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ABSTRACT

Autonomous robots and other systems are no longer just
subjects of science fiction, but are becoming common occur-
rences in our everyday lives. Autonomous vacuum cleaners,
lawnmowers, and other household helpers are starting to
be common place, with autonomous cars now being tested
around the world and autonomous drones starting to be used
to deliver packages and groceries. Though they will soon be
common occurrences in everyday life, assuring their safety,
privacy and security is still a huge challenge. A number of au-
tonomous car accidents have occurred after millions of miles
of testing, as well as other injuries from other types of au-
tonomous systems. Assuring the proper behavior and safety
of autonomous systems is an important endeavor to reduce
risks in using them. This monograph discusses assurance for
autonomous systems, the different approaches to assuring
autonomy, formal analysis, cybersecurity, certification and
research challenges.

Christopher Rouff and Lanier Watkins (2022), “Assured Autonomy Survey”, Foun-
dations and Trends® in Privacy and Security: Vol. 4, No. 1, pp 1–116. DOI:
10.1561/3300000027.
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1
Introduction

Autonomous systems will soon be ubiquitous in our society, saving
us time, performing tasks we do not want to do, caring for us and
keeping us safe, often referred to as dull, dirty and dangerous tasks
(Connelly et al., 2006). Autonomous robots in homes and businesses are
already cleaning floors, mowing lawns, delivering meals and packages,
and the technology is now driving cars and trucks. Assuring autonomous
systems performance and safety is still a huge challenge. A number of
autonomous car accidents have occurred after millions of miles of testing
and injuries are also occurring from other types of autonomous systems
(Banks et al., 2018; Favarò et al., 2017). Though some autonomous
system accidents are minor, others have resulted in deaths to occupants
or users, and there is the potential of other damage and injuries from
the increasing number and types of autonomous systems that are being
proposed.

With the increase of autonomy being used for a wide range of
applications, assuring their behavior, trustworthiness, safety and security
is still a huge challenge. Providing proper assurance can help prevent
injuries, deaths and financial loss. The following subsections give a brief
introduction to assured autonomy, providing definitions and terms that
will be used in the remainder of this monograph.

2
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1.1. Autonomy 3

1.1 Autonomy

Autonomous systems, also referred to highly automated systems (Falco
et al., 2021), have been defined by a number of authors, including Con-
nelly et al. (2006), Huang (2007), Huang et al. (2007), and Truszkowski
et al. (2009). Merriam-Webster dictionary defines autonomy as “the
quality or state of being self-governing.”1 For software systems, this
means they are not dependent on an outside entity for control or de-
cision making. Connelly et al. (2006) define an autonomous system as
“one that makes and executes a decision to achieve a goal without full,
direct human control.” Hutchison et al. (2018) describe autonomous
systems as having the following properties:

Stateful - autonomous systems may need to use a large amount of
internal memory to represent the environment in which they are
operating, keep track of interactions with people and other entities,
making models of the physical world around them, developing
plans of actions, and reading and storing sensor data that is
constantly being received and that needs to be analyzed. Much of
the data autonomous systems receive is interrelated and needs to
be retained for differing periods of time for future reference and
reasoning purposes.

Temporal - autonomous systems often have time and sequence related
requirements. They often execute checklists or algorithms that are
sequence oriented or where future actions are dependent on past
results. An example is going point to point from an initial starting
place to a destination. Decisions on the direction from one point
may not be known until the autonomous system arrives at that
point. In the future these points may be needed to backtrack or
return to its starting point.

Distributed - autonomous systems typically contain multiple subsys-
tems that are all communicating with each other over an internal
network. Actuators and sensors often have their own processors

1See https://www.merriam-webster.com/dictionary/autonomy (date accessed:
28 May 2021).
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4 Introduction

and commands are sent to them from a central controller. Data
may be sent to a modeling agent that keeps track of the system’s
current position, goals, plans and other high-level information.
Race conditions, deadlocks and other distributed system errors
can occur and need to be either tested for or checked through
formal methods or other techniques.

Cyber-Physical - autonomous systems are often cyber-physical sys-
tems (CPSs) that are an integration of hardware and software
components. Griffor et al. (2017), at the National Institute of Stan-
dards and Technology (NIST), describe CPSs as “smart systems
that include engineered interacting networks of physical and com-
putational components” (see Figure 1.1). In the NIST description,
multiple CPSs can make up a system (such as an autonomous
system) and multiple systems can make up a system of systems
(such as a smart city). This makes autonomous systems different
from traditional software systems in that they need to detect and
deal with hardware failures and sensors that may provide faulty
or no data since a human may not be available to detect and fix
these problems.

Figure 1.1: NIST conceptual model of a cyber-physical system (based on Griffor
et al. (2017)).

Full text available at: http://dx.doi.org/10.1561/3300000027



1.1. Autonomy 5

A question that often comes up when describing autonomous systems
is what is the difference between an automated and autonomous system.
Both terms refer to processes that may be executed independently from
start to finish without any human intervention. Truszkowski et al. (2009)
describe automated processes as replacing routine manual processes
with software and/or hardware. Automation follows a step-by-step
sequence of steps that may or may not include human participation.
The authors describe an autonomous system as having “self-governance”
and “self-direction” and can complete a task independently of a human,
and have the goal of emulating human processes rather than simply
replacing them. Replacing human processes often requires the use of
artificial intelligence (AI). Kunze et al. (2018) and Nascimento et al.
(2019) provide some examples of the types of AI used in autonomous
systems.

Autonomy may be applied gradually to systems as the technology is
developed, making the system more autonomous over time (Truszkowski
et al., 2005). The system may start out with automation, with increas-
ingly sophisticated or intelligent automated steps added until the system
is self-governing and emulating human processes. Sheridan and Verplank
(1978) describe ten levels of automation, with the final level being able
to operate without human supervision, which could be construed as
fully autonomous. The ten levels are (Sheridan and Verplank, 1978;
MahmoudZadeh et al., 2019):

1. System is controlled by an operator.

2. System helps operator by determining options.

3. System helps operator by determining options and suggesting one
option.

4. System selects an action, which the operator may or may not
execute.

5. System selects an action and executes it if approved by the opera-
tor.

6. System selects an action, informs the operator in plenty of time
for the operator to stop the action.

Full text available at: http://dx.doi.org/10.1561/3300000027



6 Introduction

7. System does the whole job and tells the operator what it did.

8. System does the whole job and only tells the operator if the
operator asks.

9. System does the whole job and decides whether to tell the operator
what it did.

10. System decides if the job should be done, does the whole job and
decides if it should tell the operator.

At level 7, one could argue that the system is autonomous, since it
is performing a job and only telling the operator about it after it is
performed, which would mean that it is emulating a human process
at this level (telling someone after a task is performed is often what
humans do). Clough (2002) also defined ten levels of autonomy that
ranges from a remotely piloted vehicle to a vehicle with human-like
performance.

SAE international has defined six levels of automation that a vehicle
may have (SAE, 2021). The SAE driving automation levels are:

• Level 0: No driving automation

• Level 1: Driver assistance

• Level 2: Partial driving automation

• Level 3: Conditional driving automation

• Level 4: High driving automation

• Level 5: Full driving automation

Level 0 is no autonomy and may not even have any automation. Level
1 is when one or more functions are automated. Level 1 does not
require sensor information from the environment, and could just be
a human activity that is automated. An example would be a simple
cruise control that maintains a selected speed, but does not maintain
distance from other vehicles or have other safety features. Level 2, partial
driving automation, requires sensors to sense the environment, but still

Full text available at: http://dx.doi.org/10.1561/3300000027



1.1. Autonomy 7

requires driver assistance. Examples would be lane control maintenance
or collision avoidance breaking, which would need to sense the lines on
the road or obstacles ahead of the vehicle. Level 3 requires a driver,
but the driver is not required to monitor the environment, though the
driver must be ready to take control of the vehicle at any time with
little notice. Level 4, high driving automation, is where a vehicle is
capable of performing all driving functions under certain conditions,
with the driver having the option to take control of the vehicle. An
example might be that the vehicle can operate autonomously only in
good weather or in highway environments with good lane markings.
Level 5 is defined as full automation, where the vehicle is able to perform
all of the driving under all conditions, with the driver having the option
to take control of the vehicle when they want. Level 5 could also be
construed as emulating human processes, so could be considered an
autonomous system.

At the lower levels of SAE driving automation, such as Levels 2 and
3, vehicles may have several independent systems providing automation,
such as adaptive cruise and lane keeping technologies. They are usually
different systems and can be operated at the same time, or one without
the other. For a Level 4 or 5 vehicle, the automation/autonomy must be
one integrated system since all of the components must work together
(Figure 1.2). The adaptive cruise control may work with the lane keeping
function to pass slower vehicles on a highway, along with the other
autonomy components to make decisions about speed limits, directions,
obstacle avoidance and other functions.

Adjustable autonomy is where the level of autonomy can be adjusted
based on the task being performed (MahmoudZadeh et al., 2019; Mah-
eswaran et al., 2003). Mostafa et al. (2019) define adjustable autonomy
as providing “an autonomous system with variable autonomy in which
its operators have the options to work in different autonomy states.”
Zieba et al. (2010) define adjustable autonomy as “the property of an
autonomous system to change its level of autonomy while the system op-
erates. The human operator, another system or the autonomous system
itself, can adjust the autonomy level.” Adjusting the level of autonomy
in a system can allow a user to take control when the autonomy is no
longer necessary, the autonomy is not operating correctly or the user

Full text available at: http://dx.doi.org/10.1561/3300000027



8 Introduction

Figure 1.2: Components of an autonomous vehicle.

prefers to have manual control in a given situation. For an autonomous
automobile, this could be when the road conditions or the weather
makes it difficult for the autonomy to operate, when a sensor fails,
or when the driver would just prefer to drive the car themself. Other
examples may be when moving a robot through a tight area, where
some of the autonomy is still necessary for navigation, or when learning
or other intelligence is not operating properly and some manual control
is necessary.

Though there is not a clear agreement between practitioners and
researchers on when a system is autonomous and not autonomous, the
ability to achieve goals given to it by a human with little or no input is
important. For this monograph, the authors will use the definition.

1.2 Assurance

The ability of an autonomous system to operate independently of a
human adds a large amount of complexity to the system. This added
complexity greatly increases the chances of errors in the system, which
adds risks since there may not be a human in the loop that could stop it
from causing harm. There need to be assurances that autonomous sys-
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tems will operate as intended, and appropriately, even in unanticipated
or emergency situations.

Topcu et al. (2020) describe assurance as an interdisciplinary re-
search area. What it means for a system to have assurance can differ
depending on the community involved. For software engineers, assurance
relates to the correct operation of the software that implements the
system (Abrams and Zelkowitz, 1995; Saidi et al., 2020; Smith et al.,
2020; Wing, 1990). For software engineers, software assurance can refer
to formal verification, testing and other approaches used to ensure the
system implementation matches the system requirements.

In cybersecurity, assurance can reflect the confidentiality, integrity
and availability of a system, referred to as the CIA triad (Gamundani
and Nekare, 2018; Samonas and Coss, 2014). Cherdantseva and Hilton
(2013) define information assurance (IA) as providing protection by:

reducing risks associated with information and information
systems by means of a comprehensive and systematic man-
agement of security countermeasures, which is driven by risk
analysis and cost-effectiveness.

Cooper et al. (2010) define IA as a:

set of technical and managerial controls designed to ensure
the confidentiality, possession of control, integrity, authen-
ticity, availability, and utility of information and informa-
tion systems. IA includes measures that protect and de-
fend information and information systems by ensuring their
availability, integrity, authentication, confidentiality, and
nonrepudiation.

Similarly, NIST defines IA as (Barker, 2003):

Measures that protect and defend information and infor-
mation systems by ensuring their availability, integrity, au-
thentication, confidentiality, and non-repudiation. These
measures include providing for restoration of information
systems by incorporating protection, detection, and reaction
capabilities.

Full text available at: http://dx.doi.org/10.1561/3300000027



10 Introduction

To provide IA for autonomous systems there needs to be a way to
detect when they are under cyber attack, protecting themselves from
attack, protecting the information they contain from being stolen, and
ensuring that those that try to access the system and its information
are authorized to do so.

Mueller (2019) describes three features that can serve as a foundation
of assured autonomy: accuracy, reduction in bias and the ability to
reverse engineer the decision-making processes. Accuracy refers to how
the autonomy algorithm “senses and perceives the environment in a
manner relatable to humans.” This means that the perception of the
autonomous system would be similar to how humans perceive the
world so that humans can then better relate to how the autonomous
system is acting, which reduces the perceived complexity of the system.
The reduction in bias refers to the algorithmic and training of the
autonomous system, whether the autonomous system is directed toward
a result different than what it was originally intended. Algorithmic bias
is usually the result of an improper specification of a function, coding
errors and other bugs, which causes a degradation in performance of an
autonomous system. Training bias is when data that is used by an AI
algorithm that is controlling an autonomous system does not represent
the environment in which the autonomous system is deployed. This can
also be caused by malicious actors feeding the wrong or false data into
an AI system, either during training or operations. This means that the
autonomous system is taught the wrong information and will not act as
intended. The ability to reverse engineer the decision-making processes
allows a human to understand why an AI decision was made. When an
AI system can explain a decision, it is referred to as Explainable AI
(Phillips et al., 2021). AI decision systems often have opaque algorithms,
but it is important for humans to understand why a decision was made so
that it can be corrected if needed, or just for an operator to understand
why an intelligent system operated in a particular manner.

1.3 Monograph Outline

The remainder of this monograph expands on the above descriptions
of assured autonomy. Section 2 provides an overview of assured auton-
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omy and different aspects of system and software assurances. Section
3 discusses governance, trust, ethics and privacy of autonomous sys-
tems. This includes ways the government can be involved in assuring
autonomous systems, ways of increasing the trust people have in them,
how ethical behavior can be instilled in them, and maintaining the pri-
vacy of people who are using or coming into contact with them. Section
4 discusses assuring the correct operation of autonomous systems. This
can be done through techniques, such as formal verification, testing
and monitoring. Section 5 describes certification of current systems and
proposals for certifying autonomous systems. It provides an example of
the certification of aircraft software and multiple proposals for how au-
tonomous systems could be certified. Section 6, the conclusion, discusses
areas of research in assuring autonomous systems, and some concluding
remarks.
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