
Cloud Computing Security:
Foundations and Research

Directions

Full text available at: http://dx.doi.org/10.1561/3300000028



Other titles in Foundations and Trends® in Privacy and Security

Expressing Information Flow Properties
Elisavet Kozyri, Stephen Chong and Andrew C. Myers
ISBN: 978-1-68083-936-4

Accountability in Computing: Concepts and Mechanisms
Joan Feigenbaum, Aaron D. Jaggard and Rebecca N. Wright
ISBN: 978-1-68083-784-1

A Pragmatic Introduction to Secure Multi-Party Computation
David Evans, Vladimir Kolesnikov and Mike Rosulek
ISBN: 978-1-68083-508-3

Contextual Integrity through the Lens of Computer Science
Sebastian Benthall, Seda Gurses and Helen Nissenbaum
ISBN: 978-1-68083-384-3

Methods for Location Privacy: A comparative overview
Kostantinos Chatzikokolakis, Ehab ElSalamouny, Catuscia Palamidessi
and Pazii Anna
ISBN: 978-1-68083-366-9

Full text available at: http://dx.doi.org/10.1561/3300000028



Cloud Computing Security:
Foundations and Research

Directions

Anrin Chakraborti
Duke University

anrin.chakraborti@duke.edu

Reza Curtmola
New Jersey Institute of Technology

reza.curtmola@njit.edu

Jonathan Katz
University of Maryland, College Park

jkatz@cs.umd.edu

Jason Nieh
Columbia University

nieh@cs.columbia.edu

Ahmad-Reza Sadeghi
Technische Universität Darmstadt

ahmad.sadeghi@trust.tu-darmstadt.de

Radu Sion
Stony Brook University
sion@cs.stonybrook.edu

Yinqian Zhang
Southern University of Science and Technology

yinqianz@acm.org

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/3300000028



Foundations and Trends® in Privacy and Security

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

A. Chakraborti et al. . Cloud Computing Security: Foundations and Research Direc-
tions. Foundations and Trends® in Privacy and Security, vol. 3, no. 2, pp. 103–213,
2022.

ISBN: 978-1-68083-959-3
© 2022 A. Chakraborti et al.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/3300000028



Foundations and Trends® in Privacy and Security
Volume 3, Issue 2, 2022

Editorial Board

Editors-in-Chief
Anupam Datta
Carnegie Mellon University, USA

Jeannette Wing
Columbia University, USA

Editors

Martín Abadi
Google and University of California,
Santa Cruz
Michael Backes
Saarland University
Dan Boneh
Stanford University, USA
Véronique Cortier
LORIA, CNRS, France
Lorrie Cranor
Carnegie Mellon University
Cédric Fournet
Microsoft Research
Virgil Gligor
Carnegie Mellon University
Jean-Pierre Hubaux
EPFL

Deirdre Mulligan
University of California, Berkeley

Andrew Myers
Cornell University

Helen Nissenbaum
New York University

Michael Reiter
University of North Carolina

Shankar Sastry
University of California, Berkeley

Dawn Song
University of California, Berkeley

Daniel Weitzner
Massachusetts Institute of Technology

Full text available at: http://dx.doi.org/10.1561/3300000028



Editorial Scope
Topics

Foundations and Trends® in Privacy and Security publishes survey and
tutorial articles in the following topics:

• Access control
• Accountability
• Anonymity
• Application security
• Artifical intelligence methods in

security and privacy
• Authentication
• Big data analytics and privacy
• Cloud security
• Cyber-physical systems security

and privacy
• Distributed systems security and

privacy
• Embedded systems security and

privacy
• Forensics
• Hardware security

• Human factors in security and
privacy

• Information flow
• Intrusion detection
• Malware
• Metrics
• Mobile security and privacy
• Language-based security and

privacy
• Network security
• Privacy-preserving systems
• Protocol security
• Security and privacy policies
• Security architectures
• System security
• Web security and privacy

Information for Librarians

Foundations and Trends® in Privacy and Security, 2022, Volume 3, 4
issues. ISSN paper version 2474-1558. ISSN online version 2474-1566.
Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/3300000028



Contents

1 Introduction 2
1.1 Secure Infrastructure . . . . . . . . . . . . . . . . . . . . 3
1.2 Secure Computation . . . . . . . . . . . . . . . . . . . . . 4
1.3 Secure Storage . . . . . . . . . . . . . . . . . . . . . . . . 5

I Secure Infrastructure 7

2 Virtualization 8
2.1 Trusted Designs . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Formally-Verified Hypervisors . . . . . . . . . . . . . . . . 11
2.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . 13

3 Hardware-Enabled Security 14
3.1 Trusted Execution Environments . . . . . . . . . . . . . . 15
3.2 Open Challenges and Future Research Direction . . . . . . 23

4 Side-Channels 24
4.1 Side-channel Attacks . . . . . . . . . . . . . . . . . . . . 25
4.2 Side-channel Defenses . . . . . . . . . . . . . . . . . . . . 33
4.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . 36

Full text available at: http://dx.doi.org/10.1561/3300000028



II Secure Computation 38

5 Secure Distributed Computation 39
5.1 The Ideal World . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 The Real World . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Defining Security . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Feasibility Results and Secure Protocols . . . . . . . . . . 47
5.5 Open Questions . . . . . . . . . . . . . . . . . . . . . . . 48

6 Encrypted Search 49
6.1 Searchable Encryption . . . . . . . . . . . . . . . . . . . . 49
6.2 Encrypted Databases . . . . . . . . . . . . . . . . . . . . 52

III Secure Storage 53

7 Data Access Privacy 54
7.1 Access Privacy . . . . . . . . . . . . . . . . . . . . . . . . 56
7.2 Communication-Efficient ORAMs . . . . . . . . . . . . . . 58
7.3 Round-Trip Efficient ORAMs . . . . . . . . . . . . . . . . 61
7.4 Compute-Efficient ORAMs . . . . . . . . . . . . . . . . . 62
7.5 Other Practical Considerations . . . . . . . . . . . . . . . 62

8 Provable Data Possession 67
8.1 Prior Approaches . . . . . . . . . . . . . . . . . . . . . . 69
8.2 Provable Data Possession . . . . . . . . . . . . . . . . . . 69
8.3 Dynamic Provable Data Possession . . . . . . . . . . . . . 71
8.4 Proofs of Retrievability . . . . . . . . . . . . . . . . . . . 72
8.5 Towards Auditing Distributed Storage Systems . . . . . . . 73
8.6 Remote Data Integrity Checking With Server-side Repair . 76
8.7 Future Research Directions . . . . . . . . . . . . . . . . . 78

9 Acknowledgements 80

References 81

Full text available at: http://dx.doi.org/10.1561/3300000028



Cloud Computing Security:
Foundations and Research
Directions
Anrin Chakraborti1, Reza Curtmola2, Jonathan Katz3, Jason Nieh4,
Ahmad-Reza Sadeghi5, Radu Sion6 and Yinqian Zhang7

1Duke University, USA; anrin.chakraborti@duke.edu
2New Jersey Institute of Technology, USA; reza.curtmola@njit.edu
3University of Maryland, College Park, USA; jkatz@cs.umd.edu
4Columbia University, USA; nieh@cs.columbia.edu
5Technische Universität Darmstadt, Germany;
ahmad.sadeghi@trust.tu-darmstadt.de
6Stony Brook University, USA; sion@cs.stonybrook.edu
7Southern University of Science and Technology, China;
yinqianz@acm.org

ABSTRACT
Cloud services have revolutionized modern computing. The
benefits of outsourcing data and computation come with
security and privacy concerns. This monograph explores the
advances in cloud security research across both industry
and academia, with a special focus on secure infrastructure,
services and storage. Besides overviewing the state of the
art, the monograph highlights open problems, and possible
future research directions.
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1
Introduction

Cloud services have revolutionized computing in the modern world. In an
increasingly networked ecosystem, it is commonplace for enterprises and
private parties alike to leverage cloud services for storage and compute.
The most obvious benefits include scalability, increased availability,
and the potential for reduced costs1 when compared to lower-scale on-
premise infrastructures. In addition, cloud-hosted data (and compute) is
accessible across platforms and is not limited by geographical constraints
making collaboration attractively viable.

However, these benefits come with their share of pitfalls. Over time,
cloud architecture have become increasingly complex. Cloud platforms
today run tens and sometimes hundreds of millions of lines of code
to support a wide range of services and capabilities. From a security
perspective, this results in an enormously large attack surface, which
is now much more attractive to determined knowledge and resource-
intensive attackers, mainly due to its potential to expose millions of
customers’ critical data. This is further exacerbated by the fact that
multi-tenancy, inherent in the very fabric of the cloud value proposition,

1But lower costs are not a given – and very often, applications not designed to
scale properly may incur comparably astronomical costs when run in the cloud.

2
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1.1. Secure Infrastructure 3

can bring forth significant and unforeseen security issues including the
now-ubiquitous side channels – not usually of concern in single-user
systems and enterprise networks – but that now completely compromise
vast swaths of the infrastructure and customer workloads. As a result,
cloud security has become a focal point for security researchers over the
past decade.

This monograph discusses a number of key issues critical in this
endeavour. We focus here on challenges that the authors found par-
ticularly interesting. We provide an overview of some of the solutions
while highlighting noteworthy designs and discussing remaining open
problems. We also note that a holistic complete view of this vast
problem space, effectively spanning all layers of modern com-
puting, is out of scope and cannot be addressed in any one
piece of work.

Structure of the Monograph Cloud security is a broad topic en-
compassing concepts from a large cross section of domains. To make
this monograph concise and meaningful, we target several topics and
challenges that are almost entirely specific to clouds. For this reason,
general computing security topics such as intrusion detection, software
protection, phishing etc. are excluded. While these are important build-
ing blocks that need to be considered in an end-to-end cloud-centric
design, they have been extensively addressed elsewhere.

The monograph is divided into three parts based on a broad cluster-
ing into hardware, computation, and storage. Specifically the intuition
is that a typical cloud stack will need to: i) secure the platforms on
top of which clouds services e.g., on-demand VMs run, ii) secure the
services e.g., by providing secure compute capabilities, and iii) secure
data stored at rest on the cloud-hosted storage platforms. We now give
a brief overview for each part.

1.1 Secure Infrastructure

Cloud infrastructure is extremely complex involving several components
such as networks, hardware etc. Nevertheless, a critical cornerstone

Full text available at: http://dx.doi.org/10.1561/3300000028



4 Introduction

component of any contemporary cloud architecture is the underlying
computation virtualization technology.

Secure Hypervisors Arguably, systems that enable virtualization e.g.,
hypervisors constitute the most security-sensitive component of a cloud
architecture since they usually run millions of lines of code at the highest
privilege level with full access to the underlying hardware and user data.
Securing this software is one of the foremost challenges to building secure
clouds. Section 2 discusses the state of the art in trusted hypervisor
designs, in addition to techniques that formally verify hypervisors for
secure deployments.

Hardware-Enabled Security Trusted execution environments (TEEs)
are an integral part of cloud infrastructure. They protect the confiden-
tiality and integrity of client application data from other tenants, as
well as from an untrusted cloud provider. Widely-deployed TEEs like
Intel SGX (Intel Corporation, 2014) and AMD SEV (Kaplan et al.,
2016) make it possible to run computation isolated from all the other
untrusted software running in the same system, with strong hardware-
backed guarantees. Section 3 discusses these technologies and highlights
their merits and demerits.

Side-Channels Multi-tenancy in clouds supported by virtualization
also introduces other challenges, specifically in the form of side-channels.
This is because a cloud tenant may have its computation co-located with
other potentially untrusted and malicious parties. This unrestricted
sharing of resources between mutually distrustful parties creates new
attack vectors that is not typical to single-user systems or even enterprise
networks. Section 4 discusses the potential pitfalls of multi-tenancy and
outlines solutions that effectively defend against side-channels in cloud
environments.

1.2 Secure Computation

With Platform-as-a-service (PaaS) and Software-as-a-service (SaaS),
cloud services provide various ways for users to outsource and compute

Full text available at: http://dx.doi.org/10.1561/3300000028



1.3. Secure Storage 5

on cloud hardware. One particularly popular instance of this is machine
learning as a service (MLaaS). Naturally, in these settings, the user
would like to ensure that the computation is performed with certain
verifiable guarantees which includes confidentiality of input/output,
correctness of results, etc.

Secure Distributed Computation Multi-party cryptographic tech-
niques are important building blocks for secure cloud computation. Infor-
mally, secure multiparty computation involves two (or more) mutually-
untrusting parties jointly computing on shared data while ensuring
that they learn nothing more than what the protocol specifies about
each others’ inputs. In the cloud setting, the untrusted party is the
cloud service, while the users constitute the trusted parties. Section 5
discusses the results in distributed secure computation which enable
secure computing in the cloud.

Encrypted Search Client-side encryption is an essential first step to-
wards protecting data stored on cloud platforms. This strong protection
comes at the cost of usability and performance since the server can no
longer search and compute on the data. Encrypted search techniques
(e.g., searchable encryption) take a middleground approach and enable
keyword searches in encrypted documents. Encrypted databases further
extend this idea and support rich query functionalities like joins etc.
Section 6 discusses these techniques and highlights their merits and
demerits.

1.3 Secure Storage

Most cloud services provide Storage-as-a-services (STaaS). This has
become a popular option for enterprises to store data in a cost-effective
way, as opposed to setting up on-premise data centers. However, the
abundance of data on online (often public) spaces raises important
security concerns that are not handled by conventional encryption. We
discuss two such challenges.

Full text available at: http://dx.doi.org/10.1561/3300000028



6 Introduction

Access Pattern Privacy Section 7 discusses the problem of access
privacy for data stored on clouds. It is well-known that revealing access
patterns to data can reveal a wealth of information about the contents,
even when the data is encrypted. This problem is especially concerning
in clouds where the (potentially untrusted) cloud provider has easy
access to the data access patterns through access logs etc.

Provable Data Possession Section 8 discusses the problem of provable
data possession. Cloud services rarely provide verifiable guarantees with
regards to the integrity and long-term reliability of the stored data.
If the data is lost, damaged or revealed to unauthorized sources, the
damage is irreversible. Provable data possession ensures that clients
can verify that an untrusted provider indeed ensures all the proper
guarantees for the stored data, and detect corruptions if any.
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7
Data Access Privacy

Encryption alone is not sufficient to protect the confidentiality of data
stored in the cloud since it does not hide metadata e.g., access patterns,
timing information etc. Leaking access patterns in particular is a serious
threat in client-server scenarios where the storage provider can easily
observe and log user access patterns.

To see why this is a problem, first consider the following toy example:
a user (client) stores an alphabetically-sorted encrypted dictionary of
items on an untrusted storage platform. The storage provider observers
all client accesses by logging API calls e.g., GET, PUT requests. If
an encrypted keyword is inserted/deleted, the sequence of requests for
accessing the particular item as well as for other bookkeeping operations
e.g., truncating the dictionary etc. can leak information about the key-
word(s) such as the constituent letters etc. In fact, the observer can make
knowledgeable guesses about the exact keywords with varying degrees
of accuracy based on information obtained apriori about the dictionary
contents. Permuting the keywords in the storage does not solve this
problem since this still allows attacks through frequency analysis – the
“popularity” of a particular keyword leaks how often it is likely to appear
in a typical text application.

54
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The following two scenarios demonstrate the real world implications
of leaking access patterns to an untrusted storage server.

• Consider a cloud-hosted database containing sensitive information
e.g., hospital patient records. Regulatory compliance necessitates
storing the database encrypted. However, even with encrypted
records, database reconstruction attacks such as Grubbs et al.
(2017) and Falzon et al. (2020) are able to infer records by ob-
serving query results – common attributes such as names, age,
geographical location etc. are frequently queried and the attribute
values follow known distributions e.g., an attacker might know
that a certain disease is common in people of a certain age group.
These attacks mainly leverage query access patterns as well the
volume of query results.

• Cloud-hosted services often allow users to perform expensive com-
putation on remote processors. While leveraging trusted execution
environments e.g., Intel SGX can ensure that the computation
runs in a tamper-proof environment and the results generated are
correct, the memory access patterns (even within the enclave’s
cryptographically-protected memory region) can leak information
about the computation (Nayak et al., 2017), and the input data
(Yu et al., 2019).

• Access and search pattern leak significant amounts of information
for searchable encryption systems (Liu et al., 2014a; Oya and
Kerschbaum, 2021).

Intuitively, these attacks succeed because many applications have
data-dependent access patterns i.e., the order in which items are ac-
cessed by the application, the frequency of access etc. depends on the
input. For instance, the memory access patterns of several sorting al-
gorithms (e.g., bubble sort) reveal information about the input to the
algorithm. This problem also manifests in more complex algorithms
such as graph algorithms (Goodrich and Simons, 2014) and machine
learning (Ohrimenko et al., 2016).
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56 Data Access Privacy

7.1 Access Privacy

One way to solve the access privacy problem for encrypted databases
is to always access it in its entirety. That is, on every access, each and
every item is retrieved from the database, re-encrypted/modified and
re-uploaded back. In this way, the server does not learn any information
about the item of interest. Obviously, this approach does not scale to
large databases usually outsourced to cloud servers. In light of this, sev-
eral more efficient approaches have been considered. Private information
retrieval (PIR) (Chor et al., 1998) allows a client to access items from a
database without revealing the item of interest. However, PIR is mainly
a tool for static databases, or databases that are not updated often.
Updating a database with PIR capabilities often entails re-uploading the
entire database. Alternatively, the database can be encrypted using a
fully (or partially) homomorphic encryption scheme. Then, the database
can be accessed and updated server-side by computing on ciphertexts.
However, the main drawback is that in order to hide access patterns,
the computation must involve all items in the database, lest it leaks the
item(s) of interest. Despite recent advances in making homomorphic
encryption schemes efficient, the total computation required is generally
considered far too expensive for real-world deployments.

Oblivious RAM (ORAM) Oblivious RAM protocols provide a more
practical alternative to solve the access privacy problem by leveraging
only basic cryptographic primitives e.g. symmetric key crypto-systems.
An Oblivious RAM (ORAM) protocol allows a client to store and ma-
nipulate an array of N blocks on an untrusted server without revealing
the data or access patterns. Specifically, the logical array of N blocks
is indirectly stored into a specialized back-end data structure on the
server, and an ORAM scheme specifies an access protocol that imple-
ments each logical access with a sequence of physical accesses to that
back-end structure. An ORAM scheme is secure if for any two sequences
of logical accesses of the same length, the physical accesses produced by
the protocol are computationally indistinguishable. We refer the reader
to the seminal work on oblivious RAM by Goldreich and Ostrovsky
(1996) for more precise definitions.
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7.1. Access Privacy 57

Evaluation Metrics Intuitively, based on the informal definition, an
ORAM protocol will fetch more items per access than what is actually
required. This is to "obfuscate" the actual item that was requested by
the client. Furthermore, once an item has been fetched, it needs to
be randomly replaced to new a location server-side. This is to prevent
the server from linking a future access with previous accesses for the
same item. One way to do this securely is to randomly reshuffle the
database after every access (or a batch of accesses). As the server
is untrusted, either the client reshuffles the database, or tasks the
server to reshuffle without decrypting the data by leveraging expensive
cryptographic primitives e.g., homomorphic encryption. The former
introduces communication overheads as a subset of the database has to
be downloaded and re-uploaded, while the latter introduces server-side
computation overheads. Additionally, the reshuffle mechanism may be
interactive and require multiple rounds of communication. With these
factors in mind, ORAMs are evaluated on the following metrics:

• Communication Complexity (Bandwidth) is defined as the
total amount of data that a client needs to read and re-upload to
the server in order to complete a request. Usually, communication
is measured in terms of the number of physical data blocks that
need to be transferred from storage to access one logical data
block. Blocks are usually the same size as memory pages on the
client system.

• Round Complexity measures the number of round trips required
between the client and server in order to complete one logical
request. Additional round trips add significant communication
delays. Obviously, an efficient ORAM protocol will only require
one round of communication per logical request.

• Server-Side Computation for ORAMs that employ expensive
cryptographic primitives. Expensive computation affects overall
performance from the standpoint of latency and the associated
dollar costs.
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58 Data Access Privacy

Existing work on ORAMs has largely focused on optimizing one or
more of these metrics. In the following, we will highlight the noteworthy
constructions and refer the reader to the original works for more details.

7.2 Communication-Efficient ORAMs

The seminal work on ORAMs by Goldreich and Ostrovsky (1996)
identified communication-efficiency as the primary optimization criteria.
The desired goal is to ensure that communication costs scale sublinearly
in the database size. Theoretically, it is possible to design ORAM
schemes where communication scales poly-logarithmically with the
database size (Goldreich and Ostrovsky, 1996).

The construction by Goldreich and Ostrovsky (popularly known as
the "hierarchical ORAM") has O

(
log3 n

)
communication overhead and

is based on a simple design called the square-root ORAM. The idea is to
randomly arrange n blocks (server-side) with a permutation known only
to the client. In addition, there is a cache (or originally called shelter)
of size

√
n (may be a user-defined parameter), which may be stored

either client-side or on the server. As required, the client accesses blocks
from the server and adds the accessed blocks to the cache. Crucially,
for each access, the client also scans the entire cache even if the block is
already found in the main storage.

The security of this scheme is immediately obvious: i) the server
does not know the secret permutation and hence cannot correlate blocks
that are accessed from the main storage, and ii) the cache holds blocks
that have been accessed once and is scanned entirely every access. Once
the cache fills up, the combined blocks remaining in the main storage
and the cache are reshuffled and rearranged again using a new random
permutation. This is the most expensive step of the protocol as it requires
rebuilding the entire storage. In fact, for security, the rebuilding has to
be done obliviously i.e., the intermediate steps should not reveal the
final locations of the blocks. This step is usually performed using an
oblivious sorting algorithm. The sorting in the original construction is
performed using a sorting network which has a communication overhead
of O

(
n log3 n

)
. Overall, since the reshuffling needs to be performed

only when the cache fills up after
√

n accesses, the communication cost
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7.2. Communication-Efficient ORAMs 59

of the protocol is O
(√

n log3 n
)
. We note that although more efficient

oblivious sorting mechanisms exists (Shi, 2020) with communication
cost O (n log n), replacing the expensive sorting network still does not
remove the cost dependence on

√
n in the original construction.

To overcome this dependence, Goldreich and Ostrovsky proposed
a construction that essentially amortizes the level reconstruction cost.
The ORAM organizes data on the server-side in a hierarchy of levels.
The i-th level holds 4i blocks and the (i + 1)-th level (which can hold
4i+1 blocks) is the cache for the i-th level. Conceptually, the top level
is an append log. On every read/write, the block that is accessed is re-
encrypted and placed in the top level. Obviously, the top level overflows
after a fixed number of accesses. At this stage, its constituent blocks
are flushed and uniformly randomly placed in the second level. This
process is generalized across all the levels and the ORAM has O (log n)
levels. The hierarchical construction has a communication complexity
of O

(
log3 n

)
amortized over all accesses.

Improvements Several subsequent works have addressed the high
communication complexity of the original hierarchical construction,
while retaining the overall structure. Williams and Sion (2008) presented
a construction with amortized communication complexity O

(
log2 n

)
under the assumption that the client has at least O (

√
n) dedicated

storage to perform the reshuffles using an oblivious version of the merge
sort algorithm. Subsequently, Williams et al. (2008) presented an ORAM
with more efficient search by storing per-level encrypted bloom filters.

Under assumptions of constant client storage, Pinkas and Reinman
(2010) used cuckoo hashing and randomized shell sort over the original
Goldreich and Ostrovsky solution and achieve an amortized commu-
nication complexity of O

(
log2 n

)
Pinkas and Reinman (2010) uses.

However, Goodrich and Mitzenmacher (2011) highlight a leak in the
construction and provides an alternate construction with amortized
communication complexity of O (log n) with the assumption of O

(
n1/r

)
client storage with r > 1.
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60 Data Access Privacy

Deamortization One major drawback of the hierarchical ORAM con-
structions is that client queries need to wait for the duration of a reshuffle,
and this is especially impractical for the larger levels. De-amortized
constructions allow queries and reshuffles to proceed together and thus
eliminate clients waiting for reshuffles after a level overflow. Goodrich
et al. (2011) showed how to de-amortize the original square root solu-
tion and hierarchical solution and achieve a worst-case complexity of
O (log n) in the presence of O

(
n1/r

)
client side storage where r > 1.

Kushilevitz et al. (2012) used cuckoo hashing and rotating buffers to
provide a de-amortized construction with a worst-case communication
complexity of O

(
log2 n

log log n

)
. PD-ORAM (Williams et al., 2012) is a de-

amortized hierarchical ORAM where level reconstructions are performed
in the background while allowing queries to proceed simultaneously.
This is achieved by keeping two copies of the data: a read-only copy
for the queries and a writable copy where new levels are constructed.
Level reconstruction starts as soon as a level is created. To ensure that
a new level is available on demand when required for the next round
of queries, the level construction is synchronized with the queries by
tracking the progress of the reshuffle.

7.2.1 Tree-Based ORAMs

The high worst case costs of hierarchical ORAMs makes them impracti-
cal and while deamortized construction fare better in this regard, they
often introduce additional overheads e.g., increased storage costs. Tree-
based ORAMs provide a more viable alternative to hierarchical ORAMs
since they are naturally un-amortized i.e., the worst-case query cost is
equal to the average cost. Tree-based ORAMs organize the database
blocks in the form of a binary (or ternary) tree. Each node of the tree
(denoted as a bucket) contains a fixed number of blocks (which can
be real or dummy). Blocks are stored along unique randomly selected
paths. To track the location of blocks in tree (the corresponding path),
a position map associates blocks identifiers. e.g., logical addresses to
path identifiers e.g., leaf labels. Once a block is stored along some path,
the ORAM maintains the following invariant: A block mapped to a
path resides either in any one of the buckets on the path from the root
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to the corresponding leaf, or in a secure storage. Due to the random
association of blocks to paths, writes may fail when all the buckets
along the path are occupied up to capacity. In this case the block needs
to be stored temporarily in a secure storage, called the stash, which is
probabilistically bounded in size, and is usually stored client-side.

Shi et al. (2011a) presented the first tree-based ORAM with worst-
case communication cost of O

(
log3 n

)
. Subsequently, Gentry et al.

(2013) improved the communication costs of the construction by a
constant factor. The major breakthrough in tree-based ORAM designs
is due to Stefanov et al. (2013), in the form of a construction called
Path ORAM. Path ORAM achieves O (log n) communication costs
when the client can spare O (n) local storage, and O

(
log2 n

)
otherwise.

In fact, under certain assumptions (e.g., non-uniform server-side block
sizes), Path ORAM can still achieve O (log n) communication costs. This
matches the known lower bound on communication costs. Subsequently,
Ren et al. (2015) and Wang et al. (2015a) have improved on the practical
overheads of Path ORAM.

7.3 Round-Trip Efficient ORAMs

Optimizing round-trips for ORAM protocols is as critical for perfor-
mance as the overall communication since multiple round-trips to fetch
data leads to high latency of access. Unfortunately, none of the afore-
mentioned communication-efficient constructions optimize round-trips.
There are two notable constructions that address this problem. SR-
ORAM (Williams and Sion, 2012) is a constant round ORAM re-
quiring two round trips with overall communication complexity of
O

(
log2 n log log n

)
. Since, SR-ORAM follows a hierarchical construc-

tion, the worst case complexity is Ω(n). TWORAM (Garg et al., 2016)
overcomes this problem; it features a worst-case communication com-
plexity of O

(
log3 n

)
and performs accesses in two rounds. Another

notable construction is Bucket ORAM (Fletcher et al., 2015) which
features single round-trip accesses and communication complexity of
O (log n) under certain block size assumptions.
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7.4 Compute-Efficient ORAMs

A straightforward way to make ORAM protocols more communication
efficient is by leveraging server-side computation. If the server could
compute on the data without learning the contents, then the communi-
cation burden can be reduced as the server only returns the data block
required. A line of work explores this trade-off in communication and
computation assuming different server-side compute capabilities.

A version of Ring ORAM (Ren et al., 2015) achieves O (1) commu-
nication cost for fetching a block from the server under the assumption
that the server can execute XORs over the data blocks before returning
them to the client. The overall complexity of the construction is how-
ever O

(
log2 n

)
due to other necessary bookkeeping operations. Onion

ORAM (Devadas et al., 2016) has a communication complexity of O (B)
where B is the block size of the ORAM. The construction may use either
additively homomorphic encryption (AHE) or somewhat homomorphic
encryption scheme (SWHE) with different trade-off; see Devadas et al.
(2016) for more details. Recently, Chen et al. (2019b) proposed Onion
Ring ORAM which makes practical improvements to the construction.
An alternate line of work assumes multiple servers to aid the compu-
tation. One notable example of this line of work is S3ORAM (Hoang
et al., 2017) utilizing secret sharing as the underlying primitive.

7.5 Other Practical Considerations

7.5.1 Parallel Access

All aforementioned ORAMs are designed for single-client deployments,
that is at any point in time, there is a single-client performing accesses
to the ORAM. This naturally ensures consistency and privacy. However,
in this setting, clients experience unreasonably long wait times making
the schemes impractical.

Boyle et al. first introduced an oblivious parallel RAM (OPRAM)
construction assuming inter-client communication for synchronization
(Boyle et al., 2016). Clients coordinate with each other through an
oblivious aggregation operation and prevent simultaneous queries for the
same block. For colliding client accesses, only one representative client
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queries for the required item while all other clients query for dummy
items. The representative client then communicates the read item to
all other colliding clients through an oblivious multi-cast operation.
Subsequent works (Chan et al., 2017a; Nayak and Katz, 2016; Chen
et al., 2016; Chan et al., 2017b; Hubert Chan and Shi, 2017) have
optimized Parallel RAMs matching the overhead of a sequential ORAM
construction.

TaoStore (Sahin et al., 2016) takes a different approach towards
building a parallel ORAM. The construction introduces a trusted proxy
such that all client queries are redirected to the trusted proxy which
then queries for the corresponding paths from the PathORAM data tree.
Further, the proxy runs a secure scheduler to ensure that the multiple
path reads do not overlap and leak correlations in the underlying queries.
TaoStore achieves a significant increase in throughput but can support
only a limited number of parallel clients before the throughput plateaus
due to the proxy’s bandwidth constraints.

ConcurORAM (Chakraborti and Sion, 2019) is a parallel ORAM
construction which overcomes the bandwidth limitations of TaoStore,
and reduces the assumption footprint by removing the need for a trusted
proxy and inter-client communication. The construction is aided by
several auxilliary data structures that allow queries to proceed in the
background with full privacy guarantees without blocking other queries.

7.5.2 Write-Only Privacy

Full ORAM privacy is often unnecessary for practical settings. In several
data outsourcing scenarios, it is enough to protect the privacy of write
operations. A notable example of this is secure data backup on cloud
services like DropBox (Aviv et al., 2017). This privacy definition is
satisfied by a class of ORAMs called write-only ORAMs. Li and Datta
proposed the first write-only ORAM scheme with an amortized write
complexity of O (B × log n) where B is the block size of the ORAM
and n is the total number of blocks (Li and Datta, 2017). However,
the construction suffers from poor (linear in the database size) read
complexity. Hive (Blass et al., 2014) is a write-only ORAM scheme with
constant read complexity. It maps data from a logical address space
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uniformly randomly to the physical blocks on the underlying device.
The construction requires a O (log n)-sized stash. DetWoORAM (Roche
et al., 2017) overcomes the requirement of a stash and achieves O (log n)
read complexity and O (1) write complexity.

7.5.3 Range ORAMs

A new ORAM variant, namely Range ORAM, was recently proposed by
Asharov et al. (2019). Unlike traditional ORAMs optimized for single-
block accesses, Range ORAMs are optimized for efficiently accessing
ranges of blocks. This notion is especially useful when considering
the fact that typical filesystems deployed on top of ORAMs usually
access contiguous blocks at once e.g., when reading/writing a file. The
efficiency goal for Range ORAMs is to ensure that range accesses can be
performed with minimal number of disk seeks across the storage device.
This is in contrast to traditional ORAMs which randomly place blocks
(belonging to the same file) all across the device making file accesses
inefficient on high latency drives like HDDs. As a security trade-off
range ORAM reveal the sizes of the ranges accessed; see Asharov et al.
(2019) for more details.

Asharov et al. (2019) presented a construction with O
(
r · log3 n

)
communication complexity (amortized) to access r contiguous blocks.
The number of seeks required is O

(
log3 n · (log log n)2

)
(notice that the

number of seeks is independent of r). Chakraborti et al. (2019) improved
this result by providing an unamortized construction with O

(
r · log2 n

)
communication complexity and requiring O

(
log2 n

)
seeks.

7.5.4 Hardware-Assisted ORAMs

Oblivious RAM protocols have been used in conjunction with trusted
execution environments (TEEs) to design systems with access privacy.
ZeroTrace (Sasy et al., 2018) combines ORAMs and Intel SGX, and
builds a block-level memory controller that provides oblivious execu-
tion against software adversaries. Other noteworthy examples include
databases with oblivious query capabilities (Eskandarian and Zaharia,
2019; Hoang et al., 2018) and oblivious file systems (Ahmad et al.,
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2018). Typically in these systems, the ORAM logic runs securely in a
SGX enclave and the data is hosted on an untrusted storage backend.
In this way, the expensive bookkeeping operations are performed by
the enclave-hosted trusted logic without any client intervention thereby
reducing overall communication. The controller also receives and serves
requests from the client; a secure communication channel between the
client and the enclave ensures that the block requests remain hidden to
the server.

7.5.5 Future Research Directions

Although there is a large volume of work dedicated to optimizing
ORAMs for clouds, the state of the art is still impractical for real-world
deployments. Firstly, the communication costs are still too high. Patel
et al. (2018) and Asharov et al. (2020) have made significant strides
in this direction by achieving the known communication lower bound.
However, these constructions are mainly of theoretical interest as the
constants are impractically high. Making these constructions practical,
while keeping in mind the aforementioned performance metrics (e.g.,
round trips, parallelism), encourage more research in this direction.

Secondly, ORAMs are not cost-effective. The high dollar costs of em-
ploying ORAMs often outweigh the cost advantages of outsourcing data
to a public cloud (Bindschaedler et al., 2015). This is a largely overlooked
drawback of existing protocols which needs to be further investigated.
The costs are due to communication and storage overheads. Interest-
ingly, cloud services often price communication asymmetrically: uploads
are costlier than downloads. Therefore, building ORAMs that exploit
this asymmetry (e.g., lower upload costs for higher download costs)
is an interesting research direction. ORAM constructions also come
with significant storage overheads: all aforementioned constructions
require at least 2× the storage, as that required for the raw database.
Exploring storage-efficient protocols is an important consideration for
future research.

Finally, for real-world deployments it is important to consider ac-
tively malicious adversaries i.e., cloud servers who may modify data or re-
play old data to the clients. This not only introduces integrity/consistency
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issues but also impacts privacy. While in a single client scenario, this
problem may be solved by integrity-preserving mechanisms (Ren et al.,
2013), the problem is significantly amplified in multi-client scenarios.
When considering a setting where even the clients can be malicious,
Maffei et al. (2017) showed that to ensure security the server-side com-
putation required is Ω(n), that is the server must touch all the items
in the database for every access. In this setting, a scheme is presented
with communication complexity of O (

√
n). The lower bound on the

server-side compute costs only holds in a single-server setting. Hoang
et al. (2020) recently presented a construction in a multi-server setting
with O (1) client-server communication complexity and O (log n) server-
server communication complexity. The construction builds on S3ORAM
(Hoang et al., 2017) and adapts it for a malicious server(s) setting.
Future work in this direction may explore new constructions in both
the single-server and multi-server settings with lower communication
complexities.
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Provable Data Possession

The increasing popularity of third-party cloud storage services in recent
years has brought with it numerous advantages, such as reduced cost,
the ability to access the data from anywhere, and the ability to easily
share data. These benefits however, did not come without challenges,
especially from a security and privacy point of view. Due to trust
concerns in the third-party cloud storage provider, security and privacy
have been identified among the main challenges that hamper data
migration to/from a cloud environment.

Unfortunately, none of the cloud storage services offered verifiable
guarantees with regard to the integrity and long-term reliability of
the stored data. Basically, in the cloud storage commercial landscape,
if data is lost, the best a data owner can hope for is compensation
proportional with the size of the data (if any), which may be orders of
magnitude away from the actual value of the data.

Circa 2007, Ateniese et al. (2007; 2011) introduced a new framework
for remote data integrity checking using provable data possession (PDP).
In this model, the storage server is not trusted to store the data and may
try to convince the client (data owner) that it possesses (i.e., stores) the
data even if the data is totally or partially corrupted. Protection against
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corruption of a large portion of the data is necessary in order to handle
servers that discard a significant fraction of the data. This applies to
servers that are financially motivated to sell the same storage resource
to multiple clients. Protection against corruption of a small portion
of the data is necessary in order to handle servers that try to hide
data loss incidents. This applies to servers that wish to preserve their
reputation. Data loss incidents may be accidental (e.g., management
errors or hardware failures) or malicious (e.g., insider attacks).

Remote data integrity checking (RDIC) allows an auditor to challenge
a remote server to provide a proof of data possession in order to validate
that the server possesses the data that were originally stored by a client.
An RDIC scheme seeks to provide a data possession guarantee.

Requirements. Conforming to an outsourced storage relationship, the
client (i.e., data owner) should only be required to store a small, ideally
constant, piece of metadata.

Oftentimes, cloud storage presents unique performance demands.
Given that file data are large and are stored at remote sites, accessing
an entire file is expensive in I/O costs to the storage server and in
transmitting the file across a network. Reading an entire archive, even
periodically, greatly limits the scalability of network stores. Furthermore,
I/O incurred to establish data possession interferes with on-demand
bandwidth to store and retrieve data. As such, clients need to be able
to verify that a server has retained file data without retrieving the data
from the server and without having the server access the entire file.

A scheme for auditing remote data should be both lightweight and
robust. Lightweight means that it does not unduly burden the cloud
storage provider (CSP); this includes both overhead (i.e., computation
and I/O) at the CSP and communication between the CSP and the
auditor. This goal can be achieved by relying on spot checking, in which
the auditor randomly samples small portions of the data and checks
their integrity, thus minimizing the I/O at the CSP. Spot checking
allows the client to detect if a fraction of the data stored at the server
has been corrupted, but it cannot detect corruption of small parts of the
data (e.g., 1 byte). Robust means that the auditing scheme incorporates
mechanisms for mitigating arbitrary amounts of data corruption. Pro-
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tecting against large corruptions ensures the CSP has committed the
contracted storage resources. Little space can be reclaimed undetectably,
making it unattractive to delete data to save on storage costs or sell
the same storage multiple times. Protecting against small corruptions
protects the data itself, not just the storage resource. Many data have
value well beyond their storage costs, making attacks that corrupt small
amounts of data practical. For example, modifying a single bit may
destroy an encrypted file or invalidate authentication information.

8.1 Prior Approaches

Before the PDP model, several other mechanisms had been proposed
that do not meet the above requirements for remote data integrity
checking. Some schemes (Golle et al., 2002) provide a weaker guarantee
by enforcing storage complexity: The server has to store an amount
of data at least as large as the client’s data, but not necessarily the
same exact data. Moreover, most previous techniques require the server
to access the entire file, which is not feasible when dealing with large
amounts of data, or require storage on the client linear with the size
of the data, which does not conform with the notion of storage out-
sourcing (Deswarte et al., 2003; Sebe et al., 2004; Filho and Baretto,
2006; Shah et al., 2007). A notable exception is the work of Schwarz and
Miller (2006), which meets most of the requirements for proving data
possession, but provides a less formal security analysis. This scheme
relies on a special construct called an “algebraic signature,” which is a
function that fingerprints a block and has the property that the signa-
ture of the parity block equals the parity of the signatures of the data
blocks.

8.2 Provable Data Possession

A Provable Data Possession (PDP) protocol checks that an outsourced
storage site retains a file, which consists of n blocks. The client C (data
owner) pre-processes the file, generating a small piece of metadata that
is stored locally, transmits the file to the server S, and may delete its
local copy. The server stores the file and responds to challenges issued
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by the client. Storage at the server is Ω(n) and storage at the client is
O(1), conforming to an outsourced storage relationship.

As part of pre-processing, the client may alter the file to be stored
at the server. The client may encrypt, encode or expand the file, or may
include additional metadata to be stored at the server.

At a later time, an auditor issues a challenge to the server to establish
that the server has retained the file. The auditor requests that the server
compute a function of the stored file, which it sends back to the client.
Using its local metadata, the auditor verifies the response.

For ease of exposition, the client (data owner) is assumed to be the
same entity as the auditor. However, the model can be easily extended
to a setting where these two may be separate entities (e.g., if business
requirements require separation, or if data privacy is a concern and the
auditor should not have access to the plain data (Shah et al., 2008).

Ateniese et al. (2007; 2011) proposed two PDP schemes which rely
on homomorphic verifiable tags. The client pre-computes tags for each
block of a file and then stores the file and its tags with a server. At a later
time, the client can verify that the server possesses the file by generating
a random challenge against a randomly selected set of file blocks. The
server retrieves the queried blocks and their corresponding tags, using
them to generate a proof of possession. The client is thus convinced of
data possession, without actually having to retrieve file blocks. Because
of the homomorphic property, tags computed for multiple file blocks can
be combined into a single value, and so a challenge uses O(1) network
bandwidth.

These PDP schemes sample the server’s storage, accessing a random
subset of blocks. Sampling proves data possession with high probability
based on accessing a few blocks in the file, which radically alters the
performance of proving data possession.

Achieving robustness. An RDIC scheme can be enhanced to provide
robustness by using forward error-correcting codes (FECs). Attacks that
corrupt small amounts of data do no damage, because the corrupted
data may be recovered by the FEC. Attacks that do unrecoverable
amounts of damage are easily detected because they must corrupt many
blocks of data to overcome the redundancy.
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Ateniese et al. (2011) propose a generic transformation that encodes
a file using FECs in order to add robustness to any RDIC scheme that
relies on spot checking (Curtmola et al., 2008a). A robust RDIC scheme
provides protection against arbitrary small amounts of data corruption.

Additional features. The PDP schemes introduced by Ateniese et
al. (2007; 2011) provide several additional useful features. First, they
provide data format independence, meaning they put no restriction on
the format of the data. In particular, files stored at the server do not
have to be encrypted. This feature is relevant since PDP schemes may
have a significant impact when used with large public repositories (e.g.,
digital libraries, astronomy/medical/legal repositories, archives etc.)
Second, they put no restriction on the number of times the client can
challenge the server to prove data possession. Third, they pioneer the
notion of public verifiability, which allows anyone, not just the data
owner, to challenge the server for data possession. For example, an
independent third-party auditor can verify possession of the data. The
advantages of having public verifiability are akin to those of public-key
over symmetric-key cryptography.

8.3 Dynamic Provable Data Possession

The original PDP model was introduced in the context of static data,
i.e., data that is not modified after being stored initially. This matches a
variety of application scenarios that fall under the umbrella of archival
storage. The model was shown to also securely support the append
operation (i.e., data blocks are appended at the end of the file), which
covers application scenarios such as version control systems (Chen and
Curtmola, 2014). The model was subsequently extended by Erway et
al. (2009; 2015) to support the full range of dynamic updates to the
stored data – i.e., the client can insert, modify, or delete stored data
blocks – while maintaining data possession guarantees. Dynamic PDP
(DPDP) can thus cover a wider range of cloud computing scenarios,
including file storage, database services, and peer-to-peer storage. The
proposed DPDP schemes are based on a new variant of authenticated
dictionaries which permit efficient membership queries (i.e., a rank-
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based authenticated dictionary built over a skip list). Different from a
static PDP scheme, for a dynamic PDP scheme to be efficient, it must
not include order information in the tags, since otherwise an update
may cause all tags to be updated. From a performance perspective, the
most important cost introduced by a dynamic PDP scheme compared
to a static PDP scheme is that the size of a data possession proof grows
from O(1) to O(log n), where n is the number of file blocks.

Subsequently, Etemad and Küpçü (2020) show a general framework
for constructing DPDP schemes that encompass existing DPDP-like
schemes as different instantiations.

8.4 Proofs of Retrievability

Simultaneously with PDP, Juels and Kaliski (2007) have introduced
a similar notion, that of proof of retrievability (PoR), which allows a
client to be convinced that it can retrieve a file previously stored at
the server. This PoR scheme uses disguised blocks (called sentinels)
hidden among regular file blocks in order to detect data corruption by
the server. Although comparable in scope with PDP, this PoR scheme
can only be applied to encrypted files and can handle a limited number
of queries, which has to be fixed a priori. At a high level, a PoR scheme
provides similar guarantees as an RDIC scheme (i.e., a PDP scheme that
incorporates robustness to provide protection against small amounts of
data corruption). Shacham and Waters (2008; 2013) improve the PoR
state of the art by introducing the most-widely-accepted definitions for
PoR-type schemes and giving two PoR protocols based on homomorphic
authenticators. The first is based on bilinear maps and achieves public
verifiability, whereas the second is based on pseudo-random functions,
more efficient, but is only privately verifiable. Erway et al. (2015, Section
7.3) provide a detailed comparison of PDP and PoR schemes.

Although initially proposed for a static setting, PoR schemes were
subsequently extended to a dynamic setting (i.e., the stored data can
be updated in time). Initial dynamic PoR schemes were mostly of
theoretical interest: Stefanov et al. (2012) (due to imposing a large
amount of client storage and a large audit cost) and Cash et al. (2013b)
(due to imposing large audit overhead). Shi et al. (2013) proposed the
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first practical dynamic PoR scheme that achieves comparable communi-
cation overhead and client-side computation with a standard Merkle
hash tree. Like prior PoR and RDIC schemes, this scheme uses FEC
codes (erasure codes more precisely) to achieve protection against small
data corruptions, but ensures that data updates can be done efficiently
by maintaining on the server side an erasure-coded hierarchical log
structure that contains recently written blocks. This structure needs a
special erasure coding scheme that can be incrementally built over time.
Due to the use of this additional metadata, the actual erasure-encoded
data only needs to be rebuilt every n write operations, where n is the
number of file blocks.

8.5 Towards Auditing Distributed Storage Systems

In many practical cloud storage systems, data should be replicated in
order to deal with data loss accidents. Preferably, the replicas should
be stored in different geographical locations, in order to ensure failure
independence. Replication is a useful mechanism in the context of
proving data possession by a cloud storage provider. Whereas techniques
such as PDP and PoR are useful to verify remotely the integrity of a
single replica, they provide limited value when that single replica is
irreparably damaged.

When data is replicated at multiple storage servers, an auditor can
execute independently data possession protocols with each of the storage
servers. In case any of the replicas is found to be damaged, the data
owner can use the healthy replicas to restore the desired level of data
replication.

Establishing a guarantee that t replicas of a file are in fact stored by
a set of storage servers becomes more challenging when we assume that
the storage servers can behave fully malicious (i.e., can collude with
each other). The servers that appear to be storing multiple replicas may
be in fact storing only a single copy of the data. In general, this can be
done by redirecting and forwarding challenges from the multiple sites
to the single site that stores the data. In this way, clients (data owners)
remain unaware of the reduction in the availability and durability of
data that results from the loss of replicas. Even if the client initially
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stores replicas on servers in different geographic locations, the servers
can then move all the replicas to one location and access them from
that location on demand. Such a system is not more reliable than a
single-replica system, even though it leads the client to believe so.

Replication systems that rely on untrusted servers have another
generic limitation. To prove data availability, the servers can produce
replicas on demand upon a client’s challenge; however, this does not
prove that the actual replicas are stored at all times. For example,
malicious servers may choose to introduce dependencies among replicas,
by encrypting the replicas before storing them. Replicas can then be
decrypted and served on demand whenever they are requested by clients.
By storing the encryption key in a single location, the malicious servers
can effectively negate any reliability improvements achieved by storing
the replicas at different locations. Loss of the encryption key means loss
of all the replicas.

Given these generic limitations of replication systems that rely on
fully dishonest servers, Curtmola et al. (2008b) consider a model in
which storage servers are rational and economically motivated. In this
context, cheating is meaningful only if it cannot be detected and if it
achieves some economic benefit (e.g., using less storage than required
by the contract). Such an adversarial model is reasonable and captures
many practical settings in which malicious servers will not cheat and risk
their reputation, unless they can achieve a clear financial gain. Curtmola
et al. (2007; 2011) extend PDP to apply to multiple replicas so that a
client that initially stores t replicas can later receive a guarantee that the
storage system can produce t replicas, each of which can be used to re-
construct the original file data. A replica comprises the original file data
masked with randomness generated by a pseudo-random function (PRF).
As each replica uses a different PRF, replicas cannot be compared or com-
pressed with respect to each other. The homomorphic verification tags
of PDP are modified so that a single set of tags can be used to verify any
number of replicas. These tags need to be generated a single time against
the original file data. Thus, replica creation is efficient and incremental;
it consists of unmasking an existing replica and re-masking it with new
randomness. In fact, the proposed multiple-replica PDP scheme is almost
as efficient as a single-replica PDP scheme in all the relevant parameters.
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In the context of distributed storage, other solutions have subse-
quently been proposed, to cover various points in the two-dimensional
feature-cost space. For example, Bowers et al. (2009) introduced HAIL,
a system that stores a file across multiple servers using redundancy.
They consider a mobile adversary, which is capable to corrupt all storage
servers, although at different moments in time (i.e., the adversary can
corrupt any servers, as long as at most a fixed number of servers are
corrupted at any one time). To deal with such a strong adversary, HAIL
employs a careful interleaving of different types of error-correcting,
which exploits both within-server redundancy and cross-server redun-
dancy. At a high level, HAIL can be thought of as extending the RAID
concept into the cloud, by spreading redundancy across multiple cloud
servers.

Etemad and Küpçü (2013) explore a Dynamic PDP (DPDP) model
in the context of a distributed, replicated storage system. Chen et al.
(2010) propose remote data integrity mechanisms optimized for a setting
when data is distributed across multiple storage servers using network
coding (Dimakis et al., 2007; Dimakis et al., 2010). Li and Lazos (2020)
introduce a mechanism for verifying that a file is redundantly stored
across multiple physical storage nodes according to a pre-agreed layout
and can, therefore, survive node failures. Leontiadis and Curtmola (2018)
seek to deduplicate replicated storage and design a secure storage system
that provides users with strong integrity, reliability, and transparency
guarantees about data that is outsourced at cloud storage providers.
Users store multiple replicas of their data at different storage servers,
and the data at each storage server is deduplicated across users.

Bowers et al. (2011) proposed RAFT, a mechanism that allows a
data owner to check that a storage server has stored a file F across
multiple disk drives, so it can support a desired level of fault tolerance
(e.g., data can be recovered if any set of t drives has failed). RAFT is
designed specifically for data stored on rotational drives, and exploits
the performance limitations of such drives as a bounding parameter.

Damgård et al. (2019) proposed proofs of replicated storage. Such a
proof guarantees that a set of servers have reserved the space necessary
to store n copies of a file. Previous attempts to achieve a similar
guarantee rely on timing assumptions (Protocol Labs, 2017a; Protocol
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Labs, 2017b). A replica is encoded using a process that is slow, so that
an auditor can distinguish between the time an honest server computes
a proof and the time a dishonest server would need to re-encode the
file at the time of the challenge. In contrast, Damgard et al. propose
a construction for proofs of replicated storage that does not rely on
timing assumptions. As opposed to time-bounded approaches which
rely on a public deterministic encoding function, their approach is to
use probabilistic encoding, which makes the re-encoding unfeasible.
In addition, they focus on achieving public verifiability, which allows
anyone (not just the data owner) to play the role of the verifier in an
audit protocol. In practical terms, this means that decoding a replica
can be done by anyone.

8.6 Remote Data Integrity Checking With Server-side Repair

When a distributed storage system is used in tandem with remote
data integrity checking (RDIC), several phases can be distinguished
throughout the lifetime of the storage system: Setup, Challenge, and
Repair. To outsource a file F , the data owner creates multiple replicas
of the file during Setup and stores them at multiple storage servers (one
replica per server). During the Challenge phase, the data owner can ask
periodically each server to provide a proof that the server’s replica has
remained intact. If a replica is found corrupt during the Challenge phase,
the data owner can take actions to Repair the corrupted replica using
data from the healthy replicas, thus restoring the desired redundancy
level in the system. The Challenge and Repair phases will alternate over
the lifetime of the system.

In cloud storage outsourcing, a data owner stores data in a dis-
tributed storage system that consists of multiple cloud storage servers.
The storage servers may belong to the same CSP (e.g., Amazon has
multiple data centers in different locations), or to different CSPs. The
ultimate goal of the data owner is that the data will be retrievable at
any point of time in the future. Conforming to this notion of storage
outsourcing, the data owner would like to outsource both the storage
and the management of the data. In other words, after the Setup phase,
the data owner should only have to store a small, constant, amount of
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data and should be involved as little as possible in the maintenance of
the data. Minimal involvement in the Challenge phase can be achieved
when using an RDIC scheme that has public verifiability. However,
traditionally, the Repair phase imposes a significant burden on the data
owner, who needs to expend a significant amount of computation and
communication. For example, to repair data at a failed server, the data
owner needs to first download an amount of data equal to the file size,
re-generate the data to be stored at a new server, and then upload this
data at a new healthy server (Curtmola et al., 2008b; Bowers et al.,
2009). Archival storage deals with large amounts of data (Terabytes
or Petabytes) and thus maintaining the health of the data imposes a
heavy burden on the data owner.

Chen and Curtmola (2013; 2017) explore a model which minimizes
the data owner’s involvement in the Repair phase, thus fully realizing
the vision of outsourcing both the storage and management of data.
During Repair, the data owner simply acts as a repair coordinator, which
allows the data owner to manage data using a lightweight device. This
is in contrast with previous work, which imposes a heavy burden on the
data owner during Repair.

The main challenge is how to ensure that the untrusted servers
manage the data properly over time (i.e., take necessary actions to
maintain the desired level of redundancy when some of the replicas
have failed). They consider a new storage system architecture in which
each storage server exposes an interface for data manipulation so that
the data owner can coordinate the actions of the storage servers in
the Repair phase. To repair a faulty server during Repair, the data
owner identifies healthy servers and instructs them to collaborate. In
this process, most of the communication occurs between the storage
servers, and the communication between data owner and storage servers
is minimized.

Their approach is based on two insights. First, the replicas stored
by the storage servers must be different. Second, to enable server-side
repair, the data owner gives the servers both access to the original file
and the means to generate new replicas. This will allow the servers
to generate a new replica by collaborating between themselves during
Repair. However, this approach opens the door to a new attack, in
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which the servers falsely claim they generate a new replica whenever
an existing replica has failed, but in reality they collaborate to only
generate a replica on the fly during the Challenge phase (this attack is
referred to as the replicate on the fly (ROTF) attack). To overcome the
ROTF attack, the proposed approach is to make replica creation to be
time consuming. In this way, malicious servers cannot generate replicas
on the fly during Challenge without being detected. Two schemes are
proposed to generate distinct replicas: The first uses a controllable
amount of masking to deal with weaker adversaries, and the second uses
a variant of butterfly encoding (Dijk et al., 2012) to create dependencies
between each of the replica blocks and multiple original file blocks in
order to deal with stronger adversaries.

Towards a similar goal to allow servers to generate new replicas,
Armknecht et al. (2016) propose Mirror, a PoR-based solution that
leverages tunable cryptographic RSA-based puzzles to impose significant
resource constraints on the storage servers. As a result, a rational cloud
storage provider will be incentivized to correctly store and replicate the
client’s data or risk detection with high probability otherwise.

8.7 Future Research Directions

Ensuring the integrity and long-term reliability of cloud stored data has
been an active research area over the past few years and, considering
the security and privacy-sensitive nature of the cloud storage paradigm,
will likely continue to attract interest for the foreseeable future.

Despite significant progress and despite the plethora of security guar-
antees put forth by the academic community, adoption by major cloud
storage providers remains an elusive target. Short of native deployment
of auditing and data maintenance capabilities by the cloud providers
themselves, one can imagine a business model where such services could
be offered by a third party auditor running in the same data center
where the data is located. This introduces additional concerns, especially
when auditing private data, as data owners would need to allow access
to their data for the auditor.

The lack of adoption in a commercial setting is a multifaceted prob-
lem. Certainly, performance is a significant concern: Providing such
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strong guarantees as the ones aforementioned in this work could de-
grade performance. Related to this issue may be the lack of efficient and
production level implementations. There are also economic, regulatory
and policy reasons. Lack of adoption may seem surprising, because pro-
viding such strong guarantees could be seen as a business differentiator.
Yet, cloud providers do not seem to have clear economic incentives to
provide such strong guarantees, and have focused on more basic security
guarantees such as ensuring the privacy and secure sharing of the data.

There are still open problems, especially when trying to achieve
simultaneously multiple different guarantees. For example, designing
RDIC schemes that are both robust and fully meet data format in-
dependence has been challenging. This is because robustness usually
imposes encrypting (parts of) the data. As another example, remotely
verifying the geographical location of cloud data remains an elusive
target, despite some early attempts (Benson et al., 2011; Peterson et al.,
2011; Watson et al., 2012; Gondree and Peterson, 2013; Dang et al.,
2017) based on time assumptions and distance-bounding protocols.

We conclude by briefly surveying some recent work that may be
indicative of the current and future directions in this area. He et al.
(2020) propose to relax some of the trust assumptions through the use
of Intel SGX. Shen et al. (2020) propose a protocol that optimizes the
communication overhead when data that needs to be audited changes
ownership. Leontiadis and Curtmola (2019) study RDIC protocols when
applied to compressed data. A user delegates the compression to the
cloud in a provably secure way: The user can verify correctness of
compression without having to download the entire uncompressed file
and check it against the compressed version. Armknecht et al. (2021)
consider a setting in which third party auditors may be dishonest and
data owners can efficiently keep the auditors in check. Chen et al.
(2021) introduce a decentralized system for proofs of data retrievability
and replication which is incentive-compatible and realizes automated
auditing atop off-the-shelf blockchain platforms. Ateniese et al. (2020)
study proofs of storage-time, which enable a verifier to audit that the
outsourced data is continuously available to the server during the entire
storage period, not only at the time a valid proof is processed.
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