.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0083-PSA_TBSA-M_1.0-bet1.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0083-PSA_TBSA-M_1.0-bet1.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0083-PSA_TBSA-M_1.0-bet1.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0553a.k/DDI0553A_k_armv8m_arm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0553a.k/DDI0553A_k_armv8m_arm.pdf
https://developer.arm.com/-/media/Files/pdf/Isolation_using_virtualization_in_the_Secure_World_Whitepaper.pdf
https://developer.arm.com/-/media/Files/pdf/Isolation_using_virtualization_in_the_Secure_World_Whitepaper.pdf
https://os.mbed.com/docs/mbed-os/v6.15/porting/hardware-accelerated-crypto.html
https://os.mbed.com/docs/mbed-os/v6.15/porting/hardware-accelerated-crypto.html
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/unlocking-the-power-of-data-with-arm-cca
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/unlocking-the-power-of-data-with-arm-cca
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/unlocking-the-power-of-data-with-arm-cca
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello

References 153

Arm Ltd. (2018). “FIPS 140-2 Non-Proprietary Security Policy”. ARM.
url: https://csrc.nist.gov/CSRC/media/projects/cryptographic-m
odule-validation-program/documents/security-policies/140sp3263
.pdf.

“Arm® Platform Security Architecture Security Model 1.0”. (2020).
ARM Ltd.

“Arm® Platform Security Architecture Trusted Boot and Firmware
Update 1.0”. (2019). ARM Ltd.

Arthur, W. and D. Challener. (2015). A Practical Guide to TPM 2.0:
Using the Trusted Platform Module in the New Age of Security. 1st.
Berkely, CA, USA: Apress.

Asokan, N., K. Kostiainen, E. Reshetova, A.-R. Sadeghi, L. Davi, A.
Dmitrienko, and S. Heuser. (2014). Mobile Platform Security. Vol. 9.
Synthesis Lectures on Information Security, Privacy, & Trust. Mor-
gan & Claypool Publishers. url: http://search.ebscohost.com/logi
n.aspx?direct=true&db=nlebk&AN=688023&site=ehost-live&aut
htype=sso&custid=ns192260.

Atsec information security corporation. (2016). “Cryptographic Module
for Intel® vPro™ Platforms Security Engine Chipset”. url: http
s://csrc.nist.gov/CSRC/media/projects/cryptographic-module
-validation-program/documents/security-policies/140sp2720.pdf
(accessed on 07/18/2016).

Avanzi, R. (2017). “The QARMA Block Cipher Family. Almost MDS
Matrices over Rings with Zero Divisors, Nearly Symmetric Even-
Mansour Constructions with Non-Involutory Central Rounds, and
Search Heuristics for Low-Latency S-Boxes”. IACR Transactions on
Symmetric Cryptology. 2017(1): 4–44. doi: 10.13154/tosc.v2017.i1.4-
44.

AWS. (2021). “FreeRTOS - Market leading RTOS (Real Time Operating
System) for embedded systems with Internet of Things extensions”.
url: https://www.freertos.org/ (accessed on 09/19/2021).

Azab, A. M., P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,
and W. Shen. (2014). “Hypervision Across Worlds: Real-time Kernel
Protection from the ARM TrustZone Secure World”. In: Proceedings
of the 2014 ACM Conference on Computer and Communications
Security (CCS). 90–102. doi: 10.1145/2660267.2660350.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3263.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3263.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3263.pdf
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=688023&site=ehost-live&authtype=sso&custid=ns192260
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=688023&site=ehost-live&authtype=sso&custid=ns192260
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=688023&site=ehost-live&authtype=sso&custid=ns192260
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp2720.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp2720.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp2720.pdf
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://www.freertos.org/
https://doi.org/10.1145/2660267.2660350

154 References

Azad, B. (2019). Project Zero: Examining Pointer Authentication on
the iPhone XS. url: https://googleprojectzero.blogspot.com/2
019/02/examining-pointer-authentication-on.html (accessed on
02/12/2020).

Bahmani, R., F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R.
Sadeghi, and E. Stapf. (2021). “{CURE}: A Security Architecture
with CUstomizable and Resilient Enclaves”. In: Proceedings of the
2021 USENIX Security Symposium.

Bai, X. (2018). “The last line of defense: understanding and attacking
Apple File System on iOS”. url: https://i.blackhat.com/eu-18
/Thu-Dec-6/eu-18-Bai-The-Last-Line-Of-Defense-Understandi
ng-And-Attacking-Apple-File-System-On-IOS.pdf (accessed on
03/06/2022).

Bar-El, H., H. Choukri, D. Naccache, M. Tunstall, and C. Whelan.
(2006). “The Sorcerer’s Apprentice Guide to Fault Attacks”. Pro-
ceedings of the IEEE. 94(2): 370–382. doi: 10.1109/JPROC.2005.86
2424.

Bar-El, H. (2002). “Security implications of hardware vs Software cryp-
tographic modules”. Tech. rep. Discretix Technologies.

Barker, E. and J. Kelsey. (2015). “Recommendation for Random Number
Generation Using Deterministic Random Bit Generators”. National
Institute of Standards and Technology. doi: 10.6028/NIST.SP.800-
90Ar1.

Basse, F. (2016). “Amlogic S905 SoC: bypassing the (not so) Secure
Boot to dump the BootROM”. url: https://fredericb.info/2016/10
/amlogic-s905-soc-bypassing-not-so.html (accessed on 02/27/2022).

Baumann, A. (2017). “Hardware is the New Software”. In: Proceedings
of the 2017 Workshop on Hot Topics in Operating Systems (HotOS).
Whistler, BC, Canada: ACM. 132–137. doi: 10.1145/3102980.31030
02.

Beaupre, S. (2015). “TRUSTNONE”. url: http://theroot.ninja/disclos
ures/TRUSTNONE_1.0-11282015.pdf.

Beer, I. and S. Groß. (2021). A deep dive into an NSO zero-click iMessage
exploit: Remote Code Execution. url: https://googleprojectzero.blo
gspot.com/2021/12/a-deep-dive-into-nso-zero-click.html.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://i.blackhat.com/eu-18/Thu-Dec-6/eu-18-Bai-The-Last-Line-Of-Defense-Understanding-And-Attacking-Apple-File-System-On-IOS.pdf
https://i.blackhat.com/eu-18/Thu-Dec-6/eu-18-Bai-The-Last-Line-Of-Defense-Understanding-And-Attacking-Apple-File-System-On-IOS.pdf
https://i.blackhat.com/eu-18/Thu-Dec-6/eu-18-Bai-The-Last-Line-Of-Defense-Understanding-And-Attacking-Apple-File-System-On-IOS.pdf
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
https://fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
https://doi.org/10.1145/3102980.3103002
https://doi.org/10.1145/3102980.3103002
http://theroot.ninja/disclosures/TRUSTNONE_1.0-11282015.pdf
http://theroot.ninja/disclosures/TRUSTNONE_1.0-11282015.pdf
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

References 155

Bellom, Maxime Rossi and Melotti, Damiano and Teuwen, Philippe.
(2021). “A Titan M Odyssey”. url: https://i.blackhat.com/EU-21
/Wednesday/EU-21-Rossi-Bellom-2021_A_Titan_M_Odyssey-
wp.pdf (accessed on 03/06/2022).

Beniamini, G. (2016a). QSEE privilege escalation vulnerability and
exploit (CVE-2015-6639). url: https://bits-please.blogspot.com/2
016/05/qsee-privilege-escalation-vulnerability.html (accessed on
03/01/2022).

Beniamini, G. (2016b). TrustZone Kernel Privilege Escalation (CVE-
2016-2431). url: http://bits-please.blogspot.com/2016/06/trustzon
e-kernel-privilege-escalation.html (accessed on 03/01/2022).

Beniamini, G. (2017). Trust Issues: Exploiting TrustZone TEEs. url:
https://googleprojectzero.blogspot.com/2017/07/trust-issues-expl
oiting-trustzone-tees.html (accessed on 03/01/2022).

Berard, D. (2018). Kinibi TEE: Trusted Application Exploitation. url:
https://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-appl
ication-exploitation.html (accessed on 03/01/2022).

Bernstein, D. J. (2005). “Cache-timing attacks on AES”. url: http://c
r.yp.to/antiforgery/cachetiming-20050414.pdf.

Beyls, K. (2020). [Llvm-Dev] Round Table on AArch64 Pauth ABI -
Minutes. E-mail. url: http://lists.llvm.org/pipermail/llvm-dev/20
20-October/145839.html (accessed on 10/27/2020).

Biondo, A., M. Conti, L. Davi, T. Frassetto, and A.-R. Sadeghi. (2018).
“The Guard’s Dilemma: Efficient Code-Reuse Attacks Against Intel
SGX”. In: 27th USENIX Security Symposium (USENIX Security 18).
Baltimore, MD: USENIX Association. 1213–1227. url: https://ww
w.usenix.org/conference/usenixsecurity18/presentation/biondo.

Blazakis, D. (2011). The Apple Sandbox. url: https://developer.android
.com/guide/topics/permissions/overview (accessed on 02/01/2021).

Bletsch, T., X. Jiang, V. W. Freeh, and Z. Liang. (2011). “Jump-Oriented
Programming: A New Class of Code-Reuse Attack”. In: Proceedings
of the 2011 ACM Asia Conference on Information, Computer and
Communications Security (ASIACCS). Hong Kong, China: ACM.
30–40. doi: 10.1145/1966913.1966919.

Boak, D. G. (1973). A History of U.S. Communications Security. Vol. 1–
2. National Security Agency.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://i.blackhat.com/EU-21/Wednesday/EU-21-Rossi-Bellom-2021_A_Titan_M_Odyssey-wp.pdf
https://i.blackhat.com/EU-21/Wednesday/EU-21-Rossi-Bellom-2021_A_Titan_M_Odyssey-wp.pdf
https://i.blackhat.com/EU-21/Wednesday/EU-21-Rossi-Bellom-2021_A_Titan_M_Odyssey-wp.pdf
https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
http://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
http://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-application-exploitation.html
https://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-application-exploitation.html
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://lists.llvm.org/pipermail/llvm-dev/2020-October/145839.html
http://lists.llvm.org/pipermail/llvm-dev/2020-October/145839.html
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://doi.org/10.1145/1966913.1966919

156 References

Bock, C., F. Brasser, D. Gens, C. Liebchen, and A.-R. Sadeghi. (2019).
“RIP-RH: Preventing Rowhammer-Based Inter-Process Attacks”.
In: Proceedings of the 2019 ACM Asia Conference on Computer
and Communications Security (ASIACCS). Asia CCS ’19. Auckland,
New Zealand: Association for Computing Machinery. 561–572. doi:
10.1145/3321705.3329827.

Borrello, P., D. C. D’Elia, L. Querzoni, and C. Giuffrida. (2021). “Con-
stantine: Automatic Side-Channel Resistance Using Efficient Control
and Data Flow Linearization”. In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security
(CCS). doi: 10.1145/3460120.3484583.

Bourgeat, T., I. Lebedev, A. Wright, S. Zhang, Arvind, and S. Devadas.
(2019). “MI6: Secure Enclaves in a Speculative Out-of-Order Proces-
sor”. In: Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). Columbus, OH, USA.
42–56. doi: 10.1145/3352460.3358310.

Bozzato, C., R. Focardi, and F. Palmarini. (2019). “Shaping the Glitch:
Optimizing Voltage Fault Injection Attacks”. IACR Transactions
on Cryptographic Hardware Embed. Syst. 2019(2): 199–224. doi:
10.13154/tches.v2019.i2.199-224.

Brasser, F., L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi. (2017).
“CAn’t Touch This: Software-Only Mitigation against Rowham-
mer Attacks Targeting Kernel Memory”. In: Proceedings of the
2017 USENIX Conference on Security Symposium. Vancouver, BC,
Canada: USENIX Association. 117–130.

Brasser, F., B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P.
Koeberl. (2015). “TyTAN: Tiny Trust Anchor for Tiny Devices”.
In: Proceedings of the 2015 Annual Design Automation Conference
(DAC). San Francisco, CA, USA. 34:1–34:6. doi: 10.1145/2744769.2
744922.

Brasser, F., D. Gens, P. Jauernig, A.-R. Sadeghia, and E. Stapf. (2019).
“SANCTUARY: ARMing TrustZone with User-space Enclaves”. In:
Proceedings of the 26th Annual Network and Distributed System
Security Symposium (NDSS). S.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://doi.org/10.1145/3321705.3329827
https://doi.org/10.1145/3460120.3484583
https://doi.org/10.1145/3352460.3358310
https://doi.org/10.13154/tches.v2019.i2.199-224
https://doi.org/10.1145/2744769.2744922
https://doi.org/10.1145/2744769.2744922

References 157

Brickell, E. and J. Li. (2009). “Enhanced Privacy ID from Bilinear
Pairing”. Cryptology ePrint Archive, Report 2009/095. url: https:
//eprint.iacr.org/2009/095.

BSI. (2013). “Evaluation of random number generators”. Standard. BSI.
Bulck, J. V., M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,

M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. (2018a).
“Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution”. In: Proceedings of the 2018
USENIX Security Symposium. Baltimore, MD: USENIX Association.
991–1008. url: https://www.usenix.org/conference/usenixsecurity
18/presentation/bulck.

Bulck, J. V., M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. (2018b).
“Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution”. In: 27th USENIX Security Sym-
posium (USENIX Security 18). url: https://www.usenix.org/confe
rence/usenixsecurity18/presentation/bulck.

Carlini, N., A. Barresi, E. T. H. Zürich, M. Payer, D. Wagner, T. R.
Gross, N. Carlini, A. Barresi, D. Wagner, and T. R. Gross. (2015).
“Control-Flow Bending: On the Effectiveness of Control-Flow In-
tegrity”. In: Proceedings of the 2015 USENIX Security Symposium.
Washington, DC, USA: USENIX Association. 161–176. url: https:
//www.usenix.org/conference/usenixsecurity15/technical-sessions
/presentation/carlini.

Carru, P. (2017). “Attack TrustZone with Rowhammer”. url: https
://grehack.fr/data/2017/slides/GreHack17_Attack_TrustZone
_with_Rowhammer.pdf.

Carter, N. P., S. W. Keckler, and W. J. Dally. (1994). “Hardware
Support for Fast Capability-Based Addressing”. ACM SIGOPS
Operating Systems Review. 28(5): 319–327. doi: 10.1145/381792.195
579.

Cerdeira, D., N. Santos, P. Fonseca, and S. Pinto. (2020). “SoK: Under-
standing the Prevailing Security Vulnerabilities in TrustZone-assisted
TEE Systems”. In: Proceedings of the 2020 IEEE Symposium on
Security and Privacy (S&P). San Francisco, CA, USA. doi: 10.1109
/SP40000.2020.00061.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://eprint.iacr.org/2009/095
https://eprint.iacr.org/2009/095
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://grehack.fr/data/2017/slides/GreHack17_Attack_TrustZone_with_Rowhammer.pdf
https://grehack.fr/data/2017/slides/GreHack17_Attack_TrustZone_with_Rowhammer.pdf
https://grehack.fr/data/2017/slides/GreHack17_Attack_TrustZone_with_Rowhammer.pdf
https://doi.org/10.1145/381792.195579
https://doi.org/10.1145/381792.195579
https://doi.org/10.1109/SP40000.2020.00061
https://doi.org/10.1109/SP40000.2020.00061

158 References

Charles Garcia-Tobin, ARM Ltd. (2021). “ARM CCA Hardware Archi-
tecture”. url: https://static.linaro.org/connect/armcca/presentati
ons/CCATechEvent-210623-CGT-2.pdf (accessed on 03/06/2022).

Cheeseman, L. (2019). D51429 [AArch64] Return Address Signing B
Key Support. url: https://reviews.llvm.org/D51429 (accessed on
10/26/2020).

Chen, L., J. Franklin, and A. Regenscheid. (2012). “Guidelines on Hard-
wareRooted Security in Mobile Devices”. No. SP 800-16. Gaithers-
burg, MD, United States.

Chen, N. (2016). “The Benefits Of Antifuse OTP”. Semiconductor
Engineering. Dec. url: https://semiengineering.com/the-benefits-o
f-antifuse-otp/ (accessed on 03/07/2022).

Cheng, L., H. Liljestrand, M. S. Ahmed, T. Nyman, T. Jaeger, N.
Asokan, and D. Yao. (2019). “Exploitation Techniques and Defenses
for Data-Oriented Attacks”. In: Proceedings of the 2019 IEEE Cyber-
security Development (SecDev). Tysons Corner, VA, USA. 114–128.
doi: 10.1109/SecDev.2019.00022.

Clang team. (2020). Hardware-Assisted AddressSanitizer Design Docu-
mentation. url: https://clang.llvm.org/docs/HardwareAssistedAdd
ressSanitizerDesign.html (accessed on 09/06/2020).

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein. (2009).
Introduction to Algorithms. 3rd. MIT Press.

Costan, V., I. Lebedev, and S. Devadas. (2016). “Sanctum: Minimal
Hardware Extensions for Strong Software Isolation”. In: Proceedings
of the 2016 USENIX Security Symposium. Austin, TX: USENIX
Association. 857–874. url: https://www.usenix.org/conference/use
nixsecurity16/technical-sessions/presentation/costan.

Cowan, C., S. Beattie, R. F. Day, C. Pu, P. Wagle, and E. Walthinsen.
(1999). “Protecting Systems from Stack Smashing Attacks with
StackGuard”. In: Linux Expo.

Cryptomathic. (2017). “EMV Key Management – Explained”. url:
https://www.cryptomathic.com/hubfs/docs/cryptomathic_white
_paper-emv_key_management.pdf.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://static.linaro.org/connect/armcca/presentations/CCATechEvent-210623-CGT-2.pdf
https://static.linaro.org/connect/armcca/presentations/CCATechEvent-210623-CGT-2.pdf
https://reviews.llvm.org/D51429
https://semiengineering.com/the-benefits-of-antifuse-otp/
https://semiengineering.com/the-benefits-of-antifuse-otp/
https://doi.org/10.1109/SecDev.2019.00022
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.cryptomathic.com/hubfs/docs/cryptomathic_white_paper-emv_key_management.pdf
https://www.cryptomathic.com/hubfs/docs/cryptomathic_white_paper-emv_key_management.pdf

References 159

Davis, D., R. Ihaka, and P. Fenstermacher. (1994). “Cryptographic
Randomness from Air Turbulence in Disk Drives”. In: Proceedings
of Advances in Cryptology — CRYPTO ’94. Ed. by Y. G. Desmedt.
Berlin, Heidelberg: Springer Berlin Heidelberg. 114–120.

Denis-Courmont, R., H. Liljestrand, C. Chinea, and J.-E. Ekberg. (2020).
“Camouflage: Hardware-Assisted CFI for the ARM Linux Kernel”.
en. Proceedings of the 2020 ACM/IEEE Annual Design Automation
Conference (DAC).

Dennis, J. B. (1965). “Segmentation and the design of multiprogrammed
computer systems”. Journal of the ACM (JACM). 12(4): 589–602.

Dent, A. W. (2012). “Secure Boot and Image Authentication”. No. SP
800-16.

Dmitrienko, A., S. Heuser, T. D. Nguyen, M. d. Silva Ramos, A. Rein,
and A.-R. Sadeghi. (2015). “Market-driven code provisioning to
mobile secure hardware”. In: Proceedings of the 2015 International
Conference on Financial Cryptography and Data Security (FC).
Springer. 387–404.

Douceur, J. R. (2002). “The Sybil Attack”. In: Proceedings the 2002
International Workshop on Peer-to-Peer Systems (IPTPS). Ed. by
P. Druschel, M. F. Kaashoek, and A. I. T. Rowstron. Vol. 2429.
Lecture Notes in Computer Science. Cambridge, MA, USA: Springer.
251–260. doi: 10.1007/3-540-45748-8_24.

Eck, W. van. (1985). “Electromagnetic radiation from video display
units: An eavesdropping risk?” Computers & Security. 4(4): 269–286.
doi: 10.1016/0167-4048(85)90046-x.

Ekberg, J.-E., K. Kostiainen, and N. Asokan. (2014). “The Untapped
Potential of Trusted Execution Environments on Mobile Devices”.
IEEE Security & Privacy Magazine. 12(4): 29–37. doi: 10.1109
/MSP.2014.38.

Ekberg, J.-E. (2013). “Securing Software Architectures for Trusted
Processor Environments; Programvarusystem för säkra processo-
rarkitekturer”. en. Ph.D Thesis. 91 + app. 139. url: http://urn.fi
/URN:ISBN:978-952-60-3632-8.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1016/0167-4048(85)90046-x
https://doi.org/10.1109/MSP.2014.38
https://doi.org/10.1109/MSP.2014.38
http://urn.fi/URN:ISBN:978-952-60-3632-8
http://urn.fi/URN:ISBN:978-952-60-3632-8

160 References

Ekberg, J.-E. and N. Asokan. (2009). “External authenticated non-
volatile memory with lifecycle management for state protection
in trusted computing”. In: Proceedings of the 2009 International
Conference on Trusted Systems (INTRUST). Springer. 16–38.

Ekberg, J.-E. and N. Asokan. (2010). “External Authenticated Non-
volatile Memory with Lifecycle Management for State Protection
in Trusted Computing”. In: Proceedings of the 2010 International
Conference on Trusted Systems (INTRUST). Berlin, Heidelberg:
Springer Berlin Heidelberg. 16–38. doi: 10.1007/978-3-642-14597-1
_2.

Eldefrawy, K., A. Francillon, D. Perito, and G. Tsudik. (2012). “SMART:
Secure and Minimal Architecture for (Establishing a Dynamic)
Root of Trust”. In: Proceedings of the 2012 Annual Network and
Distributed System Security Symposium (NDSS). url: http://www
.eurecom.fr/publication/3536.

ETSI. (2012). “UICC Application Programming Interface for Java Card,
Release 11”. url: https://www.etsi.org/deliver/etsi_ts/102200_10
2299/102241/11.00.00_60/ts_102241v110000p.pdf.

Fabry, R. S. (1973). “Dynamic verification of operating system decisions”.
Communications of the ACM. 16(11): 659–668.

Filardo, N. W., B. F. Gutstein, J. Woodruff, S. Ainsworth, L. Paul-
Trifu, B. Davis, H. Xia, E. T. Napierala, A. Richardson, J. Baldwin,
D. Chisnall, J. Clarke, K. Gudka, A. Joannou, A. T. Marekttos,
A. Mazzinghi, R. M. Norton, M. Roe, P. Sewell, S. Son, T. M.
Jones, S. W. Moore, P. G. Neumann, and R. N. M. Watson. (2020).
“Cornucopia: Temporal Safety for CHERI Heaps”. In: Proceedings
of the 2020 IEEE Symposium on Security and Privacy (SP). San
Francisco, CA, USA.

“Security Requirements for Cryptographic Modules”. (2019). NIST. doi:
10.6028/NIST.FIPS.140-3.

Freivalds, R. (1977). “Probabilistic Machines Can Use Less Running
Time”. In: Proceedings of the 1977 IFIP Congress. Toronto, Canada.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://doi.org/10.1007/978-3-642-14597-1_2
https://doi.org/10.1007/978-3-642-14597-1_2
http://www.eurecom.fr/publication/3536
http://www.eurecom.fr/publication/3536
https://www.etsi.org/deliver/etsi_ts/102200_102299/102241/11.00.00_60/ts_102241v110000p.pdf
https://www.etsi.org/deliver/etsi_ts/102200_102299/102241/11.00.00_60/ts_102241v110000p.pdf
https://doi.org/10.6028/NIST.FIPS.140-3

References 161

Gallagher, M., L. Biernacki, S. Chen, Z. B. Aweke, S. F. Yitbarek,
M. T. Aga, A. Harris, Z. Xu, B. Kasikci, V. Bertacco, S. Malik,
M. Tiwari, and T. Austin. (2019). “Morpheus: A Vulnerability-
Tolerant Secure Architecture Based on Ensembles of Moving Target
Defenses with Churn”. In: Proceedings of the 2019 International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). New York, NY, USA: Association
for Computing Machinery. 469–484. doi: 10.1145/3297858.3304037.
(Accessed on 02/24/2021).

GCC Team. (2018). GCC 9 Release Series — Changes, New Features,
and Fixes. url: https://gcc.gnu.org/gcc-9/changes.html (accessed
on 10/26/2020).

GCC Wiki. (2018). Intel® Memory Protection Extensions (Intel® MPX)
Support in the GCC Compiler. url: https://gcc.gnu.org/wiki/Intel
%20MPX%20support%20in%20the%20GCC%20compiler (accessed
on 10/28/2020).

General Dynamics Mission Systems. (2015a). “Advanced INFOSEC
Machine (AIM)”. url: https://gdmissionsystems.com/-/media/Ge
neral-Dynamics/Cyber-and-Electronic-Warfare-Systems/PDF/Br
ochures/cyber- advanced- infosec- machine- aim- datasheet .ashx
(accessed on 03/06/2022).

General Dynamics Mission Systems. (2015b). “AIM II — Embeddable
Programmable Security)”. url: https://gdmissionsystems.com/-/m
edia/General-Dynamics/Cyber-and-Electronic-Warfare-Systems
/PDF/Brochures/cyber-aim2-embeddable-programmable-security-
datasheet.ashx.

Gil, R., H. Okhravi, and H. Shrobe. (2018a). “There’s a Hole in the
Bottom of the C: On the Effectiveness of Allocation Protection”. In:
Proceedings of the 2018 IEEE Cybersecurity Development. SecDev
’18. Cambridge, MA, USA. 102–109. doi: 10.1109/SecDev.2018.000
21.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://doi.org/10.1145/3297858.3304037
https://gcc.gnu.org/gcc-9/changes.html
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://gdmissionsystems.com/-/media/General-Dynamics/Cyber-and-Electronic-Warfare-Systems/PDF/Brochures/cyber-advanced-infosec-machine-aim-datasheet.ashx
https://gdmissionsystems.com/-/media/General-Dynamics/Cyber-and-Electronic-Warfare-Systems/PDF/Brochures/cyber-advanced-infosec-machine-aim-datasheet.ashx
https://gdmissionsystems.com/-/media/General-Dynamics/Cyber-and-Electronic-Warfare-Systems/PDF/Brochures/cyber-advanced-infosec-machine-aim-datasheet.ashx
https://gdmissionsystems.com/-/media/General-Dynamics/Cyber-and-Electronic-Warfare-Systems/PDF/Brochures/cyber-aim2-embeddable-programmable-security-datasheet.ashx
https://gdmissionsystems.com/-/media/General-Dynamics/Cyber-and-Electronic-Warfare-Systems/PDF/Brochures/cyber-aim2-embeddable-programmable-security-datasheet.ashx
https://gdmissionsystems.com/-/media/General-Dynamics/Cyber-and-Electronic-Warfare-Systems/PDF/Brochures/cyber-aim2-embeddable-programmable-security-datasheet.ashx
https://gdmissionsystems.com/-/media/General-Dynamics/Cyber-and-Electronic-Warfare-Systems/PDF/Brochures/cyber-aim2-embeddable-programmable-security-datasheet.ashx
https://doi.org/10.1109/SecDev.2018.00021
https://doi.org/10.1109/SecDev.2018.00021

162 References

Gil, R., H. Okhravi, and H. Shrobe. (2018b). “There’s a Hole in the
Bottom of the C: On the Effectiveness of Allocation Protection”.
In: Proceedings of the 2018 IEEE Cybersecurity Development. 2018
IEEE Cybersecurity Development. SecDev ’18. Cambridge, MA,
USA: IEEE. 102–109. doi: 10.1109/SecDev.2018.00021. (Accessed
on 03/25/2019).

GlobalPlatform. (2010). “TEE Client API Specification, Version 1.0”.
url: https://globalplatform.org/specs-library/tee-client-api-specifi
cation/.

GlobalPlatform. (2013). “TEE Trusted User Interface API v1.0”. url:
https://globalplatform.org/specs-library/trusted-user-interface-a
pi-v1/.

GlobalPlatform. (2016). “TEE Management Framework, Version 1.0”.
url: https://globalplatform.org/specs-library/tee-management-fra
mework-including-asn1-profile/.

GlobalPlatform. (2017). “TEE Sockets API Specification v1.0.1, 1.0.2
& 1.0.3”. url: https://globalplatform.org/specs-library/tee-sockets
-api-specification/.

GlobalPlatform. (2018a). “Card Specification v2.3.1”. url: https://glo
balplatform.org/specs-library/card-specification-v2-3-1/.

GlobalPlatform. (2018b). “Root of Trust Definitions and Requirements
v1.1”. url: https://globalplatform.org/specs-library/globalplatfor
m-root-of-trust-definitions-and-requirements/.

GlobalPlatform. (2018c). “TEE System Architecture, Version 1.2”. url:
https://globalplatform.org/specs-library/tee-system-architecture-
v1-2/.

GlobalPlatform. (2018d). “TEE Trusted User Interface Lowe-level API
v1.0.1”. url: https://globalplatform.org/specs-library/globalplatfo
rm-technology-tee-trusted-user-interface-low-level-api-v1-0-1/.

GlobalPlatform. (2019a). “Secure Channel Protocol ’03’ - Amendment
D v1.1.2”. url: https://globalplatform.org/specs-library/secure-ch
annel-protocol-03-amendment-d-v1-1-2/.

GlobalPlatform. (2019b). “TEE Management Framework: Open Trust
Protocol (OTrP) Profile v1.0”. url: https://globalplatform.org/spe
cs-library/tee-management-framework-open-trust-protocol.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://doi.org/10.1109/SecDev.2018.00021
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/trusted-user-interface-api-v1/
https://globalplatform.org/specs-library/trusted-user-interface-api-v1/
https://globalplatform.org/specs-library/tee-management-framework-including-asn1-profile/
https://globalplatform.org/specs-library/tee-management-framework-including-asn1-profile/
https://globalplatform.org/specs-library/tee-sockets-api-specification/
https://globalplatform.org/specs-library/tee-sockets-api-specification/
https://globalplatform.org/specs-library/card-specification-v2-3-1/
https://globalplatform.org/specs-library/card-specification-v2-3-1/
https://globalplatform.org/specs-library/globalplatform-root-of-trust-definitions-and-requirements/
https://globalplatform.org/specs-library/globalplatform-root-of-trust-definitions-and-requirements/
https://globalplatform.org/specs-library/tee-system-architecture-v1-2/
https://globalplatform.org/specs-library/tee-system-architecture-v1-2/
https://globalplatform.org/specs-library/globalplatform-technology-tee-trusted-user-interface-low-level-api-v1-0-1/
https://globalplatform.org/specs-library/globalplatform-technology-tee-trusted-user-interface-low-level-api-v1-0-1/
https://globalplatform.org/specs-library/secure-channel-protocol-03-amendment-d-v1-1-2/
https://globalplatform.org/specs-library/secure-channel-protocol-03-amendment-d-v1-1-2/
https://globalplatform.org/specs-library/tee-management-framework-open-trust-protocol
https://globalplatform.org/specs-library/tee-management-framework-open-trust-protocol

References 163

GlobalPlatform. (2021a). “TEE Internal Core API Specification, Version
1.3.1”. url: https://globalplatform.org/specs-library/tee-internal-c
ore-api-specification/.

GlobalPlatform. (2021b). “TEE Secure ElementAPI v1.1.2”. url: http
s://globalplatform.org/specs-library/tee-secure-element-api/.

GNU. (2018). GCC 8.4 Manual. url: https://gcc.gnu.org/onlinedocs
/gcc-8.4.0/gcc (accessed on 11/10/2020).

Google. (2016). “Pixel Security: Better, Faster, Stronger”. url: https:
//blog.google/products/android-enterprise/pixel-security-better-f
aster-stronger/ (accessed on 03/06/2022).

Google. (2020a). Android permissions. url: https://developer.android
.com/guide/topics/permissions/overview (accessed on 02/01/2021).

Google. (2020b). “DM-verity”. url: https://source.android.com/securi
ty/verifiedboot/dm-verity (accessed on 03/06/2022).

Google. (2020c). “FS-verity”. url: https://www.kernel.org/doc/html/l
atest/filesystems/fsverity.html (accessed on 03/06/2022).

Google. (2020d). Kotlin and Android. url: https://developer.android.c
om/kotlin (accessed on 10/25/2020).

Google. (2021). Security-Enhanced Linux in Android. url: https://sour
ce.android.com/security/selinux (accessed on 02/01/2021).

Graham, R. M. (1968). “Protection in an information processing utility”.
Communications of the ACM. 11(5): 365–369.

GSMA. (2014). “Generic Overlay SIM Security Assessment?” url:
https://www.gsma.com/publicpolicy/wp-content/uploads/2014
/08/GSMA-Security-Group-Overlay_SIM_Security_Assessment
_August_18_2014.pdf.

GSMA. (2015). “Understanding SIM Evolution”. url: https://www.gs
maintelligence.com/research/?file=81d866ecda8b80aa4642e06b87
7ec265 (accessed on 03/06/2022).

GSMA. (2019). “IMEI Blacklisting”. url: https://www.gsma.com/sec
urity/resources/imei-blacklisting/.

Gueron, S. (2016). “A Memory Encryption Engine Suitable for General
Purpose Processors”. Cryptology ePrint Archive, Report 2016/204.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-secure-element-api/
https://globalplatform.org/specs-library/tee-secure-element-api/
https://gcc.gnu.org/onlinedocs/gcc-8.4.0/gcc
https://gcc.gnu.org/onlinedocs/gcc-8.4.0/gcc
https://blog.google/products/android-enterprise/pixel-security-better-faster-stronger/
https://blog.google/products/android-enterprise/pixel-security-better-faster-stronger/
https://blog.google/products/android-enterprise/pixel-security-better-faster-stronger/
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://source.android.com/security/verifiedboot/dm-verity
https://source.android.com/security/verifiedboot/dm-verity
https://www.kernel.org/doc/html/latest/filesystems/fsverity.html
https://www.kernel.org/doc/html/latest/filesystems/fsverity.html
https://developer.android.com/kotlin
https://developer.android.com/kotlin
https://source.android.com/security/selinux
https://source.android.com/security/selinux
https://www.gsma.com/publicpolicy/wp-content/uploads/2014/08/GSMA-Security-Group-Overlay_SIM_Security_Assessment_August_18_2014.pdf
https://www.gsma.com/publicpolicy/wp-content/uploads/2014/08/GSMA-Security-Group-Overlay_SIM_Security_Assessment_August_18_2014.pdf
https://www.gsma.com/publicpolicy/wp-content/uploads/2014/08/GSMA-Security-Group-Overlay_SIM_Security_Assessment_August_18_2014.pdf
https://www.gsmaintelligence.com/research/?file=81d866ecda8b80aa4642e06b877ec265
https://www.gsmaintelligence.com/research/?file=81d866ecda8b80aa4642e06b877ec265
https://www.gsmaintelligence.com/research/?file=81d866ecda8b80aa4642e06b877ec265
https://www.gsma.com/security/resources/imei-blacklisting/
https://www.gsma.com/security/resources/imei-blacklisting/

164 References

Halderman, J. A., S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten.
(2009). “Lest We Remember: Cold-boot Attacks on Encryption
Keys”. Communications of the ACM. 52(5): 91–98. doi: 10.1145/15
06409.1506429.

Hasarfaty, S. and Y. Moyal. (2019). “Behind the Scenes of Intel Security
and Manageability Engine”. url: https://i.blackhat.com/USA-19
/Wednesday/us-19-Hasarfaty-Behind-The-Scenes-Of-Intel-Securi
ty-And-Manageability-Engine.pdf (accessed on 03/06/2022).

Holman, W., J. Connelly, and A. Dowlatabadi. (1997). “An integrated
analog/digital random noise source”. IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications. 44(6): 521–
528. doi: 10.1109/81.586025.

Houdek, M. E., F. G. Soltis, and R. L. Hoffman. (1981). “IBM Sys-
tem/38 Support for Capability-Based Addressing”. In: Proceedings
of the 1981 Annual Symposium on Computer Architecture (ISCA).
Washington DC, USA: IEEE Computer Society Press. 341–348. doi:
10.5555/800052.801885.

Hu, H., S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang.
(2016). “Data-Oriented Programming: On the Expressiveness of Non-
Control Data Attacks”. In: Proceedings of the 2016 IEEE Symposium
on Security and Privacy (SP). San Jose, CA, USA. 969–986. doi:
10.1109/SP.2016.62.

Huawei. (2020). “Huawei EMUI Security Whitepaper”. url: https://co
nsumer-img.huawei.com/content/dam/huawei-cbg-site/common
/campaign/privacy/whitepaper/emui-10-security-technical-white-
paper-v1.pdf (accessed on 03/06/2022).

IBM. (1977). “3845/3846 Data Encryption Devices”. url: http://e
d- thelen.org/comp-hist/IBM-ProdAnn/3845.pdf (accessed on
03/06/2022).

Intel. (2019). “Control-Flow Enforcement Technology Specification (Re-
vision 3.0)”. 358. url: https://software.intel.com/sites/default/file
s/managed/4d/2a/control-flow-enforcement-technology-preview
.pdf (accessed on 11/09/2020).

Full text available at: http://dx.doi.org/10.1561/3300000024

https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1145/1506409.1506429
https://i.blackhat.com/USA-19/Wednesday/us-19-Hasarfaty-Behind-The-Scenes-Of-Intel-Security-And-Manageability-Engine.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Hasarfaty-Behind-The-Scenes-Of-Intel-Security-And-Manageability-Engine.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Hasarfaty-Behind-The-Scenes-Of-Intel-Security-And-Manageability-Engine.pdf
https://doi.org/10.1109/81.586025
https://doi.org/10.5555/800052.801885
https://doi.org/10.1109/SP.2016.62
https://consumer-img.huawei.com/content/dam/huawei-cbg-site/common/campaign/privacy/whitepaper/emui-10-security-technical-white-paper-v1.pdf
https://consumer-img.huawei.com/content/dam/huawei-cbg-site/common/campaign/privacy/whitepaper/emui-10-security-technical-white-paper-v1.pdf
https://consumer-img.huawei.com/content/dam/huawei-cbg-site/common/campaign/privacy/whitepaper/emui-10-security-technical-white-paper-v1.pdf
https://consumer-img.huawei.com/content/dam/huawei-cbg-site/common/campaign/privacy/whitepaper/emui-10-security-technical-white-paper-v1.pdf
http://ed-thelen.org/comp-hist/IBM-ProdAnn/3845.pdf
http://ed-thelen.org/comp-hist/IBM-ProdAnn/3845.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

References 165

Intel Corporation. (2012). “Intel Atom Processor Z2760 Datasheet”.
url: https://www.intel.com/content/dam/www/public/us/en/d
ocuments/product-briefs/atom-z2760-datasheet.pdf (accessed on
03/06/2022).

Intel Corporation. (2019). “Proof of Elapsed Time”. url: https://githu
b.com/hyperledger/sawtooth-poet (accessed on 03/06/2022).

ISO. (2011). “Information technology — Security techniques — Random
bit generation”. Standard. ISO.

Jakobsson, M. and A. Juels. (1999). “Proofs of Work and Bread Pud-
ding Protocols”. In: Proceedings of the 2019 IFIP TC6/TC11 Joint
Working Conference on Communications and Multimedia Security
(CMS). Ed. by B. Preneel. Vol. 152. Leuven, Belgium: Kluwer. 258–
272.

Jakobsson, M., E. Shi, P. Golle, and R. Chow. (2009). “Implicit authen-
tication for mobile devices”. In: Proceedings of the 2009 USENIX
Conference on Hot topics in Security. Vol. 1. USENIX Association.
25–27.

Jang, I., A. Tang, T. Kim, S. Sethumadhavan, and J. Huh. (2019).
“Heterogeneous Isolated Execution for Commodity GPUs”. In: Pro-
ceedings of the 2019 International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS).
Providence, RI, USA: ACM. 455–468. doi: 10.1145/3297858.330402
1.

Kim, Y., R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu. (2014). “Flipping Bits in Memory Without
Accessing Them: An Experimental Study of DRAM Disturbance
Errors”. In: Proceeding of the 2014 Annual International Symposium
on Computer Architecuture (ISCA).

Kocher, P., J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
(2019). “Spectre Attacks: Exploiting Speculative Execution”. In:
Proceedings of the 2019 IEEE Symposium on Security and Privacy
(SP). 1–19. doi: 10.1109/SP.2019.00002.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/atom-z2760-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/atom-z2760-datasheet.pdf
https://github.com/hyperledger/sawtooth-poet
https://github.com/hyperledger/sawtooth-poet
https://doi.org/10.1145/3297858.3304021
https://doi.org/10.1145/3297858.3304021
https://doi.org/10.1109/SP.2019.00002

166 References

Kocher, P., J. Jaffe, and B. Jun. (1999). “Differential Power Analysis”.
In: Proceedings of 1999 Advances in Cryptology (CRYPTO). Ed. by
M. Wiener. Berlin, Heidelberg: Springer Berlin Heidelberg. 388–397.
doi: 10.1007/3-540-48405-1_25.

Kocher, P., J. Jaffe, B. Jun, and P. Rohatgi. (2011). “Introduction to
differential power analysis”. Journal of Cryptographic Engineering.
1(Apr.): 5–27. doi: 10.1007/s13389-011-0006-y.

Koeberl, P., S. Schulz, A.-R. Sadeghi, and V. Varadharajan. (2014).
“TrustLite: A Security Architecture for Tiny Embedded Devices”. In:
Proceedings of the 2014 European Conference on Computer Systems
(EuroSys). Amsterdam, The Netherlands: ACM. 10:1–10:14. doi:
10.1145/2592798.2592824.

Koeune, F. and F.-X. Standaert. (2005). “A Tutorial on Physical Security
and Side-Channel Attacks”. In: Foundations of Security Analysis
and Design III: FOSAD 2004/2005 Tutorial Lectures. Ed. by A.
Aldini, R. Gorrieri, and F. Martinelli. Berlin, Heidelberg: Springer
Berlin Heidelberg. 78–108. doi: 10.1007/11554578_3.

Kömmerling, O. and M. G. Kuhn. (1999). “Design Principles for Tamper-
Resistant Smartcard Processors”. In: Proceedings of the 1999 USENIX
Workshop on Smartcard Technology. url: https://www.usenix.org
/conference/usenix-workshop-smartcard-technology/design-princi
ples-tamper-resistant-smartcard.

Koning, K., X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos.
(2017). “No Need to Hide: Protecting Safe Regions on Commodity
Hardware”. In: Proceedings of the 2017 European Conference on
Computer Systems. Belgrade, Serbia: ACM. 437–452. doi: 10.1145
/3064176.3064217.

Krajci, I. and D. Cummings. (2013). “The Intel Mobile Processor”. In:
Android on x86: An Introduction to Optimizing for Intel® Architec-
ture. Berkeley, CA: Apress. 33–46. doi: 10.1007/978-1-4302-6131-5
_5.

Kuhn, M. G. and R. J. Anderson. (1998). “Soft tempest: Hidden data
transmission using electromagnetic emanations”. In: Proceedings of
the 1998 International Workshop on Information Hiding. Springer.
124–142.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1145/2592798.2592824
https://doi.org/10.1007/11554578_3
https://www.usenix.org/conference/usenix-workshop-smartcard-technology/design-principles-tamper-resistant-smartcard
https://www.usenix.org/conference/usenix-workshop-smartcard-technology/design-principles-tamper-resistant-smartcard
https://www.usenix.org/conference/usenix-workshop-smartcard-technology/design-principles-tamper-resistant-smartcard
https://doi.org/10.1145/3064176.3064217
https://doi.org/10.1145/3064176.3064217
https://doi.org/10.1007/978-1-4302-6131-5_5
https://doi.org/10.1007/978-1-4302-6131-5_5

References 167

Kuvaiskii, D., O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia, P.
Felber, and C. Fetzer. (2017). “SGXBOUNDS: Memory Safety for
Shielded Execution”. In: Proceedings of the 2017 European Con-
ference on Computer Systems (EuroSys). Belgrade, Serbia: ACM.
205–221. doi: 10.1145/3064176.3064192.

Lakos, C. A. (1980). “Implementing BCPL on the Burroughs B6700”.
Software: Practice and Experience. 10(8): 673–683. doi: 10.1002/sp
e.4380100806.

Lampson, B. W. (1974). “Protection”. ACM SIGOPS Operating Systems
Review. 8(1): 18–24.

Lange, N. (1997). “Single-chip implementation of a cryptosystem for
financial applications”. In: Financial Cryptography. Ed. by R. Hirsch-
feld. Berlin, Heidelberg: Springer Berlin Heidelberg. 135–144.

Larabel, M. (2020a). Intel Confirms CET Security Support For Tiger
Lake. url: https://www.phoronix.com/scan.php?page=news_item
&px=Intel-CET-Tiger-Lake (accessed on 11/15/2020).

Larabel, M. (2020b). Intel MPX Support Is Dead With Linux 5.6. url:
https://www.phoronix.com/scan.php?page=news_item&px=Inte
l-MPX-Is-Dead (accessed on 11/15/2020).

Laurie, A., J. McMaster, C. Morgan, and J. Exum. (2013). “rompar:
Masked ROM optical data extraction tool”. url: https://github.co
m/AdamLaurie/rompar (accessed on 08/12/2020).

Lee, D., D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song. (2020).
“Keystone: An Open Framework for Architecting Trusted Execution
Environments”. In: Proceedings of the 2020 European Conference
on Computer Systems (EuroSys). Heraklion, Greece: Association for
Computing Machinery. doi: 10.1145/3342195.3387532.

Liljestrand, H., T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg, and N.
Asokan. (2019). “PAC It up: Towards Pointer Integrity Using ARM
Pointer Authentication”. en. In: Proceedings of the 2019 USENIX
Security Symposium. Santa Clara, CA, USA: USENIX Association.
177–194.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://doi.org/10.1145/3064176.3064192
https://doi.org/10.1002/spe.4380100806
https://doi.org/10.1002/spe.4380100806
https://www.phoronix.com/scan.php?page=news_item&px=Intel-CET-Tiger-Lake
https://www.phoronix.com/scan.php?page=news_item&px=Intel-CET-Tiger-Lake
https://www.phoronix.com/scan.php?page=news_item&px=Intel-MPX-Is-Dead
https://www.phoronix.com/scan.php?page=news_item&px=Intel-MPX-Is-Dead
https://github.com/AdamLaurie/rompar
https://github.com/AdamLaurie/rompar
https://doi.org/10.1145/3342195.3387532

168 References

Lin, J. (2021). Developoer Guidance for Hardware-enforced Stack Pro-
tection — Microsoft Tech Community. url: https://techcommun
ity.microsoft.com/t5/windows-kernel- internals-blog/developer-
guidance-for-hardware-enforced-stack-protection/ba-p/2163340
(accessed on 01/16/2022).

Lipp, M., D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. (2016).
“ARMageddon: Cache Attacks on Mobile Devices”. In: Proceedings
of the 2016 USENIX Security Symposium. 25th USENIX Security
Symposium. Austin, TX, USA. 549–564. url: https://www.usenix
.org/conference/usenixsecurity16/technical-sessions/presentation
/lipp (accessed on 03/06/2022).

Lipp, M., M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg.
(2018). “Meltdown: Reading Kernel Memory from User Space”. In:
Proceedings of the 2018 USENIX Conference on Security Symposium.
Baltimore, MD, USA: USENIX Association. 973–990.

LLVM. (2020). Scudo Hardened Allocator. url: https://llvm.org/docs
/ScudoHardenedAllocator.html (accessed on 10/27/2020).

Loscocco, P. and S. Smalley. (2001). “Integrating Flexible Support for
Security Policies into the Linux Operating System.” In: Proceedings
of the 2001 USENIX Annual Technical Conference. 29–42.

Machiry, A., E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang,
A. Bianchi, Y. R. Choe, C. Kruegel, and V. Giovanni. (2017).
“BOOMERANG: Exploiting the Semantic Gap in Trusted Exe-
cution Environments”. In: Proceedings of the 2017 Annual Network
and Distributed System Security Symposium (NDSS). S. doi: 10.147
22/ndss.2017.23227.

Mandt, T., M. Solni, and D. Wang. (2016a). “Demystifying the Secure
Enclave Processor”. url: http://mista.nu/research/sep-paper.pdf
(accessed on 03/06/2022).

Mandt, T., M. Solni, and D. Wang. (2016b). “Demystifying the Secure
Enclave Processor”. url: https://www.blackhat.com/docs/us-16
/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Proce
ssor.pdf (accessed on 03/06/2022).

Full text available at: http://dx.doi.org/10.1561/3300000024

https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/developer-guidance-for-hardware-enforced-stack-protection/ba-p/2163340
https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/developer-guidance-for-hardware-enforced-stack-protection/ba-p/2163340
https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/developer-guidance-for-hardware-enforced-stack-protection/ba-p/2163340
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://llvm.org/docs/ScudoHardenedAllocator.html
https://llvm.org/docs/ScudoHardenedAllocator.html
https://doi.org/10.14722/ndss.2017.23227
https://doi.org/10.14722/ndss.2017.23227
http://mista.nu/research/sep-paper.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf

References 169

Martsenko, K. (2020). Arm64: Compile the Kernel with Ptrauth Return
Address Signing. url: https://git.kernel.org/pub/scm/linux/kernel
/git/torvalds/linux.git/commit/?id=74afda4016a7437e6e425c3370
e4b93b47be8ddf (accessed on 10/26/2020).

Mashtizadeh, A. J., A. Bittau, D. Boneh, and D. Mazières. (2015).
“CCFI: Cryptographically Enforced Control Flow Integrity”. en. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. Denver, CO, USA: ACM Press. 941–951.
doi: 10.1145/2810103.2813676.

Maslowski, D. (2020). “Look at ME! Intel ME Firmware Investigation”.
FOSDEM 2020. url: https://archive.fosdem.org/2020/schedule/ev
ent/firmware_lam/attachments/slides/3872/export/events/attac
hments/firmware_lam/slides/3872/look_at_me_fosdem20.pdf
(accessed on 03/07/2022).

Matala, S., T. Nyman, and N. Asokan. (2019). “Historical insight into
the development of Mobile TEEs”. url: https://blog.ssg.aalto.fi/2
019/06/historical-insight-into-development-of.html (accessed on
03/06/2022).

Mbiti, I. and D. N. Weil. (2011). “Mobile banking: The impact of
MPesa in Kenya”. Working Paper No. 011-13. Brown University,
Department of Economics. url: http://hdl.handle.net/10419/62662.

McCune, J. M., B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. (2008).
“Flicker: An Execution Infrastructure for TCB Minimization”. In:
Proceedings the 2008 ACM SIGOPS/EyroSys European Conference
on Computer Systems. Glasgow, UK. 315–328. doi: 10.1145/3246965.

McKeen, F., I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. Rozas. (2016). “Intel Software Guard Extensions
(Intel SGX) Support for Dynamic Memory Management Inside
an Enclave”. In: Proceedings of the 2016 International Workshop
on Hardware and Architectural Support for Security and Privacy
(HASP). HASP 2016. Seoul, Republic of Korea: ACM. 10:1–10:9.
doi: 10.1145/2948618.2954331.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=74afda4016a7437e6e425c3370e4b93b47be8ddf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=74afda4016a7437e6e425c3370e4b93b47be8ddf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=74afda4016a7437e6e425c3370e4b93b47be8ddf
https://doi.org/10.1145/2810103.2813676
https://archive.fosdem.org/2020/schedule/event/firmware_lam/attachments/slides/3872/export/events/attachments/firmware_lam/slides/3872/look_at_me_fosdem20.pdf
https://archive.fosdem.org/2020/schedule/event/firmware_lam/attachments/slides/3872/export/events/attachments/firmware_lam/slides/3872/look_at_me_fosdem20.pdf
https://archive.fosdem.org/2020/schedule/event/firmware_lam/attachments/slides/3872/export/events/attachments/firmware_lam/slides/3872/look_at_me_fosdem20.pdf
https://blog.ssg.aalto.fi/2019/06/historical-insight-into-development-of.html
https://blog.ssg.aalto.fi/2019/06/historical-insight-into-development-of.html
http://hdl.handle.net/10419/62662
https://doi.org/10.1145/3246965
https://doi.org/10.1145/2948618.2954331

170 References

McKeen, F., I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V.
Shanbhogue, and U. R. Savagaonkar. (2013). “Innovative Instruc-
tions and Software Model for Isolated Execution”. In: Proceedings of
the 2013 International Workshop on Hardware and Architectural Sup-
port for Security and Privacy (HASP). Tel-Aviv, Israel: Association
for Computing Machinery. doi: 10.1145/2487726.2488368.

McReynolds, M. (2021). “Azure announces next generation Intel SGX
confidential computing VMs”. url: https://techcommunity.microso
ft.com/t5/azure-confidential-computing/azure-announces-next-g
eneration-intel-sgx-confidential-computing/ba-p/2839934 (accessed
on 01/29/2021).

Mehrabi Koushki, M., B. Obada-Obieh, J. H. Huh, and K. Beznosov.
(2020). “Is Implicit Authentication on Smartphones Really Popular?
On Android Users’ Perception of “Smart Lock for Android””. In: Pro-
ceedings of the 2020 International Conference on Human-Computer
Interaction with Mobile Devices and Services. 1–17.

Microsoft. (2006). A Detailed Description of the Data Execution Pre-
vention (DEP) Feature in Windows XP Service Pack 2, Windows
XP Tablet PC Edition 2005, and Windows Server 2003. url: https:
//support.microsoft.com/en-us/help/875352/a-detailed-descripti
on-of-the-data-execution-prevention-dep-feature-in (accessed on
09/05/2019).

Miettinen, M., S. Heuser, W. Kronz, A.-R. Sadeghi, and N. Asokan.
(2014). “Conxsense: automated context classification for context-
aware access control”. In: Proceedings of the 9th ACM Asia Sym-
posium on Information, Computer and Communications security
(ASIACCS). 293–304. doi: 10.1145/2590296.2590337.

Minsky, M. (1988). “Memoir on Inventing the Confocal Scanning Mi-
croscope”. Scanning. 10: 128–138.

Modadugu, N. and B. Richardson. (2018). “Building a Titan: Better
security through a tiny chip”. url: https://security.googleblog.com
/2018/10/building-titan-better-security-through.html (accessed on
03/06/2022).

Full text available at: http://dx.doi.org/10.1561/3300000024

https://doi.org/10.1145/2487726.2488368
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-announces-next-generation-intel-sgx-confidential-computing/ba-p/2839934
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-announces-next-generation-intel-sgx-confidential-computing/ba-p/2839934
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-announces-next-generation-intel-sgx-confidential-computing/ba-p/2839934
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://doi.org/10.1145/2590296.2590337
https://security.googleblog.com/2018/10/building-titan-better-security-through.html
https://security.googleblog.com/2018/10/building-titan-better-security-through.html

References 171

Mohan, V., P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz.
(2015). “Opaque Control-Flow Integrity”. In: Proceedings of the
2015 Network and Distributed System Security Symposium. San
Diego, CA, USA: Internet Society. doi: 10.14722/ndss.2015.23271.
(Accessed on 10/07/2019).

Mondato. (2014). “Skin SIM Technology: A Serious Challenge for Safari-
com?” url: https://blog.mondato.com/skin-sim-safari/ (accessed
on 03/06/2022).

Morris, J., S. Smalley, and G. Kroah-Hartman. (2002). “Linux Security
Modules: General security support for the Linux kernel”. In: Pro-
ceedings of the 2002 USENIX Security Symposium. ACM Berkeley,
CA. 17–31.

Mutlu, O., S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun. (2020).
“A Modern Primer on Processing in Memory”. arXiv preprint
arXiv:2012.03112.

Nagarakatte, S., J. Zhao, M. M. Martin, and S. Zdancewic. (2009). “Soft-
Bound: Highly Compatible and Complete Spatial Memory Safety
for C”. In: Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). Dublin,
Ireland: ACM. 245–258. doi: 10.1145/1542476.1542504.

National Geographic. (1947). “First computer bug”. url: https://www
.nationalgeographic.org/thisday/sep9/worlds-first-computer-bug
/.

Neustadter, D. (2020). “True Random Number Generators for Height-
ened Security in Any SoC”. url: https://www.synopsys.com/desig
nware-ip/technical-bulletin/true-random-number-generator-secur
ity-2019q3.html.

Nguyen, P. Q. and I. E. Shparlinski. (2003). “The Insecurity of the
Elliptic Curve Digital Signature Algorithm with Partially Known
Nonces”. Designs, Codes and Cryptography. 30(2): 201–217. doi:
10.1023/A:1025436905711.

Nguyen and Shparlinski. (2002). “The Insecurity of the Digital Signature
Algorithm with Partially Known Nonces”. Journal of Cryptology.
15(3): 151–176. doi: 10.1007/s00145-002-0021-3.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://doi.org/10.14722/ndss.2015.23271
https://blog.mondato.com/skin-sim-safari/
https://doi.org/10.1145/1542476.1542504
https://www.nationalgeographic.org/thisday/sep9/worlds-first-computer-bug/
https://www.nationalgeographic.org/thisday/sep9/worlds-first-computer-bug/
https://www.nationalgeographic.org/thisday/sep9/worlds-first-computer-bug/
https://www.synopsys.com/designware-ip/technical-bulletin/true-random-number-generator-security-2019q3.html
https://www.synopsys.com/designware-ip/technical-bulletin/true-random-number-generator-security-2019q3.html
https://www.synopsys.com/designware-ip/technical-bulletin/true-random-number-generator-security-2019q3.html
https://doi.org/10.1023/A:1025436905711
https://doi.org/10.1007/s00145-002-0021-3

172 References

NVIDIA Corporation. (2015). “Trusted Little Kernel (TLK) for Tegra:
FOSS Edition”. url: http://nv-tegra.nvidia.com/gitweb/?p=3rdp
arty/ote_partner/tlk.git;a=blob_plain;f=documentation/Tegra
_BSP_for_Android_TLK_FOSS_Reference.pdf;hb=HEAD.

Nyman, T., G. Dessouky, S. Zeitouni, A. Lehikoinen, A. Paverd, N.
Asokan, and A.-R. Sadeghi. (2019). “HardScope: Hardening Embed-
ded Systems Against Data-Oriented Attacks”. In: Proceedings of
the 2019 Annual Design Automation Conference (DAC). Las Vegas,
NV, USA: ACM. 63. doi: 10.1145/3316781.3317836.

Nyman, T., J.-E. Ekberg, L. Davi, and N. Asokan. (2017). “CFI CaRE:
Hardware-Supported Call and Return Enforcement for Commer-
cial Microcontrollers”. In: Proceedings of the 2017 Symposium on
Research in Attacks, Intrusions, and Defenses (RAID). Ed. by M.
Dacier, M. Bailey, M. Polychronakis, and M. Antonakakis. Cham:
Springer International Publishing. 259–284. doi: 10.1007/978-3-319
-66332-6_12.

Oleksenko, O., D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer.
(2019). “Intel MPX Explained: A Cross-Layer Analysis of the Intel
MPX System Stack”. Proceedings of the ACM on Measurement and
Analysis of Computing Systems. 2(2): 28:1–28:30. doi: 10.1145/322
4423.

Osvik, D. A., A. Shamir, and E. Tromer. (2006). “Cache Attacks and
Countermeasures: The Case of AES”. In: Proceedings of the 2006 CT-
RSA. Red. by D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg,
F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,
B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, and G.
Weikum. Vol. 3860. Berlin, Heidelberg: Springer Berlin Heidelberg.
1–20. doi: 10.1007/11605805_1. (Accessed on 02/27/2022).

Page, B. (1988). “A Report on the Internet Worm”. url: https://www
.ee.ryerson.ca/~elf/hack/iworm.html (accessed on 03/06/2022).

Patterson, D. A. and J. L. Hennessy. (2005). Computer Organization
and Design. 3rd ed. Morgan Kaufmann.

Paul, G. and J. Irvine. (2015). “Take Control of Your PC with UEFI
Secure Boot”. Linux Journal. 2015(257).

PaX Team. (2006). PaX PAGEEXEC Documentation. url: https://pa
x.grsecurity.net/docs/pageexec.txt (accessed on 11/15/2020).

Full text available at: http://dx.doi.org/10.1561/3300000024

http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git;a=blob_plain;f=documentation/Tegra_BSP_for_Android_TLK_FOSS_Reference.pdf;hb=HEAD
http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git;a=blob_plain;f=documentation/Tegra_BSP_for_Android_TLK_FOSS_Reference.pdf;hb=HEAD
http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git;a=blob_plain;f=documentation/Tegra_BSP_for_Android_TLK_FOSS_Reference.pdf;hb=HEAD
https://doi.org/10.1145/3316781.3317836
https://doi.org/10.1007/978-3-319-66332-6_12
https://doi.org/10.1007/978-3-319-66332-6_12
https://doi.org/10.1145/3224423
https://doi.org/10.1145/3224423
https://doi.org/10.1007/11605805_1
https://www.ee.ryerson.ca/~elf/hack/iworm.html
https://www.ee.ryerson.ca/~elf/hack/iworm.html
https://pax.grsecurity.net/docs/pageexec.txt
https://pax.grsecurity.net/docs/pageexec.txt

References 173

Pearson, S. (2002). Trusted Computing Platforms: TCPA Technology in
Context. Upper Saddle River, NJ, USA: Prentice Hall PTR.

Pei, M., A. Atyeo, N. Cook, M. Yoo, and H. Tschofenig. (2019). “The
Open Trust Protocol (OTrP)”. Internet-Draft No. draft-ietf-teep-
opentrustprotocol-03. IETF Secretariat. url: http://www.ietf.org/i
nternet-drafts/draft-ietf-teep-opentrustprotocol-03.txt.

Peslyak, A. (D. (1997). Getting around Non-Executable Stack (and
Fix). url: https://seclists.org/bugtraq/1997/Aug/63 (accessed on
09/05/2019).

Piessens, F. (2020). “Security across abstraction layers: old and new
examples”. In: Proceedings of the 2020 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW). Genoa, Italy.
doi: 10.1109/EuroSPW51379.2020.00043.

Pinto, S. and N. Santos. (2019). “Demystifying Arm TrustZone: A
Comprehensive Survey”. ACM Computing Surveys. 51(6): 130:1–
130:36. doi: 10.1145/3291047.

Pomonis, M., T. Petsios, A. D. Keromytis, M. Polychronakis, and V. P.
Kemerlis. (2017). “kRˆX: Comprehensive Kernel Protection against
Just-in-Time Code Reuse”. In: Proceedings of the 2017 European
Conference on Computer Systems (EuroSys). Belgrade, Serbia: ACM.
420–436. doi: 10.1145/3064176.3064216.

Pyo, C. and G. Lee. (2002). “Encoding Function Pointers and Mem-
ory Arrangement Checking against Buffer Overflow Attack”. en.
In: Information and Communications Security. Vol. 2513. Berlin,
Heidelberg: Springer Berlin Heidelberg. 25–36. doi: 10.1007/3-540-
36159-6_3.

Qualcomm. (2017). “Pointer Authentication on ARMv8.3: Design and
Analysis of the New Software Security Instructions”.

Qualcomm Technologies, I. (2019a). “Qualcomm Secure Processing Unit
SPU230 Core Security Target Lite”. url: https://www.commoncrit
eriaportal.org/files/epfiles/1045b_pdf.pdf.

Qualcomm Technologies, I. (2019b). “Qualcomm SPU FIPS 140-2 Non-
Proprietary Security Policy V1.3”. url: https : / / csrc . nist . gov
/CSRC/media/projects/cryptographic-module-validation-progra
m/documents/security-policies/140sp3549.pdf.

Full text available at: http://dx.doi.org/10.1561/3300000024

http://www.ietf.org/internet-drafts/draft-ietf-teep-opentrustprotocol-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-teep-opentrustprotocol-03.txt
https://seclists.org/bugtraq/1997/Aug/63
https://doi.org/10.1109/EuroSPW51379.2020.00043
https://doi.org/10.1145/3291047
https://doi.org/10.1145/3064176.3064216
https://doi.org/10.1007/3-540-36159-6_3
https://doi.org/10.1007/3-540-36159-6_3
https://www.commoncriteriaportal.org/files/epfiles/1045b_pdf.pdf
https://www.commoncriteriaportal.org/files/epfiles/1045b_pdf.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3549.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3549.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3549.pdf

174 References

Quisquater, J. and D. Samyde. (2001). “ElectroMagnetic Analysis
(EMA): Measures and Counter-Measures for Smart Cards”. In: Pro-
ceedings of the 2001 International Conference on Research in Smart
Cards.

Ravi, S., A. Raghunathan, and S. Chakradhar. (2004). “Tamper resis-
tance mechanisms for secure embedded systems”. In: Proceedings of
the 2004 International Conference on VLSI Design. 605–611. doi:
10.1109/ICVD.2004.1260985.

Reshetova, E., F. Bonazzi, and N. Asokan. (2017). “Randomization
Can’t Stop BPF JIT Spray”. In: Proceedings of the 2017 Interna-
tional Conference on Network and System Security. Lecture Notes in
Computer Science. Cham: Springer International Publishing. 233–
247. doi: 10.1007/978-3-319-64701-2_17.

Reshetova, E., H. Liljestrand, A. Paverd, and N. Asokan. (2018). “To-
ward Linux Kernel Memory Safety”. Software: Practice and Experi-
ence. 48(12): 2237–2256. doi: 10.1002/spe.2638.

Rosenberg, D. (2014). “QSEE Trustzone Kernel Integer Overflow Vul-
nerability”. url: https://www.blackhat.com/docs/us-14/materials
/us-14-Rosenberg-Reflections-On-Trusting-TrustZone-WP.pdf.

Ruan, X. (2014). Platform Embedded Security Technology Revealed:
Safeguarding the Future of Computing with Intel Embedded Security
and Management Engine. 1st. Berkely, CA, USA: Apress.

Rutland, M. (2018). Arm64: Enable Pointer Authentication. url: https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/co
mmit/?id=04ca3204fa09f5f55c8f113b0072004a7b364ff4 (accessed
on 10/26/2020).

Samsung. (2020a). “Samsung Knox”. url: https://docs.samsungknox.c
om/admin/whitepaper.

Samsung. (2020b). “Samsung Knox file encryption”. url: https://www
.samsungknox.com/en/blog/samsung-knox-file-encryption-1-0-th
e-first-certified-integrated-dual-data-at-rest-solution-for-mobile-
devices (accessed on 03/06/2022).

Sandhu, R. S. and P. Samarati. (1994). “Access control: principle and
practice”. IEEE Communications Magazine. 32(9): 40–48.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://doi.org/10.1109/ICVD.2004.1260985
https://doi.org/10.1007/978-3-319-64701-2_17
https://doi.org/10.1002/spe.2638
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trusting-TrustZone-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trusting-TrustZone-WP.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=04ca3204fa09f5f55c8f113b0072004a7b364ff4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=04ca3204fa09f5f55c8f113b0072004a7b364ff4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=04ca3204fa09f5f55c8f113b0072004a7b364ff4
https://docs.samsungknox.com/admin/whitepaper
https://docs.samsungknox.com/admin/whitepaper
https://www.samsungknox.com/en/blog/samsung-knox-file-encryption-1-0-the-first-certified-integrated-dual-data-at-rest-solution-for-mobile-devices
https://www.samsungknox.com/en/blog/samsung-knox-file-encryption-1-0-the-first-certified-integrated-dual-data-at-rest-solution-for-mobile-devices
https://www.samsungknox.com/en/blog/samsung-knox-file-encryption-1-0-the-first-certified-integrated-dual-data-at-rest-solution-for-mobile-devices
https://www.samsungknox.com/en/blog/samsung-knox-file-encryption-1-0-the-first-certified-integrated-dual-data-at-rest-solution-for-mobile-devices

References 175

Santesson, S., M. Myers, R. Ankney, A. Malpani, S. Galperin, and
D. C. Adams. (2013). “X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol - OCSP”. RFC 6960. doi: 10.174
87/RFC6960.

Savagaonkar, U., N. Porter, N. Taha, B. Serebrin, and N. Mueller.
(2017). “Titan in depth: Security in plaintext”. url: https://cloud.g
oogle.com/blog/products/gcp/titan-in-depth-security-in-plaintext
(accessed on 03/06/2022).

Schroeder, M. D. and J. H. Saltzer. (1971). “A Hardware Architecture
for Implementing Protection Rings”. In: Proceedings of the 1971
ACM Symposium on Operating Systems Principles (SOSP). Palo
Alto, CA, USA: ACM. 42–54. doi: 10.1145/800212.806498.

Sebastian, A., M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou.
(2020). “Memory devices and applications for in-memory computing”.
Nature Nanotechnology. 15(7): 529–544. doi: 10.1038/s41565-020-06
55-z.

ARM Ltd. (2020b). Security IP. url: https://developer.arm.com/ip-pr
oducts/security-ip (accessed on 10/22/2020).

Arm Ltd. (2020b). Security IP | CryptoCell-300 family – Arm Developer.
url: https://developer.arm.com/ip-products/security-ip/cryptocell
-300-family (accessed on 10/22/2020).

Arm Ltd. (2019). Security IP | CryptoCell-700 Family – Arm Developer.
url: https://developer.arm.com/ip-products/security-ip/cryptocell
-700-family (accessed on 12/01/2019).

Serebryany, K., D. Bruening, A. Potapenko, and D. Vyukov. (2012).
“AddressSanitizer: A Fast Address Sanity Checker”. In: Proceedings
of the 2012 USENIX Annual Technical Conference (ATC). Boston,
MA, USA: USENIX. 309–318. url: https://www.usenix.org/confer
ence/atc12/technical-sessions/presentation/serebryany.

Serebryany, K. (2019). “ARM Memory Tagging Extension and How It
Improves C/C++ Memory Safety”. USENIX ;login: 44(2): 12–16.

Shacham, H. (2007). “The Geometry of Innocent Flesh on the Bone:
Return-into-libc Without Function Calls (on the x86)”. In: Proceed-
ings of the 2007 ACM Conference on Computer and Communications
Security (CCS). Alexandria, Virginia, USA: ACM. 552–561. doi:
10.1145/1315245.1315313.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://doi.org/10.17487/RFC6960
https://doi.org/10.17487/RFC6960
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext
https://doi.org/10.1145/800212.806498
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1038/s41565-020-0655-z
https://developer.arm.com/ip-products/security-ip
https://developer.arm.com/ip-products/security-ip
https://developer.arm.com/ip-products/security-ip/cryptocell-300-family
https://developer.arm.com/ip-products/security-ip/cryptocell-300-family
https://developer.arm.com/ip-products/security-ip/cryptocell-700-family
https://developer.arm.com/ip-products/security-ip/cryptocell-700-family
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1145/1315245.1315313

176 References

Shen, D. (2015). “Attacking your “Trusted Core” Exploiting TrustZone
on Android”. url: https://www.blackhat.com/docs/us-15/material
s/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzon
e-On-Android.pdf.

SIMalliance Ltd. (2013). “Device Implementation Guidelines version
1.1”. url: https://simalliance.org/wp-content/uploads/2015/03
/SIMalliance_UICC_Device_Implementation_Guidelines-1.1.pdf
.

Skorobogatov, S. P. and R. J. Anderson. (2003). “Optical Fault Induc-
tion Attacks”. In: Proceedings of the Conference on Cryptographic
Hardware and Embedded Systems (CHES). Ed. by B. S. Kaliski, ç. K.
Koç, and C. Paar. Berlin, Heidelberg: Springer Berlin Heidelberg.
2–12. doi: 10.1007/3-540-36400-5_2.

Slowinska, A. and H. Bos. (2009). “Pointless Tainting? Evaluating
the Practicality of Pointer Tainting”. In: Proceedings of the 2009
ACM European Conference on Computer Systems (EuroSys). New
York, NY, USA: Association for Computing Machinery. 61–74. doi:
10.1145/1519065.1519073.

Smalley, S. and R. Craig. (2013). “Security Enhanced (SE) Android:
Bringing Flexible MAC to Android.” In: Proceedings of the 2013
Network and Distributed Systems Symposium (NDSS). Vol. 310. 20–
38.

Snow, K. Z., F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.
Sadeghi. (2013). “Just-in-Time Code Reuse: On the Effectiveness of
Fine-Grained Address Space Layout Randomization”. In: Proceedings
of the 2013 IEEE Symposium on Security and Privacy (SP). SP ’13.
San Francisco, CA, USA. 574–588. doi: 10.1109/SP.2013.45.

Spafford, E. H. (1989). “The Internet Worm Program: An Analysis”.
ACM SIGCOMM Computer Communication Review. SIGCOMM
19(1): 17–57. doi: 10.1145/66093.66095.

Stepanov, E., K. Serebryany, M. Phillips, and V. Buka. (2020). “Memory
Tagging in LLVM and Android”. 2020 Virtual LLVM Developers’
Meeting.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android.pdf
https://simalliance.org/wp-content/uploads/2015/03/SIMalliance_UICC_Device_Implementation_Guidelines-1.1.pdf
https://simalliance.org/wp-content/uploads/2015/03/SIMalliance_UICC_Device_Implementation_Guidelines-1.1.pdf
https://simalliance.org/wp-content/uploads/2015/03/SIMalliance_UICC_Device_Implementation_Guidelines-1.1.pdf
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1145/1519065.1519073
https://doi.org/10.1109/SP.2013.45
https://doi.org/10.1145/66093.66095

References 177

Stephens, N. (2019). Developments in the Arm A-Profile Architecture:
Armv8.6-A. url: https://community.arm.com/developer/ip-produc
ts/processors/b/processors-ip-blog/posts/arm-architecture-develo
pments-armv8-6-a (accessed on 04/20/2020).

Suh, G. E., D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. (2003).
“AEGIS: Architecture for Tamper-evident and Tamper-resistant
Processing”. In: Proceedings of the 2003 Annual International Con-
ference on Supercomputing (ICS). San Francisco, CA, USA: ACM.
160–171. doi: 10.1145/782814.782838.

Suh, G. E., J. W. Lee, D. Zhang, and S. Devadas. (2004). “Secure
Program Execution via Dynamic Information Flow Tracking”. ACM
SIGPLAN Notices. 39(11): 85–96. doi: 10.1145/1037187.1024404.
(Accessed on 10/25/2021).

Sundaresan, H. (2003). “OMAP platform security features”. url: https
://www.ti.com/pdfs/wtbu/omapplatformsecuritywp.pdf (accessed
on 03/07/2022).

Synopsys Inc. (2014). Heartbleed Bug. url: https://heartbleed.com/
(accessed on 06/21/2021).

Szekeres, L., M. Payer, T. Wei, and D. Song. (2013). “SoK: Eternal
War in Memory”. In: Proceedings of the 2013 IEEE Symposium on
Security and Privacy (SP). Washington, DC, USA: IEEE Computer
Society. 48–62. doi: 10.1109/SP.2013.13.

Tal, A. (2020). Using Intel® MPX with the Intel® Software Development
Emulator. url: https://www.intel.com/content/www/us/en/devel
op/articles/using-intel-mpx-with-the-intel-software-development-
emulator.html (accessed on 11/15/2020).

Tang, A., S. Sethumadhavan, and S. Stolfo. (2017). “CLKSCREW:
Exposing the Perils of Security-Oblivious Energy Management”. In:
Proceedings of the 2017 USENIX Security Symposium. Vancouver,
BC: USENIX Association. 1057–1074. url: https://www.usenix.or
g/conference/usenixsecurity17/technical-sessions/presentation/ta
ng.

Toulas, B. (2021). “New Intel chips won’t play Blu-ray disks due to
SGX deprecation”. url: https://www.bleepingcomputer.com/news
/security/new-intel-chips-wont-play-blu-ray-disks-due-to-sgx-dep
recation/ (accessed on 01/29/2021).

Full text available at: http://dx.doi.org/10.1561/3300000024

https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
https://doi.org/10.1145/782814.782838
https://doi.org/10.1145/1037187.1024404
https://www.ti.com/pdfs/wtbu/omapplatformsecuritywp.pdf
https://www.ti.com/pdfs/wtbu/omapplatformsecuritywp.pdf
https://heartbleed.com/
https://doi.org/10.1109/SP.2013.13
https://www.intel.com/content/www/us/en/develop/articles/using-intel-mpx-with-the-intel-software-development-emulator.html
https://www.intel.com/content/www/us/en/develop/articles/using-intel-mpx-with-the-intel-software-development-emulator.html
https://www.intel.com/content/www/us/en/develop/articles/using-intel-mpx-with-the-intel-software-development-emulator.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.bleepingcomputer.com/news/security/new-intel-chips-wont-play-blu-ray-disks-due-to-sgx-deprecation/
https://www.bleepingcomputer.com/news/security/new-intel-chips-wont-play-blu-ray-disks-due-to-sgx-deprecation/
https://www.bleepingcomputer.com/news/security/new-intel-chips-wont-play-blu-ray-disks-due-to-sgx-deprecation/

178 References

Tramer, F. and D. Boneh. (2019). “Slalom: Fast, Verifiable and Private
Execution of Neural Networks in Trusted Hardware”. In: Proceedings
of the 2019 International Conference on Learning Representations.
url: https://openreview.net/forum?id=rJVorjCcKQ.

Turan, M. S., E. Barker, J. Kelsey, K. A. McKay, M. L. Baish, and
M. Boyle. (2018). “Recommendation for the Entropy Sources Used
for Random Bit Generation”. National Institute of Standards and
Technology. doi: 10.6028/NIST.SP.800-90B.

Van Bulck, J., D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D.
Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens. (2020).
“LVI: Hijacking Transient Execution through Microarchitectural
Load Value Injection”. In: Proceedings of the 2020 IEEE Symposium
on Security and Privacy (SP).

Viand, A., P. Jattke, and A. Hithnawi. (2021). “SoK: Fully Homo-
morphic Encryption Compilers”. In: Proceedings of the 2021 IEEE
Symposium on Security and Privacy (SP). 1092–1108. doi: 10.1109
/SP40001.2021.00068.

Volos, S., K. Vaswani, and R. Bruno. (2018). “Graviton: Trusted
Execution Environments on GPUs”. In: Proceedings of the 2018
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI). Carlsbad, CA: USENIX Association. 681–696. url:
https://www.usenix.org/conference/osdi18/presentation/volos.

Von Neumann, J. (1993). “First Draft of a Report on the EDVAC”.
IEEE Annals of the History of Computing. 15(4): 27–75.

Watson, R., B. Feldman, A. Migus, and C. Vance. (2003). “Design and
implementation of the Trusted BSD MAC framework”. In: Proceed-
ings of the 2003 DARPA Information Survivability Conference and
Exposition. Vol. 1. IEEE. 38–49.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://openreview.net/forum?id=rJVorjCcKQ
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.1109/SP40001.2021.00068
https://doi.org/10.1109/SP40001.2021.00068
https://www.usenix.org/conference/osdi18/presentation/volos

References 179

Watson, R. N. M., P. G. Neumann, J. Woodruff, M. Roe, H. Almatary,
J. Anderson, J. Baldwin, D. Chisnall, B. Davis, N. W. Filardo, A.
Joannou, B. Laurie, A. T. Markettos, S. W. Moore, S. J. Murdoch, K.
Nienhuis, R. Norton, A. Richardson, P. Rugg, P. Sewell, S. Son, and
H. Xia. (2019). “Capability Hardware Enhanced RISC Instructions:
CHERI Instruction-Set Architecture (Version 7)”. No. UCAM-CL-
TR-927. University of Cambridge, Computer Laboratory. url: h
ttps://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.html
(accessed on 11/30/2020).

Weiser, S., M. Werner, F. Brasser, M. Malenko, S. Mangard, and A.-R.
Sadeghi. (2019). “TIMBER-V: Tag-Isolated Memory Bringing Fine-
grained Enclaves to RISC-V”. In: Proceedings of the 2019 Network
and Distributed System Security Symposium (NDSS). doi: 10.14722
/ndss.2019.23068.

Woodruff, J., R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe. (2014).
“The CHERI Capability Model: Revisiting RISC in an Age of Risk”.
In: Proceedings of the ACM/IEEE 2014 International Symposium
on Computer Architecture (ISCA). ACM/IEEE ISCA ’14. 457–468.
doi: 10.1109/ISCA.2014.6853201. (Accessed on 12/03/2020).

Wright, P. (1987). Spycatcher. Heinemann Publishers Australia.
Xu, L. (2010). “Secure the Enterprise with Intel® AES-NI”. White Paper.

Intel. url: https://www.intel.com/content/www/us/en/enterprise-
security/enterprise-security-aes-ni-white-paper.html.

Yarom, Y. and K. Falkner. (2014). “FLUSH+RELOAD: A High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack”. In: Proceedings
of the 2014 USENIX Security Symposium.

Yoshizawa, Y., H. Kimura, H. Inoue, K. Fujita, M. Toyama, and O.
Miyatake. (1999). “Physical random numbers generated by radioac-
tivity”. Journal of the Japanese Society of Computational Statistics.
12(1): 67–81. doi: 10.5183/jjscs1988.12.67.

Yu, Y.-c. (2021). [PATCH v30 00/32] Control-flow Enforcement: Shadow
Stack. url: https://lore.kernel.org/linux-mm/20210830181528.1569
-3-yu-cheng.yu@intel.com/T/ (accessed on 01/16/2022).

Full text available at: http://dx.doi.org/10.1561/3300000024

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.html
https://doi.org/10.14722/ndss.2019.23068
https://doi.org/10.14722/ndss.2019.23068
https://doi.org/10.1109/ISCA.2014.6853201
https://www.intel.com/content/www/us/en/enterprise-security/enterprise-security-aes-ni-white-paper.html
https://www.intel.com/content/www/us/en/enterprise-security/enterprise-security-aes-ni-white-paper.html
https://doi.org/10.5183/jjscs1988.12.67
https://lore.kernel.org/linux-mm/20210830181528.1569-3-yu-cheng.yu@intel.com/T/
https://lore.kernel.org/linux-mm/20210830181528.1569-3-yu-cheng.yu@intel.com/T/

180 References

Yu, J., L. Hsiung, M. El’Hajj, and C. W. Fletcher. (2019a). “Data
Oblivious ISA Extensions for Side Channel-Resistant and High
Performance Computing”. In: Proceedings of the 2019 Network
and Distributed System Security Symposium (NDSS). Network and
Distributed System Security Symposium. San Diego, CA: Internet
Society. doi: 10.14722/ndss.2019.23061. (Accessed on 09/23/2021).

Yu, J., M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher.
(2019b). “Speculative Taint Tracking (STT): A Comprehensive Pro-
tection for Speculatively Accessed Data”. In: Proceedings of the
2019 Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). New York, NY, USA: Association for Computing
Machinery. 954–968. doi: 10.1145/3352460.3358274.

Zhang, N., K. Sun, D. Shands, W. Lou, and Y. T. Hou. (2016a). “TruSpy:
Cache Side-Channel Information Leakage from the Secure World
on ARM Devices”. Cryptology ePrint Archive No. 2016/980. url:
https://eprint.iacr.org/2016/980 (accessed on 03/06/2022).

Zhang, T., Y. Zhang, and R. B. Lee. (2016b). “CloudRadar: A Real-Time
Side-Channel Attack Detection System in Clouds”. In: Proceedings
of the 2016 International Symposium on Research in Attacks, Intru-
sions, and Defenses (RAID). Paris, France. doi: 10.1007/978-3-319-
45719-2_6.

Zhang, X., Y. Xiao, and Y. Zhang. (2016c). “Return-Oriented Flush-
Reload Side Channels on ARM and Their Implications for Android
Devices”. In: Proceedings of the 2016 ACM Conference on Com-
puter and Communications Security (ACM). New York, NY, USA:
Association for Computing Machinery. 858–870. doi: 10.1145/29767
49.2978360.

Zhou, Q., X. Liao, K.-w. Wong, Y. Hu, and D. Xiao. (2009). “True
Random Number Generator Based on Mouse Movement and Chaotic
Hash Function”. Information Sciences. 179(19): 3442–3450. doi: 10
.1016/j.ins.2009.06.005.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://doi.org/10.14722/ndss.2019.23061
https://doi.org/10.1145/3352460.3358274
https://eprint.iacr.org/2016/980
https://doi.org/10.1007/978-3-319-45719-2_6
https://doi.org/10.1007/978-3-319-45719-2_6
https://doi.org/10.1145/2976749.2978360
https://doi.org/10.1145/2976749.2978360
https://doi.org/10.1016/j.ins.2009.06.005
https://doi.org/10.1016/j.ins.2009.06.005

References 181

Zhu, J., R. Hou, X. Wang, W. Wang, J. Cao, B. Zhao, Z. Wang, Y.
Zhang, J. Ying, L. Zhang, and D. Meng. (2020). “Enabling Rack-
Scale Confidential Computing Using Heterogeneous Trusted Execu-
tion Environment”. In: Proceedings of the 2020 IEEE Symposium
on Security and Privacy. 2020 IEEE Symposium on Security and
Privacy (SP). San Francisco, California, USA. 16. doi: 10.1109/SP4
0000.2020.00054.

Zinzindohoué, J.-K., K. Bhargavan, J. Protzenko, and B. Beurdouche.
(2017). “HACL*: A Verified Modern Cryptographic Library”. In:
Proceedings of the 2017 ACM Conference on Computer and Com-
munications Security (CCS). doi: 10.1145/3133956.3134043.

Full text available at: http://dx.doi.org/10.1561/3300000024

https://doi.org/10.1109/SP40000.2020.00054
https://doi.org/10.1109/SP40000.2020.00054
https://doi.org/10.1145/3133956.3134043

