
Cloud Computing Security:
Foundations and Research

Directions

Full text available at: http://dx.doi.org/10.1561/3300000028

Other titles in Foundations and Trends® in Privacy and Security

Expressing Information Flow Properties
Elisavet Kozyri, Stephen Chong and Andrew C. Myers
ISBN: 978-1-68083-936-4

Accountability in Computing: Concepts and Mechanisms
Joan Feigenbaum, Aaron D. Jaggard and Rebecca N. Wright
ISBN: 978-1-68083-784-1

A Pragmatic Introduction to Secure Multi-Party Computation
David Evans, Vladimir Kolesnikov and Mike Rosulek
ISBN: 978-1-68083-508-3

Contextual Integrity through the Lens of Computer Science
Sebastian Benthall, Seda Gurses and Helen Nissenbaum
ISBN: 978-1-68083-384-3

Methods for Location Privacy: A comparative overview
Kostantinos Chatzikokolakis, Ehab ElSalamouny, Catuscia Palamidessi
and Pazii Anna
ISBN: 978-1-68083-366-9

Full text available at: http://dx.doi.org/10.1561/3300000028

Cloud Computing Security:
Foundations and Research

Directions

Anrin Chakraborti
Duke University

anrin.chakraborti@duke.edu

Reza Curtmola
New Jersey Institute of Technology

reza.curtmola@njit.edu

Jonathan Katz
University of Maryland, College Park

jkatz@cs.umd.edu

Jason Nieh
Columbia University

nieh@cs.columbia.edu

Ahmad-Reza Sadeghi
Technische Universität Darmstadt

ahmad.sadeghi@trust.tu-darmstadt.de

Radu Sion
Stony Brook University
sion@cs.stonybrook.edu

Yinqian Zhang
Southern University of Science and Technology

yinqianz@acm.org

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/3300000028

Foundations and Trends® in Privacy and Security

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

A. Chakraborti et al. . Cloud Computing Security: Foundations and Research Direc-
tions. Foundations and Trends® in Privacy and Security, vol. 3, no. 2, pp. 103–213,
2022.

ISBN: 978-1-68083-959-3
© 2022 A. Chakraborti et al.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/3300000028

Foundations and Trends® in Privacy and Security
Volume 3, Issue 2, 2022

Editorial Board

Editors-in-Chief
Anupam Datta
Carnegie Mellon University, USA

Jeannette Wing
Columbia University, USA

Editors

Martín Abadi
Google and University of California,
Santa Cruz
Michael Backes
Saarland University
Dan Boneh
Stanford University, USA
Véronique Cortier
LORIA, CNRS, France
Lorrie Cranor
Carnegie Mellon University
Cédric Fournet
Microsoft Research
Virgil Gligor
Carnegie Mellon University
Jean-Pierre Hubaux
EPFL

Deirdre Mulligan
University of California, Berkeley

Andrew Myers
Cornell University

Helen Nissenbaum
New York University

Michael Reiter
University of North Carolina

Shankar Sastry
University of California, Berkeley

Dawn Song
University of California, Berkeley

Daniel Weitzner
Massachusetts Institute of Technology

Full text available at: http://dx.doi.org/10.1561/3300000028

Editorial Scope
Topics

Foundations and Trends® in Privacy and Security publishes survey and
tutorial articles in the following topics:

• Access control
• Accountability
• Anonymity
• Application security
• Artifical intelligence methods in

security and privacy
• Authentication
• Big data analytics and privacy
• Cloud security
• Cyber-physical systems security

and privacy
• Distributed systems security and

privacy
• Embedded systems security and

privacy
• Forensics
• Hardware security

• Human factors in security and
privacy

• Information flow
• Intrusion detection
• Malware
• Metrics
• Mobile security and privacy
• Language-based security and

privacy
• Network security
• Privacy-preserving systems
• Protocol security
• Security and privacy policies
• Security architectures
• System security
• Web security and privacy

Information for Librarians

Foundations and Trends® in Privacy and Security, 2022, Volume 3, 4
issues. ISSN paper version 2474-1558. ISSN online version 2474-1566.
Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/3300000028

Contents

1 Introduction 2
1.1 Secure Infrastructure . 3
1.2 Secure Computation . 4
1.3 Secure Storage . 5

I Secure Infrastructure 7

2 Virtualization 8
2.1 Trusted Designs . 9
2.2 Formally-Verified Hypervisors 11
2.3 Future Directions . 13

3 Hardware-Enabled Security 14
3.1 Trusted Execution Environments 15
3.2 Open Challenges and Future Research Direction 23

4 Side-Channels 24
4.1 Side-channel Attacks . 25
4.2 Side-channel Defenses . 33
4.3 Future Directions . 36

Full text available at: http://dx.doi.org/10.1561/3300000028

II Secure Computation 38

5 Secure Distributed Computation 39
5.1 The Ideal World . 41
5.2 The Real World . 44
5.3 Defining Security . 45
5.4 Feasibility Results and Secure Protocols 47
5.5 Open Questions . 48

6 Encrypted Search 49
6.1 Searchable Encryption . 49
6.2 Encrypted Databases . 52

III Secure Storage 53

7 Data Access Privacy 54
7.1 Access Privacy . 56
7.2 Communication-Efficient ORAMs 58
7.3 Round-Trip Efficient ORAMs 61
7.4 Compute-Efficient ORAMs 62
7.5 Other Practical Considerations 62

8 Provable Data Possession 67
8.1 Prior Approaches . 69
8.2 Provable Data Possession 69
8.3 Dynamic Provable Data Possession 71
8.4 Proofs of Retrievability 72
8.5 Towards Auditing Distributed Storage Systems 73
8.6 Remote Data Integrity Checking With Server-side Repair . 76
8.7 Future Research Directions 78

9 Acknowledgements 80

References 81

Full text available at: http://dx.doi.org/10.1561/3300000028

Cloud Computing Security:
Foundations and Research
Directions
Anrin Chakraborti1, Reza Curtmola2, Jonathan Katz3, Jason Nieh4,
Ahmad-Reza Sadeghi5, Radu Sion6 and Yinqian Zhang7

1Duke University, USA; anrin.chakraborti@duke.edu
2New Jersey Institute of Technology, USA; reza.curtmola@njit.edu
3University of Maryland, College Park, USA; jkatz@cs.umd.edu
4Columbia University, USA; nieh@cs.columbia.edu
5Technische Universität Darmstadt, Germany;
ahmad.sadeghi@trust.tu-darmstadt.de
6Stony Brook University, USA; sion@cs.stonybrook.edu
7Southern University of Science and Technology, China;
yinqianz@acm.org

ABSTRACT
Cloud services have revolutionized modern computing. The
benefits of outsourcing data and computation come with
security and privacy concerns. This monograph explores the
advances in cloud security research across both industry
and academia, with a special focus on secure infrastructure,
services and storage. Besides overviewing the state of the
art, the monograph highlights open problems, and possible
future research directions.

Anrin Chakraborti, Reza Curtmola, Jonathan Katz, Jason Nieh, Ahmad-
Reza Sadeghi, Radu Sion and Yinqian Zhang (2022), “Cloud Computing Security:
Foundations and Research Directions”, Foundations and Trends® in Privacy and
Security: Vol. 3, No. 2, pp 103–213. DOI: 10.1561/3300000028.
©2022 A. Chakraborti et al.

Full text available at: http://dx.doi.org/10.1561/3300000028

1
Introduction

Cloud services have revolutionized computing in the modern world. In an
increasingly networked ecosystem, it is commonplace for enterprises and
private parties alike to leverage cloud services for storage and compute.
The most obvious benefits include scalability, increased availability,
and the potential for reduced costs1 when compared to lower-scale on-
premise infrastructures. In addition, cloud-hosted data (and compute) is
accessible across platforms and is not limited by geographical constraints
making collaboration attractively viable.

However, these benefits come with their share of pitfalls. Over time,
cloud architecture have become increasingly complex. Cloud platforms
today run tens and sometimes hundreds of millions of lines of code
to support a wide range of services and capabilities. From a security
perspective, this results in an enormously large attack surface, which
is now much more attractive to determined knowledge and resource-
intensive attackers, mainly due to its potential to expose millions of
customers’ critical data. This is further exacerbated by the fact that
multi-tenancy, inherent in the very fabric of the cloud value proposition,

1But lower costs are not a given – and very often, applications not designed to
scale properly may incur comparably astronomical costs when run in the cloud.

2

Full text available at: http://dx.doi.org/10.1561/3300000028

1.1. Secure Infrastructure 3

can bring forth significant and unforeseen security issues including the
now-ubiquitous side channels – not usually of concern in single-user
systems and enterprise networks – but that now completely compromise
vast swaths of the infrastructure and customer workloads. As a result,
cloud security has become a focal point for security researchers over the
past decade.

This monograph discusses a number of key issues critical in this
endeavour. We focus here on challenges that the authors found par-
ticularly interesting. We provide an overview of some of the solutions
while highlighting noteworthy designs and discussing remaining open
problems. We also note that a holistic complete view of this vast
problem space, effectively spanning all layers of modern com-
puting, is out of scope and cannot be addressed in any one
piece of work.

Structure of the Monograph Cloud security is a broad topic en-
compassing concepts from a large cross section of domains. To make
this monograph concise and meaningful, we target several topics and
challenges that are almost entirely specific to clouds. For this reason,
general computing security topics such as intrusion detection, software
protection, phishing etc. are excluded. While these are important build-
ing blocks that need to be considered in an end-to-end cloud-centric
design, they have been extensively addressed elsewhere.

The monograph is divided into three parts based on a broad cluster-
ing into hardware, computation, and storage. Specifically the intuition
is that a typical cloud stack will need to: i) secure the platforms on
top of which clouds services e.g., on-demand VMs run, ii) secure the
services e.g., by providing secure compute capabilities, and iii) secure
data stored at rest on the cloud-hosted storage platforms. We now give
a brief overview for each part.

1.1 Secure Infrastructure

Cloud infrastructure is extremely complex involving several components
such as networks, hardware etc. Nevertheless, a critical cornerstone

Full text available at: http://dx.doi.org/10.1561/3300000028

4 Introduction

component of any contemporary cloud architecture is the underlying
computation virtualization technology.

Secure Hypervisors Arguably, systems that enable virtualization e.g.,
hypervisors constitute the most security-sensitive component of a cloud
architecture since they usually run millions of lines of code at the highest
privilege level with full access to the underlying hardware and user data.
Securing this software is one of the foremost challenges to building secure
clouds. Section 2 discusses the state of the art in trusted hypervisor
designs, in addition to techniques that formally verify hypervisors for
secure deployments.

Hardware-Enabled Security Trusted execution environments (TEEs)
are an integral part of cloud infrastructure. They protect the confiden-
tiality and integrity of client application data from other tenants, as
well as from an untrusted cloud provider. Widely-deployed TEEs like
Intel SGX (Intel Corporation, 2014) and AMD SEV (Kaplan et al.,
2016) make it possible to run computation isolated from all the other
untrusted software running in the same system, with strong hardware-
backed guarantees. Section 3 discusses these technologies and highlights
their merits and demerits.

Side-Channels Multi-tenancy in clouds supported by virtualization
also introduces other challenges, specifically in the form of side-channels.
This is because a cloud tenant may have its computation co-located with
other potentially untrusted and malicious parties. This unrestricted
sharing of resources between mutually distrustful parties creates new
attack vectors that is not typical to single-user systems or even enterprise
networks. Section 4 discusses the potential pitfalls of multi-tenancy and
outlines solutions that effectively defend against side-channels in cloud
environments.

1.2 Secure Computation

With Platform-as-a-service (PaaS) and Software-as-a-service (SaaS),
cloud services provide various ways for users to outsource and compute

Full text available at: http://dx.doi.org/10.1561/3300000028

1.3. Secure Storage 5

on cloud hardware. One particularly popular instance of this is machine
learning as a service (MLaaS). Naturally, in these settings, the user
would like to ensure that the computation is performed with certain
verifiable guarantees which includes confidentiality of input/output,
correctness of results, etc.

Secure Distributed Computation Multi-party cryptographic tech-
niques are important building blocks for secure cloud computation. Infor-
mally, secure multiparty computation involves two (or more) mutually-
untrusting parties jointly computing on shared data while ensuring
that they learn nothing more than what the protocol specifies about
each others’ inputs. In the cloud setting, the untrusted party is the
cloud service, while the users constitute the trusted parties. Section 5
discusses the results in distributed secure computation which enable
secure computing in the cloud.

Encrypted Search Client-side encryption is an essential first step to-
wards protecting data stored on cloud platforms. This strong protection
comes at the cost of usability and performance since the server can no
longer search and compute on the data. Encrypted search techniques
(e.g., searchable encryption) take a middleground approach and enable
keyword searches in encrypted documents. Encrypted databases further
extend this idea and support rich query functionalities like joins etc.
Section 6 discusses these techniques and highlights their merits and
demerits.

1.3 Secure Storage

Most cloud services provide Storage-as-a-services (STaaS). This has
become a popular option for enterprises to store data in a cost-effective
way, as opposed to setting up on-premise data centers. However, the
abundance of data on online (often public) spaces raises important
security concerns that are not handled by conventional encryption. We
discuss two such challenges.

Full text available at: http://dx.doi.org/10.1561/3300000028

6 Introduction

Access Pattern Privacy Section 7 discusses the problem of access
privacy for data stored on clouds. It is well-known that revealing access
patterns to data can reveal a wealth of information about the contents,
even when the data is encrypted. This problem is especially concerning
in clouds where the (potentially untrusted) cloud provider has easy
access to the data access patterns through access logs etc.

Provable Data Possession Section 8 discusses the problem of provable
data possession. Cloud services rarely provide verifiable guarantees with
regards to the integrity and long-term reliability of the stored data.
If the data is lost, damaged or revealed to unauthorized sources, the
damage is irreversible. Provable data possession ensures that clients
can verify that an untrusted provider indeed ensures all the proper
guarantees for the stored data, and detect corruptions if any.

Full text available at: http://dx.doi.org/10.1561/3300000028

Part III

Secure Storage

Full text available at: http://dx.doi.org/10.1561/3300000028

7
Data Access Privacy

Encryption alone is not sufficient to protect the confidentiality of data
stored in the cloud since it does not hide metadata e.g., access patterns,
timing information etc. Leaking access patterns in particular is a serious
threat in client-server scenarios where the storage provider can easily
observe and log user access patterns.

To see why this is a problem, first consider the following toy example:
a user (client) stores an alphabetically-sorted encrypted dictionary of
items on an untrusted storage platform. The storage provider observers
all client accesses by logging API calls e.g., GET, PUT requests. If
an encrypted keyword is inserted/deleted, the sequence of requests for
accessing the particular item as well as for other bookkeeping operations
e.g., truncating the dictionary etc. can leak information about the key-
word(s) such as the constituent letters etc. In fact, the observer can make
knowledgeable guesses about the exact keywords with varying degrees
of accuracy based on information obtained apriori about the dictionary
contents. Permuting the keywords in the storage does not solve this
problem since this still allows attacks through frequency analysis – the
“popularity” of a particular keyword leaks how often it is likely to appear
in a typical text application.

54

Full text available at: http://dx.doi.org/10.1561/3300000028

55

The following two scenarios demonstrate the real world implications
of leaking access patterns to an untrusted storage server.

• Consider a cloud-hosted database containing sensitive information
e.g., hospital patient records. Regulatory compliance necessitates
storing the database encrypted. However, even with encrypted
records, database reconstruction attacks such as Grubbs et al.
(2017) and Falzon et al. (2020) are able to infer records by ob-
serving query results – common attributes such as names, age,
geographical location etc. are frequently queried and the attribute
values follow known distributions e.g., an attacker might know
that a certain disease is common in people of a certain age group.
These attacks mainly leverage query access patterns as well the
volume of query results.

• Cloud-hosted services often allow users to perform expensive com-
putation on remote processors. While leveraging trusted execution
environments e.g., Intel SGX can ensure that the computation
runs in a tamper-proof environment and the results generated are
correct, the memory access patterns (even within the enclave’s
cryptographically-protected memory region) can leak information
about the computation (Nayak et al., 2017), and the input data
(Yu et al., 2019).

• Access and search pattern leak significant amounts of information
for searchable encryption systems (Liu et al., 2014a; Oya and
Kerschbaum, 2021).

Intuitively, these attacks succeed because many applications have
data-dependent access patterns i.e., the order in which items are ac-
cessed by the application, the frequency of access etc. depends on the
input. For instance, the memory access patterns of several sorting al-
gorithms (e.g., bubble sort) reveal information about the input to the
algorithm. This problem also manifests in more complex algorithms
such as graph algorithms (Goodrich and Simons, 2014) and machine
learning (Ohrimenko et al., 2016).

Full text available at: http://dx.doi.org/10.1561/3300000028

56 Data Access Privacy

7.1 Access Privacy

One way to solve the access privacy problem for encrypted databases
is to always access it in its entirety. That is, on every access, each and
every item is retrieved from the database, re-encrypted/modified and
re-uploaded back. In this way, the server does not learn any information
about the item of interest. Obviously, this approach does not scale to
large databases usually outsourced to cloud servers. In light of this, sev-
eral more efficient approaches have been considered. Private information
retrieval (PIR) (Chor et al., 1998) allows a client to access items from a
database without revealing the item of interest. However, PIR is mainly
a tool for static databases, or databases that are not updated often.
Updating a database with PIR capabilities often entails re-uploading the
entire database. Alternatively, the database can be encrypted using a
fully (or partially) homomorphic encryption scheme. Then, the database
can be accessed and updated server-side by computing on ciphertexts.
However, the main drawback is that in order to hide access patterns,
the computation must involve all items in the database, lest it leaks the
item(s) of interest. Despite recent advances in making homomorphic
encryption schemes efficient, the total computation required is generally
considered far too expensive for real-world deployments.

Oblivious RAM (ORAM) Oblivious RAM protocols provide a more
practical alternative to solve the access privacy problem by leveraging
only basic cryptographic primitives e.g. symmetric key crypto-systems.
An Oblivious RAM (ORAM) protocol allows a client to store and ma-
nipulate an array of N blocks on an untrusted server without revealing
the data or access patterns. Specifically, the logical array of N blocks
is indirectly stored into a specialized back-end data structure on the
server, and an ORAM scheme specifies an access protocol that imple-
ments each logical access with a sequence of physical accesses to that
back-end structure. An ORAM scheme is secure if for any two sequences
of logical accesses of the same length, the physical accesses produced by
the protocol are computationally indistinguishable. We refer the reader
to the seminal work on oblivious RAM by Goldreich and Ostrovsky
(1996) for more precise definitions.

Full text available at: http://dx.doi.org/10.1561/3300000028

7.1. Access Privacy 57

Evaluation Metrics Intuitively, based on the informal definition, an
ORAM protocol will fetch more items per access than what is actually
required. This is to "obfuscate" the actual item that was requested by
the client. Furthermore, once an item has been fetched, it needs to
be randomly replaced to new a location server-side. This is to prevent
the server from linking a future access with previous accesses for the
same item. One way to do this securely is to randomly reshuffle the
database after every access (or a batch of accesses). As the server
is untrusted, either the client reshuffles the database, or tasks the
server to reshuffle without decrypting the data by leveraging expensive
cryptographic primitives e.g., homomorphic encryption. The former
introduces communication overheads as a subset of the database has to
be downloaded and re-uploaded, while the latter introduces server-side
computation overheads. Additionally, the reshuffle mechanism may be
interactive and require multiple rounds of communication. With these
factors in mind, ORAMs are evaluated on the following metrics:

• Communication Complexity (Bandwidth) is defined as the
total amount of data that a client needs to read and re-upload to
the server in order to complete a request. Usually, communication
is measured in terms of the number of physical data blocks that
need to be transferred from storage to access one logical data
block. Blocks are usually the same size as memory pages on the
client system.

• Round Complexity measures the number of round trips required
between the client and server in order to complete one logical
request. Additional round trips add significant communication
delays. Obviously, an efficient ORAM protocol will only require
one round of communication per logical request.

• Server-Side Computation for ORAMs that employ expensive
cryptographic primitives. Expensive computation affects overall
performance from the standpoint of latency and the associated
dollar costs.

Full text available at: http://dx.doi.org/10.1561/3300000028

58 Data Access Privacy

Existing work on ORAMs has largely focused on optimizing one or
more of these metrics. In the following, we will highlight the noteworthy
constructions and refer the reader to the original works for more details.

7.2 Communication-Efficient ORAMs

The seminal work on ORAMs by Goldreich and Ostrovsky (1996)
identified communication-efficiency as the primary optimization criteria.
The desired goal is to ensure that communication costs scale sublinearly
in the database size. Theoretically, it is possible to design ORAM
schemes where communication scales poly-logarithmically with the
database size (Goldreich and Ostrovsky, 1996).

The construction by Goldreich and Ostrovsky (popularly known as
the "hierarchical ORAM") has O

(
log3 n

)
communication overhead and

is based on a simple design called the square-root ORAM. The idea is to
randomly arrange n blocks (server-side) with a permutation known only
to the client. In addition, there is a cache (or originally called shelter)
of size

√
n (may be a user-defined parameter), which may be stored

either client-side or on the server. As required, the client accesses blocks
from the server and adds the accessed blocks to the cache. Crucially,
for each access, the client also scans the entire cache even if the block is
already found in the main storage.

The security of this scheme is immediately obvious: i) the server
does not know the secret permutation and hence cannot correlate blocks
that are accessed from the main storage, and ii) the cache holds blocks
that have been accessed once and is scanned entirely every access. Once
the cache fills up, the combined blocks remaining in the main storage
and the cache are reshuffled and rearranged again using a new random
permutation. This is the most expensive step of the protocol as it requires
rebuilding the entire storage. In fact, for security, the rebuilding has to
be done obliviously i.e., the intermediate steps should not reveal the
final locations of the blocks. This step is usually performed using an
oblivious sorting algorithm. The sorting in the original construction is
performed using a sorting network which has a communication overhead
of O

(
n log3 n

)
. Overall, since the reshuffling needs to be performed

only when the cache fills up after
√

n accesses, the communication cost

Full text available at: http://dx.doi.org/10.1561/3300000028

7.2. Communication-Efficient ORAMs 59

of the protocol is O
(√

n log3 n
)
. We note that although more efficient

oblivious sorting mechanisms exists (Shi, 2020) with communication
cost O (n log n), replacing the expensive sorting network still does not
remove the cost dependence on

√
n in the original construction.

To overcome this dependence, Goldreich and Ostrovsky proposed
a construction that essentially amortizes the level reconstruction cost.
The ORAM organizes data on the server-side in a hierarchy of levels.
The i-th level holds 4i blocks and the (i + 1)-th level (which can hold
4i+1 blocks) is the cache for the i-th level. Conceptually, the top level
is an append log. On every read/write, the block that is accessed is re-
encrypted and placed in the top level. Obviously, the top level overflows
after a fixed number of accesses. At this stage, its constituent blocks
are flushed and uniformly randomly placed in the second level. This
process is generalized across all the levels and the ORAM has O (log n)
levels. The hierarchical construction has a communication complexity
of O

(
log3 n

)
amortized over all accesses.

Improvements Several subsequent works have addressed the high
communication complexity of the original hierarchical construction,
while retaining the overall structure. Williams and Sion (2008) presented
a construction with amortized communication complexity O

(
log2 n

)
under the assumption that the client has at least O (

√
n) dedicated

storage to perform the reshuffles using an oblivious version of the merge
sort algorithm. Subsequently, Williams et al. (2008) presented an ORAM
with more efficient search by storing per-level encrypted bloom filters.

Under assumptions of constant client storage, Pinkas and Reinman
(2010) used cuckoo hashing and randomized shell sort over the original
Goldreich and Ostrovsky solution and achieve an amortized commu-
nication complexity of O

(
log2 n

)
Pinkas and Reinman (2010) uses.

However, Goodrich and Mitzenmacher (2011) highlight a leak in the
construction and provides an alternate construction with amortized
communication complexity of O (log n) with the assumption of O

(
n1/r

)
client storage with r > 1.

Full text available at: http://dx.doi.org/10.1561/3300000028

60 Data Access Privacy

Deamortization One major drawback of the hierarchical ORAM con-
structions is that client queries need to wait for the duration of a reshuffle,
and this is especially impractical for the larger levels. De-amortized
constructions allow queries and reshuffles to proceed together and thus
eliminate clients waiting for reshuffles after a level overflow. Goodrich
et al. (2011) showed how to de-amortize the original square root solu-
tion and hierarchical solution and achieve a worst-case complexity of
O (log n) in the presence of O

(
n1/r

)
client side storage where r > 1.

Kushilevitz et al. (2012) used cuckoo hashing and rotating buffers to
provide a de-amortized construction with a worst-case communication
complexity of O

(
log2 n

log log n

)
. PD-ORAM (Williams et al., 2012) is a de-

amortized hierarchical ORAM where level reconstructions are performed
in the background while allowing queries to proceed simultaneously.
This is achieved by keeping two copies of the data: a read-only copy
for the queries and a writable copy where new levels are constructed.
Level reconstruction starts as soon as a level is created. To ensure that
a new level is available on demand when required for the next round
of queries, the level construction is synchronized with the queries by
tracking the progress of the reshuffle.

7.2.1 Tree-Based ORAMs

The high worst case costs of hierarchical ORAMs makes them impracti-
cal and while deamortized construction fare better in this regard, they
often introduce additional overheads e.g., increased storage costs. Tree-
based ORAMs provide a more viable alternative to hierarchical ORAMs
since they are naturally un-amortized i.e., the worst-case query cost is
equal to the average cost. Tree-based ORAMs organize the database
blocks in the form of a binary (or ternary) tree. Each node of the tree
(denoted as a bucket) contains a fixed number of blocks (which can
be real or dummy). Blocks are stored along unique randomly selected
paths. To track the location of blocks in tree (the corresponding path),
a position map associates blocks identifiers. e.g., logical addresses to
path identifiers e.g., leaf labels. Once a block is stored along some path,
the ORAM maintains the following invariant: A block mapped to a
path resides either in any one of the buckets on the path from the root

Full text available at: http://dx.doi.org/10.1561/3300000028

7.3. Round-Trip Efficient ORAMs 61

to the corresponding leaf, or in a secure storage. Due to the random
association of blocks to paths, writes may fail when all the buckets
along the path are occupied up to capacity. In this case the block needs
to be stored temporarily in a secure storage, called the stash, which is
probabilistically bounded in size, and is usually stored client-side.

Shi et al. (2011a) presented the first tree-based ORAM with worst-
case communication cost of O

(
log3 n

)
. Subsequently, Gentry et al.

(2013) improved the communication costs of the construction by a
constant factor. The major breakthrough in tree-based ORAM designs
is due to Stefanov et al. (2013), in the form of a construction called
Path ORAM. Path ORAM achieves O (log n) communication costs
when the client can spare O (n) local storage, and O

(
log2 n

)
otherwise.

In fact, under certain assumptions (e.g., non-uniform server-side block
sizes), Path ORAM can still achieve O (log n) communication costs. This
matches the known lower bound on communication costs. Subsequently,
Ren et al. (2015) and Wang et al. (2015a) have improved on the practical
overheads of Path ORAM.

7.3 Round-Trip Efficient ORAMs

Optimizing round-trips for ORAM protocols is as critical for perfor-
mance as the overall communication since multiple round-trips to fetch
data leads to high latency of access. Unfortunately, none of the afore-
mentioned communication-efficient constructions optimize round-trips.
There are two notable constructions that address this problem. SR-
ORAM (Williams and Sion, 2012) is a constant round ORAM re-
quiring two round trips with overall communication complexity of
O

(
log2 n log log n

)
. Since, SR-ORAM follows a hierarchical construc-

tion, the worst case complexity is Ω(n). TWORAM (Garg et al., 2016)
overcomes this problem; it features a worst-case communication com-
plexity of O

(
log3 n

)
and performs accesses in two rounds. Another

notable construction is Bucket ORAM (Fletcher et al., 2015) which
features single round-trip accesses and communication complexity of
O (log n) under certain block size assumptions.

Full text available at: http://dx.doi.org/10.1561/3300000028

62 Data Access Privacy

7.4 Compute-Efficient ORAMs

A straightforward way to make ORAM protocols more communication
efficient is by leveraging server-side computation. If the server could
compute on the data without learning the contents, then the communi-
cation burden can be reduced as the server only returns the data block
required. A line of work explores this trade-off in communication and
computation assuming different server-side compute capabilities.

A version of Ring ORAM (Ren et al., 2015) achieves O (1) commu-
nication cost for fetching a block from the server under the assumption
that the server can execute XORs over the data blocks before returning
them to the client. The overall complexity of the construction is how-
ever O

(
log2 n

)
due to other necessary bookkeeping operations. Onion

ORAM (Devadas et al., 2016) has a communication complexity of O (B)
where B is the block size of the ORAM. The construction may use either
additively homomorphic encryption (AHE) or somewhat homomorphic
encryption scheme (SWHE) with different trade-off; see Devadas et al.
(2016) for more details. Recently, Chen et al. (2019b) proposed Onion
Ring ORAM which makes practical improvements to the construction.
An alternate line of work assumes multiple servers to aid the compu-
tation. One notable example of this line of work is S3ORAM (Hoang
et al., 2017) utilizing secret sharing as the underlying primitive.

7.5 Other Practical Considerations

7.5.1 Parallel Access

All aforementioned ORAMs are designed for single-client deployments,
that is at any point in time, there is a single-client performing accesses
to the ORAM. This naturally ensures consistency and privacy. However,
in this setting, clients experience unreasonably long wait times making
the schemes impractical.

Boyle et al. first introduced an oblivious parallel RAM (OPRAM)
construction assuming inter-client communication for synchronization
(Boyle et al., 2016). Clients coordinate with each other through an
oblivious aggregation operation and prevent simultaneous queries for the
same block. For colliding client accesses, only one representative client

Full text available at: http://dx.doi.org/10.1561/3300000028

7.5. Other Practical Considerations 63

queries for the required item while all other clients query for dummy
items. The representative client then communicates the read item to
all other colliding clients through an oblivious multi-cast operation.
Subsequent works (Chan et al., 2017a; Nayak and Katz, 2016; Chen
et al., 2016; Chan et al., 2017b; Hubert Chan and Shi, 2017) have
optimized Parallel RAMs matching the overhead of a sequential ORAM
construction.

TaoStore (Sahin et al., 2016) takes a different approach towards
building a parallel ORAM. The construction introduces a trusted proxy
such that all client queries are redirected to the trusted proxy which
then queries for the corresponding paths from the PathORAM data tree.
Further, the proxy runs a secure scheduler to ensure that the multiple
path reads do not overlap and leak correlations in the underlying queries.
TaoStore achieves a significant increase in throughput but can support
only a limited number of parallel clients before the throughput plateaus
due to the proxy’s bandwidth constraints.

ConcurORAM (Chakraborti and Sion, 2019) is a parallel ORAM
construction which overcomes the bandwidth limitations of TaoStore,
and reduces the assumption footprint by removing the need for a trusted
proxy and inter-client communication. The construction is aided by
several auxilliary data structures that allow queries to proceed in the
background with full privacy guarantees without blocking other queries.

7.5.2 Write-Only Privacy

Full ORAM privacy is often unnecessary for practical settings. In several
data outsourcing scenarios, it is enough to protect the privacy of write
operations. A notable example of this is secure data backup on cloud
services like DropBox (Aviv et al., 2017). This privacy definition is
satisfied by a class of ORAMs called write-only ORAMs. Li and Datta
proposed the first write-only ORAM scheme with an amortized write
complexity of O (B × log n) where B is the block size of the ORAM
and n is the total number of blocks (Li and Datta, 2017). However,
the construction suffers from poor (linear in the database size) read
complexity. Hive (Blass et al., 2014) is a write-only ORAM scheme with
constant read complexity. It maps data from a logical address space

Full text available at: http://dx.doi.org/10.1561/3300000028

64 Data Access Privacy

uniformly randomly to the physical blocks on the underlying device.
The construction requires a O (log n)-sized stash. DetWoORAM (Roche
et al., 2017) overcomes the requirement of a stash and achieves O (log n)
read complexity and O (1) write complexity.

7.5.3 Range ORAMs

A new ORAM variant, namely Range ORAM, was recently proposed by
Asharov et al. (2019). Unlike traditional ORAMs optimized for single-
block accesses, Range ORAMs are optimized for efficiently accessing
ranges of blocks. This notion is especially useful when considering
the fact that typical filesystems deployed on top of ORAMs usually
access contiguous blocks at once e.g., when reading/writing a file. The
efficiency goal for Range ORAMs is to ensure that range accesses can be
performed with minimal number of disk seeks across the storage device.
This is in contrast to traditional ORAMs which randomly place blocks
(belonging to the same file) all across the device making file accesses
inefficient on high latency drives like HDDs. As a security trade-off
range ORAM reveal the sizes of the ranges accessed; see Asharov et al.
(2019) for more details.

Asharov et al. (2019) presented a construction with O
(
r · log3 n

)
communication complexity (amortized) to access r contiguous blocks.
The number of seeks required is O

(
log3 n · (log log n)2

)
(notice that the

number of seeks is independent of r). Chakraborti et al. (2019) improved
this result by providing an unamortized construction with O

(
r · log2 n

)
communication complexity and requiring O

(
log2 n

)
seeks.

7.5.4 Hardware-Assisted ORAMs

Oblivious RAM protocols have been used in conjunction with trusted
execution environments (TEEs) to design systems with access privacy.
ZeroTrace (Sasy et al., 2018) combines ORAMs and Intel SGX, and
builds a block-level memory controller that provides oblivious execu-
tion against software adversaries. Other noteworthy examples include
databases with oblivious query capabilities (Eskandarian and Zaharia,
2019; Hoang et al., 2018) and oblivious file systems (Ahmad et al.,

Full text available at: http://dx.doi.org/10.1561/3300000028

7.5. Other Practical Considerations 65

2018). Typically in these systems, the ORAM logic runs securely in a
SGX enclave and the data is hosted on an untrusted storage backend.
In this way, the expensive bookkeeping operations are performed by
the enclave-hosted trusted logic without any client intervention thereby
reducing overall communication. The controller also receives and serves
requests from the client; a secure communication channel between the
client and the enclave ensures that the block requests remain hidden to
the server.

7.5.5 Future Research Directions

Although there is a large volume of work dedicated to optimizing
ORAMs for clouds, the state of the art is still impractical for real-world
deployments. Firstly, the communication costs are still too high. Patel
et al. (2018) and Asharov et al. (2020) have made significant strides
in this direction by achieving the known communication lower bound.
However, these constructions are mainly of theoretical interest as the
constants are impractically high. Making these constructions practical,
while keeping in mind the aforementioned performance metrics (e.g.,
round trips, parallelism), encourage more research in this direction.

Secondly, ORAMs are not cost-effective. The high dollar costs of em-
ploying ORAMs often outweigh the cost advantages of outsourcing data
to a public cloud (Bindschaedler et al., 2015). This is a largely overlooked
drawback of existing protocols which needs to be further investigated.
The costs are due to communication and storage overheads. Interest-
ingly, cloud services often price communication asymmetrically: uploads
are costlier than downloads. Therefore, building ORAMs that exploit
this asymmetry (e.g., lower upload costs for higher download costs)
is an interesting research direction. ORAM constructions also come
with significant storage overheads: all aforementioned constructions
require at least 2× the storage, as that required for the raw database.
Exploring storage-efficient protocols is an important consideration for
future research.

Finally, for real-world deployments it is important to consider ac-
tively malicious adversaries i.e., cloud servers who may modify data or re-
play old data to the clients. This not only introduces integrity/consistency

Full text available at: http://dx.doi.org/10.1561/3300000028

66 Data Access Privacy

issues but also impacts privacy. While in a single client scenario, this
problem may be solved by integrity-preserving mechanisms (Ren et al.,
2013), the problem is significantly amplified in multi-client scenarios.
When considering a setting where even the clients can be malicious,
Maffei et al. (2017) showed that to ensure security the server-side com-
putation required is Ω(n), that is the server must touch all the items
in the database for every access. In this setting, a scheme is presented
with communication complexity of O (

√
n). The lower bound on the

server-side compute costs only holds in a single-server setting. Hoang
et al. (2020) recently presented a construction in a multi-server setting
with O (1) client-server communication complexity and O (log n) server-
server communication complexity. The construction builds on S3ORAM
(Hoang et al., 2017) and adapts it for a malicious server(s) setting.
Future work in this direction may explore new constructions in both
the single-server and multi-server settings with lower communication
complexities.

Full text available at: http://dx.doi.org/10.1561/3300000028

8
Provable Data Possession

The increasing popularity of third-party cloud storage services in recent
years has brought with it numerous advantages, such as reduced cost,
the ability to access the data from anywhere, and the ability to easily
share data. These benefits however, did not come without challenges,
especially from a security and privacy point of view. Due to trust
concerns in the third-party cloud storage provider, security and privacy
have been identified among the main challenges that hamper data
migration to/from a cloud environment.

Unfortunately, none of the cloud storage services offered verifiable
guarantees with regard to the integrity and long-term reliability of
the stored data. Basically, in the cloud storage commercial landscape,
if data is lost, the best a data owner can hope for is compensation
proportional with the size of the data (if any), which may be orders of
magnitude away from the actual value of the data.

Circa 2007, Ateniese et al. (2007; 2011) introduced a new framework
for remote data integrity checking using provable data possession (PDP).
In this model, the storage server is not trusted to store the data and may
try to convince the client (data owner) that it possesses (i.e., stores) the
data even if the data is totally or partially corrupted. Protection against

67

Full text available at: http://dx.doi.org/10.1561/3300000028

68 Provable Data Possession

corruption of a large portion of the data is necessary in order to handle
servers that discard a significant fraction of the data. This applies to
servers that are financially motivated to sell the same storage resource
to multiple clients. Protection against corruption of a small portion
of the data is necessary in order to handle servers that try to hide
data loss incidents. This applies to servers that wish to preserve their
reputation. Data loss incidents may be accidental (e.g., management
errors or hardware failures) or malicious (e.g., insider attacks).

Remote data integrity checking (RDIC) allows an auditor to challenge
a remote server to provide a proof of data possession in order to validate
that the server possesses the data that were originally stored by a client.
An RDIC scheme seeks to provide a data possession guarantee.

Requirements. Conforming to an outsourced storage relationship, the
client (i.e., data owner) should only be required to store a small, ideally
constant, piece of metadata.

Oftentimes, cloud storage presents unique performance demands.
Given that file data are large and are stored at remote sites, accessing
an entire file is expensive in I/O costs to the storage server and in
transmitting the file across a network. Reading an entire archive, even
periodically, greatly limits the scalability of network stores. Furthermore,
I/O incurred to establish data possession interferes with on-demand
bandwidth to store and retrieve data. As such, clients need to be able
to verify that a server has retained file data without retrieving the data
from the server and without having the server access the entire file.

A scheme for auditing remote data should be both lightweight and
robust. Lightweight means that it does not unduly burden the cloud
storage provider (CSP); this includes both overhead (i.e., computation
and I/O) at the CSP and communication between the CSP and the
auditor. This goal can be achieved by relying on spot checking, in which
the auditor randomly samples small portions of the data and checks
their integrity, thus minimizing the I/O at the CSP. Spot checking
allows the client to detect if a fraction of the data stored at the server
has been corrupted, but it cannot detect corruption of small parts of the
data (e.g., 1 byte). Robust means that the auditing scheme incorporates
mechanisms for mitigating arbitrary amounts of data corruption. Pro-

Full text available at: http://dx.doi.org/10.1561/3300000028

8.1. Prior Approaches 69

tecting against large corruptions ensures the CSP has committed the
contracted storage resources. Little space can be reclaimed undetectably,
making it unattractive to delete data to save on storage costs or sell
the same storage multiple times. Protecting against small corruptions
protects the data itself, not just the storage resource. Many data have
value well beyond their storage costs, making attacks that corrupt small
amounts of data practical. For example, modifying a single bit may
destroy an encrypted file or invalidate authentication information.

8.1 Prior Approaches

Before the PDP model, several other mechanisms had been proposed
that do not meet the above requirements for remote data integrity
checking. Some schemes (Golle et al., 2002) provide a weaker guarantee
by enforcing storage complexity: The server has to store an amount
of data at least as large as the client’s data, but not necessarily the
same exact data. Moreover, most previous techniques require the server
to access the entire file, which is not feasible when dealing with large
amounts of data, or require storage on the client linear with the size
of the data, which does not conform with the notion of storage out-
sourcing (Deswarte et al., 2003; Sebe et al., 2004; Filho and Baretto,
2006; Shah et al., 2007). A notable exception is the work of Schwarz and
Miller (2006), which meets most of the requirements for proving data
possession, but provides a less formal security analysis. This scheme
relies on a special construct called an “algebraic signature,” which is a
function that fingerprints a block and has the property that the signa-
ture of the parity block equals the parity of the signatures of the data
blocks.

8.2 Provable Data Possession

A Provable Data Possession (PDP) protocol checks that an outsourced
storage site retains a file, which consists of n blocks. The client C (data
owner) pre-processes the file, generating a small piece of metadata that
is stored locally, transmits the file to the server S, and may delete its
local copy. The server stores the file and responds to challenges issued

Full text available at: http://dx.doi.org/10.1561/3300000028

70 Provable Data Possession

by the client. Storage at the server is Ω(n) and storage at the client is
O(1), conforming to an outsourced storage relationship.

As part of pre-processing, the client may alter the file to be stored
at the server. The client may encrypt, encode or expand the file, or may
include additional metadata to be stored at the server.

At a later time, an auditor issues a challenge to the server to establish
that the server has retained the file. The auditor requests that the server
compute a function of the stored file, which it sends back to the client.
Using its local metadata, the auditor verifies the response.

For ease of exposition, the client (data owner) is assumed to be the
same entity as the auditor. However, the model can be easily extended
to a setting where these two may be separate entities (e.g., if business
requirements require separation, or if data privacy is a concern and the
auditor should not have access to the plain data (Shah et al., 2008).

Ateniese et al. (2007; 2011) proposed two PDP schemes which rely
on homomorphic verifiable tags. The client pre-computes tags for each
block of a file and then stores the file and its tags with a server. At a later
time, the client can verify that the server possesses the file by generating
a random challenge against a randomly selected set of file blocks. The
server retrieves the queried blocks and their corresponding tags, using
them to generate a proof of possession. The client is thus convinced of
data possession, without actually having to retrieve file blocks. Because
of the homomorphic property, tags computed for multiple file blocks can
be combined into a single value, and so a challenge uses O(1) network
bandwidth.

These PDP schemes sample the server’s storage, accessing a random
subset of blocks. Sampling proves data possession with high probability
based on accessing a few blocks in the file, which radically alters the
performance of proving data possession.

Achieving robustness. An RDIC scheme can be enhanced to provide
robustness by using forward error-correcting codes (FECs). Attacks that
corrupt small amounts of data do no damage, because the corrupted
data may be recovered by the FEC. Attacks that do unrecoverable
amounts of damage are easily detected because they must corrupt many
blocks of data to overcome the redundancy.

Full text available at: http://dx.doi.org/10.1561/3300000028

8.3. Dynamic Provable Data Possession 71

Ateniese et al. (2011) propose a generic transformation that encodes
a file using FECs in order to add robustness to any RDIC scheme that
relies on spot checking (Curtmola et al., 2008a). A robust RDIC scheme
provides protection against arbitrary small amounts of data corruption.

Additional features. The PDP schemes introduced by Ateniese et
al. (2007; 2011) provide several additional useful features. First, they
provide data format independence, meaning they put no restriction on
the format of the data. In particular, files stored at the server do not
have to be encrypted. This feature is relevant since PDP schemes may
have a significant impact when used with large public repositories (e.g.,
digital libraries, astronomy/medical/legal repositories, archives etc.)
Second, they put no restriction on the number of times the client can
challenge the server to prove data possession. Third, they pioneer the
notion of public verifiability, which allows anyone, not just the data
owner, to challenge the server for data possession. For example, an
independent third-party auditor can verify possession of the data. The
advantages of having public verifiability are akin to those of public-key
over symmetric-key cryptography.

8.3 Dynamic Provable Data Possession

The original PDP model was introduced in the context of static data,
i.e., data that is not modified after being stored initially. This matches a
variety of application scenarios that fall under the umbrella of archival
storage. The model was shown to also securely support the append
operation (i.e., data blocks are appended at the end of the file), which
covers application scenarios such as version control systems (Chen and
Curtmola, 2014). The model was subsequently extended by Erway et
al. (2009; 2015) to support the full range of dynamic updates to the
stored data – i.e., the client can insert, modify, or delete stored data
blocks – while maintaining data possession guarantees. Dynamic PDP
(DPDP) can thus cover a wider range of cloud computing scenarios,
including file storage, database services, and peer-to-peer storage. The
proposed DPDP schemes are based on a new variant of authenticated
dictionaries which permit efficient membership queries (i.e., a rank-

Full text available at: http://dx.doi.org/10.1561/3300000028

72 Provable Data Possession

based authenticated dictionary built over a skip list). Different from a
static PDP scheme, for a dynamic PDP scheme to be efficient, it must
not include order information in the tags, since otherwise an update
may cause all tags to be updated. From a performance perspective, the
most important cost introduced by a dynamic PDP scheme compared
to a static PDP scheme is that the size of a data possession proof grows
from O(1) to O(log n), where n is the number of file blocks.

Subsequently, Etemad and Küpçü (2020) show a general framework
for constructing DPDP schemes that encompass existing DPDP-like
schemes as different instantiations.

8.4 Proofs of Retrievability

Simultaneously with PDP, Juels and Kaliski (2007) have introduced
a similar notion, that of proof of retrievability (PoR), which allows a
client to be convinced that it can retrieve a file previously stored at
the server. This PoR scheme uses disguised blocks (called sentinels)
hidden among regular file blocks in order to detect data corruption by
the server. Although comparable in scope with PDP, this PoR scheme
can only be applied to encrypted files and can handle a limited number
of queries, which has to be fixed a priori. At a high level, a PoR scheme
provides similar guarantees as an RDIC scheme (i.e., a PDP scheme that
incorporates robustness to provide protection against small amounts of
data corruption). Shacham and Waters (2008; 2013) improve the PoR
state of the art by introducing the most-widely-accepted definitions for
PoR-type schemes and giving two PoR protocols based on homomorphic
authenticators. The first is based on bilinear maps and achieves public
verifiability, whereas the second is based on pseudo-random functions,
more efficient, but is only privately verifiable. Erway et al. (2015, Section
7.3) provide a detailed comparison of PDP and PoR schemes.

Although initially proposed for a static setting, PoR schemes were
subsequently extended to a dynamic setting (i.e., the stored data can
be updated in time). Initial dynamic PoR schemes were mostly of
theoretical interest: Stefanov et al. (2012) (due to imposing a large
amount of client storage and a large audit cost) and Cash et al. (2013b)
(due to imposing large audit overhead). Shi et al. (2013) proposed the

Full text available at: http://dx.doi.org/10.1561/3300000028

8.5. Towards Auditing Distributed Storage Systems 73

first practical dynamic PoR scheme that achieves comparable communi-
cation overhead and client-side computation with a standard Merkle
hash tree. Like prior PoR and RDIC schemes, this scheme uses FEC
codes (erasure codes more precisely) to achieve protection against small
data corruptions, but ensures that data updates can be done efficiently
by maintaining on the server side an erasure-coded hierarchical log
structure that contains recently written blocks. This structure needs a
special erasure coding scheme that can be incrementally built over time.
Due to the use of this additional metadata, the actual erasure-encoded
data only needs to be rebuilt every n write operations, where n is the
number of file blocks.

8.5 Towards Auditing Distributed Storage Systems

In many practical cloud storage systems, data should be replicated in
order to deal with data loss accidents. Preferably, the replicas should
be stored in different geographical locations, in order to ensure failure
independence. Replication is a useful mechanism in the context of
proving data possession by a cloud storage provider. Whereas techniques
such as PDP and PoR are useful to verify remotely the integrity of a
single replica, they provide limited value when that single replica is
irreparably damaged.

When data is replicated at multiple storage servers, an auditor can
execute independently data possession protocols with each of the storage
servers. In case any of the replicas is found to be damaged, the data
owner can use the healthy replicas to restore the desired level of data
replication.

Establishing a guarantee that t replicas of a file are in fact stored by
a set of storage servers becomes more challenging when we assume that
the storage servers can behave fully malicious (i.e., can collude with
each other). The servers that appear to be storing multiple replicas may
be in fact storing only a single copy of the data. In general, this can be
done by redirecting and forwarding challenges from the multiple sites
to the single site that stores the data. In this way, clients (data owners)
remain unaware of the reduction in the availability and durability of
data that results from the loss of replicas. Even if the client initially

Full text available at: http://dx.doi.org/10.1561/3300000028

74 Provable Data Possession

stores replicas on servers in different geographic locations, the servers
can then move all the replicas to one location and access them from
that location on demand. Such a system is not more reliable than a
single-replica system, even though it leads the client to believe so.

Replication systems that rely on untrusted servers have another
generic limitation. To prove data availability, the servers can produce
replicas on demand upon a client’s challenge; however, this does not
prove that the actual replicas are stored at all times. For example,
malicious servers may choose to introduce dependencies among replicas,
by encrypting the replicas before storing them. Replicas can then be
decrypted and served on demand whenever they are requested by clients.
By storing the encryption key in a single location, the malicious servers
can effectively negate any reliability improvements achieved by storing
the replicas at different locations. Loss of the encryption key means loss
of all the replicas.

Given these generic limitations of replication systems that rely on
fully dishonest servers, Curtmola et al. (2008b) consider a model in
which storage servers are rational and economically motivated. In this
context, cheating is meaningful only if it cannot be detected and if it
achieves some economic benefit (e.g., using less storage than required
by the contract). Such an adversarial model is reasonable and captures
many practical settings in which malicious servers will not cheat and risk
their reputation, unless they can achieve a clear financial gain. Curtmola
et al. (2007; 2011) extend PDP to apply to multiple replicas so that a
client that initially stores t replicas can later receive a guarantee that the
storage system can produce t replicas, each of which can be used to re-
construct the original file data. A replica comprises the original file data
masked with randomness generated by a pseudo-random function (PRF).
As each replica uses a different PRF, replicas cannot be compared or com-
pressed with respect to each other. The homomorphic verification tags
of PDP are modified so that a single set of tags can be used to verify any
number of replicas. These tags need to be generated a single time against
the original file data. Thus, replica creation is efficient and incremental;
it consists of unmasking an existing replica and re-masking it with new
randomness. In fact, the proposed multiple-replica PDP scheme is almost
as efficient as a single-replica PDP scheme in all the relevant parameters.

Full text available at: http://dx.doi.org/10.1561/3300000028

8.5. Towards Auditing Distributed Storage Systems 75

In the context of distributed storage, other solutions have subse-
quently been proposed, to cover various points in the two-dimensional
feature-cost space. For example, Bowers et al. (2009) introduced HAIL,
a system that stores a file across multiple servers using redundancy.
They consider a mobile adversary, which is capable to corrupt all storage
servers, although at different moments in time (i.e., the adversary can
corrupt any servers, as long as at most a fixed number of servers are
corrupted at any one time). To deal with such a strong adversary, HAIL
employs a careful interleaving of different types of error-correcting,
which exploits both within-server redundancy and cross-server redun-
dancy. At a high level, HAIL can be thought of as extending the RAID
concept into the cloud, by spreading redundancy across multiple cloud
servers.

Etemad and Küpçü (2013) explore a Dynamic PDP (DPDP) model
in the context of a distributed, replicated storage system. Chen et al.
(2010) propose remote data integrity mechanisms optimized for a setting
when data is distributed across multiple storage servers using network
coding (Dimakis et al., 2007; Dimakis et al., 2010). Li and Lazos (2020)
introduce a mechanism for verifying that a file is redundantly stored
across multiple physical storage nodes according to a pre-agreed layout
and can, therefore, survive node failures. Leontiadis and Curtmola (2018)
seek to deduplicate replicated storage and design a secure storage system
that provides users with strong integrity, reliability, and transparency
guarantees about data that is outsourced at cloud storage providers.
Users store multiple replicas of their data at different storage servers,
and the data at each storage server is deduplicated across users.

Bowers et al. (2011) proposed RAFT, a mechanism that allows a
data owner to check that a storage server has stored a file F across
multiple disk drives, so it can support a desired level of fault tolerance
(e.g., data can be recovered if any set of t drives has failed). RAFT is
designed specifically for data stored on rotational drives, and exploits
the performance limitations of such drives as a bounding parameter.

Damgård et al. (2019) proposed proofs of replicated storage. Such a
proof guarantees that a set of servers have reserved the space necessary
to store n copies of a file. Previous attempts to achieve a similar
guarantee rely on timing assumptions (Protocol Labs, 2017a; Protocol

Full text available at: http://dx.doi.org/10.1561/3300000028

76 Provable Data Possession

Labs, 2017b). A replica is encoded using a process that is slow, so that
an auditor can distinguish between the time an honest server computes
a proof and the time a dishonest server would need to re-encode the
file at the time of the challenge. In contrast, Damgard et al. propose
a construction for proofs of replicated storage that does not rely on
timing assumptions. As opposed to time-bounded approaches which
rely on a public deterministic encoding function, their approach is to
use probabilistic encoding, which makes the re-encoding unfeasible.
In addition, they focus on achieving public verifiability, which allows
anyone (not just the data owner) to play the role of the verifier in an
audit protocol. In practical terms, this means that decoding a replica
can be done by anyone.

8.6 Remote Data Integrity Checking With Server-side Repair

When a distributed storage system is used in tandem with remote
data integrity checking (RDIC), several phases can be distinguished
throughout the lifetime of the storage system: Setup, Challenge, and
Repair. To outsource a file F , the data owner creates multiple replicas
of the file during Setup and stores them at multiple storage servers (one
replica per server). During the Challenge phase, the data owner can ask
periodically each server to provide a proof that the server’s replica has
remained intact. If a replica is found corrupt during the Challenge phase,
the data owner can take actions to Repair the corrupted replica using
data from the healthy replicas, thus restoring the desired redundancy
level in the system. The Challenge and Repair phases will alternate over
the lifetime of the system.

In cloud storage outsourcing, a data owner stores data in a dis-
tributed storage system that consists of multiple cloud storage servers.
The storage servers may belong to the same CSP (e.g., Amazon has
multiple data centers in different locations), or to different CSPs. The
ultimate goal of the data owner is that the data will be retrievable at
any point of time in the future. Conforming to this notion of storage
outsourcing, the data owner would like to outsource both the storage
and the management of the data. In other words, after the Setup phase,
the data owner should only have to store a small, constant, amount of

Full text available at: http://dx.doi.org/10.1561/3300000028

8.6. Remote Data Integrity Checking With Server-side Repair 77

data and should be involved as little as possible in the maintenance of
the data. Minimal involvement in the Challenge phase can be achieved
when using an RDIC scheme that has public verifiability. However,
traditionally, the Repair phase imposes a significant burden on the data
owner, who needs to expend a significant amount of computation and
communication. For example, to repair data at a failed server, the data
owner needs to first download an amount of data equal to the file size,
re-generate the data to be stored at a new server, and then upload this
data at a new healthy server (Curtmola et al., 2008b; Bowers et al.,
2009). Archival storage deals with large amounts of data (Terabytes
or Petabytes) and thus maintaining the health of the data imposes a
heavy burden on the data owner.

Chen and Curtmola (2013; 2017) explore a model which minimizes
the data owner’s involvement in the Repair phase, thus fully realizing
the vision of outsourcing both the storage and management of data.
During Repair, the data owner simply acts as a repair coordinator, which
allows the data owner to manage data using a lightweight device. This
is in contrast with previous work, which imposes a heavy burden on the
data owner during Repair.

The main challenge is how to ensure that the untrusted servers
manage the data properly over time (i.e., take necessary actions to
maintain the desired level of redundancy when some of the replicas
have failed). They consider a new storage system architecture in which
each storage server exposes an interface for data manipulation so that
the data owner can coordinate the actions of the storage servers in
the Repair phase. To repair a faulty server during Repair, the data
owner identifies healthy servers and instructs them to collaborate. In
this process, most of the communication occurs between the storage
servers, and the communication between data owner and storage servers
is minimized.

Their approach is based on two insights. First, the replicas stored
by the storage servers must be different. Second, to enable server-side
repair, the data owner gives the servers both access to the original file
and the means to generate new replicas. This will allow the servers
to generate a new replica by collaborating between themselves during
Repair. However, this approach opens the door to a new attack, in

Full text available at: http://dx.doi.org/10.1561/3300000028

78 Provable Data Possession

which the servers falsely claim they generate a new replica whenever
an existing replica has failed, but in reality they collaborate to only
generate a replica on the fly during the Challenge phase (this attack is
referred to as the replicate on the fly (ROTF) attack). To overcome the
ROTF attack, the proposed approach is to make replica creation to be
time consuming. In this way, malicious servers cannot generate replicas
on the fly during Challenge without being detected. Two schemes are
proposed to generate distinct replicas: The first uses a controllable
amount of masking to deal with weaker adversaries, and the second uses
a variant of butterfly encoding (Dijk et al., 2012) to create dependencies
between each of the replica blocks and multiple original file blocks in
order to deal with stronger adversaries.

Towards a similar goal to allow servers to generate new replicas,
Armknecht et al. (2016) propose Mirror, a PoR-based solution that
leverages tunable cryptographic RSA-based puzzles to impose significant
resource constraints on the storage servers. As a result, a rational cloud
storage provider will be incentivized to correctly store and replicate the
client’s data or risk detection with high probability otherwise.

8.7 Future Research Directions

Ensuring the integrity and long-term reliability of cloud stored data has
been an active research area over the past few years and, considering
the security and privacy-sensitive nature of the cloud storage paradigm,
will likely continue to attract interest for the foreseeable future.

Despite significant progress and despite the plethora of security guar-
antees put forth by the academic community, adoption by major cloud
storage providers remains an elusive target. Short of native deployment
of auditing and data maintenance capabilities by the cloud providers
themselves, one can imagine a business model where such services could
be offered by a third party auditor running in the same data center
where the data is located. This introduces additional concerns, especially
when auditing private data, as data owners would need to allow access
to their data for the auditor.

The lack of adoption in a commercial setting is a multifaceted prob-
lem. Certainly, performance is a significant concern: Providing such

Full text available at: http://dx.doi.org/10.1561/3300000028

8.7. Future Research Directions 79

strong guarantees as the ones aforementioned in this work could de-
grade performance. Related to this issue may be the lack of efficient and
production level implementations. There are also economic, regulatory
and policy reasons. Lack of adoption may seem surprising, because pro-
viding such strong guarantees could be seen as a business differentiator.
Yet, cloud providers do not seem to have clear economic incentives to
provide such strong guarantees, and have focused on more basic security
guarantees such as ensuring the privacy and secure sharing of the data.

There are still open problems, especially when trying to achieve
simultaneously multiple different guarantees. For example, designing
RDIC schemes that are both robust and fully meet data format in-
dependence has been challenging. This is because robustness usually
imposes encrypting (parts of) the data. As another example, remotely
verifying the geographical location of cloud data remains an elusive
target, despite some early attempts (Benson et al., 2011; Peterson et al.,
2011; Watson et al., 2012; Gondree and Peterson, 2013; Dang et al.,
2017) based on time assumptions and distance-bounding protocols.

We conclude by briefly surveying some recent work that may be
indicative of the current and future directions in this area. He et al.
(2020) propose to relax some of the trust assumptions through the use
of Intel SGX. Shen et al. (2020) propose a protocol that optimizes the
communication overhead when data that needs to be audited changes
ownership. Leontiadis and Curtmola (2019) study RDIC protocols when
applied to compressed data. A user delegates the compression to the
cloud in a provably secure way: The user can verify correctness of
compression without having to download the entire uncompressed file
and check it against the compressed version. Armknecht et al. (2021)
consider a setting in which third party auditors may be dishonest and
data owners can efficiently keep the auditors in check. Chen et al.
(2021) introduce a decentralized system for proofs of data retrievability
and replication which is incentive-compatible and realizes automated
auditing atop off-the-shelf blockchain platforms. Ateniese et al. (2020)
study proofs of storage-time, which enable a verifier to audit that the
outsourced data is continuously available to the server during the entire
storage period, not only at the time a valid proof is processed.

Full text available at: http://dx.doi.org/10.1561/3300000028

9
Acknowledgements

Reza Curtmola’s work was supported by the NSF through awards
1801430, 2043104, and 1565478. He would like to thank his co-authors
without which some of the work referenced in this monograph would
not have been possible.

Jason Nieh’s work was supported in part by two Amazon Research
Awards, a Guggenheim Fellowship, DARPA contract N66001-21-C-4018,
and NSF grants CCF-1918400, CNS-2052947, and CCF-2124080.

The work of Ahmad-Reza Sadeghi and his co-contributors Emmanuel
Stapf, Patrick Jauernig and Ferdinand Brasser was funded by the
German Federal Ministry of Education and Research (BMBF) in the
StartUpSecure funding program (16KIS1417).

Radu Sion’s work was supported by the NSF through award 2052951,
and ONR through award N000142112407.

80

Full text available at: http://dx.doi.org/10.1561/3300000028

References

Aciiçmez, O. (2007). “Yet another microarchitectural attack: exploiting
I-cache”. In: Proceedings of the 2007 ACM workshop on Computer
security architecture. 11–18.

Aciiçmez, O. and Ç. K. Koç. (2006). “Trace-driven cache attacks on
AES”. In: Proceedings of the 8th International Conference on Infor-
mation and Communications Security (ICICS ’06).

Aciiçmez, O., W. Schindler, and C. K. Koç. (2005). “Improving Brumley
and Boneh timing attack on unprotected SSL implementations”. In:
Proceedings of the 12th ACM conference on Computer and commu-
nications security (CCS 05). 139–146.

Acıiçmez, O., W. Schindler, and Ç. K. Koç. (2007). “Cache based remote
timing attack on the AES”. In: Cryptographers’ track at the RSA
conference. Springer. 271–286.

Ahmad, A., K. Kim, M. I. Sarfaraz, and B. Lee. (2018). “OBLIVIATE:
A Data Oblivious Filesystem for Intel SGX”. In: Proceedings of the
2018 ISOC Network and Distributed System Security Symposium
(NDSS 18).

Aldaya, A. C., B. B. Brumley, S. ul Hassan, C. P. Garcia, and N. Tuveri.
(2019). “Port contention for fun and profit”. In: Proceedings of the
40th IEEE Symposium on Security and Privacy (S&P 19). 870–887.

81

Full text available at: http://dx.doi.org/10.1561/3300000028

82 References

AMD. (2020). “AMD SEV-SNP: Strengthening VM Isolation with
Integrity Protection and More”. url: https ://www.amd.com/
system/files/TechDocs/SEV- SNP- strengthening- vm- isolation-
with-integrity-protection-and-more.pdf.

AMD. (2021). “AMD Secure Encryption Virtualization (SEV) Informa-
tion Disclosure, AMD-SB-1013”. url: https://www.amd.com/en/
corporate/product-security/bulletin/amd-sb-1013.

Anandtech. (2021). “Arm Announces Neoverse V1, N2 Platforms &
CPUs, CMN-700 Mesh: More Performance, More Cores, More Flex-
ibility”. url: https ://www.anandtech.com/show/16640/arm-
announces-neoverse-v1-n2-platforms-cpus-cmn700-mesh.

Armknecht, F., L. Barman, J.-M. Bohli, and G. O. Karame. (2016).
“Mirror: Enabling Proofs of Data Replication and Retrievability in
the Cloud”. In: Proceedings of the 25th USENIX Security Symposium
(USENIX Security 16). USENIX Association. 1051–1068.

Armknecht, F., J.-M. Bohli, G. Karame, and W. Li. (2021). “Outsourcing
Proofs of Retrievability”. IEEE Transactions on Cloud Computing.
9(1): 286–301.

Arnautov, S., B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J.
Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer. (2016). “SCONE:
Secure Linux Containers with Intel SGX”. In: Proceedings of the
12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16). USA: USENIX Association.

Asharov, G., T.-H. Hubert Chan, K. Nayak, R. Pass, L. Ren, and E.
Shi. (2019). “Locality-Preserving Oblivious RAM”. In: Advances in
Cryptology – EUROCRYPT 2019. Ed. by Y. Ishai and V. Rijmen.

Asharov, G., I. Komargodski, W.-K. Lin, K. Nayak, E. Peserico, and E.
Shi. (2020). “OptORAMa: Optimal Oblivious RAM”. In: Advances
in Cryptology – EUROCRYPT 2020. Ed. by A. Canteaut and Y.
Ishai.

Ateniese, G., R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner,
Z. Peterson, and D. Song. (2011). “Remote data checking using
provable data possession”. ACM Trans. Inf. Syst. Secur. 14(1): 12:1–
12:34.

Full text available at: http://dx.doi.org/10.1561/3300000028

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1013
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1013
https://www.anandtech.com/show/16640/arm-announces-neoverse-v1-n2-platforms-cpus-cmn700-mesh
https://www.anandtech.com/show/16640/arm-announces-neoverse-v1-n2-platforms-cpus-cmn700-mesh

References 83

Ateniese, G., R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song. (2007). “Provable data possession at untrusted stores”.
In: Proceedings of the 14th ACM SIGSAC Conference on Computer
and Communication Security (CCS 07). 598–609.

Ateniese, G., L. Chen, M. Etemad, and Q. Tang. (2020). “Proof of
Storage-Time: Efficiently Checking Continuous Data Availability”.
In: Proceedings of the 27th ISOC Network and Distributed System
Security Symposium (NDSS 20). The Internet Society.

Aumann, Y. and Y. Lindell. (2010). “Security Against Covert Adver-
saries: Efficient Protocols for Realistic Adversaries”. J. Cryptology.
23(2): 281–343.

Aviv, A. J., S. G. Choi, T. Mayberry, and D. S. Roche. (2017). “Oblivi-
Sync: Practical Oblivious File Backup and Synchronization”. In:
Proceedings of the 24th ISOC Network and Distributed System Se-
curity Symposium (NDSS 17).

“AWS CloudHSM”. url: https://aws.amazon.com/cloudhsm/.
Bahmani, R., F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R.

Sadeghi, and E. Stapf. (2021). “CURE: A Security Architecture
with Customizable and Resilient Enclaves”. In: Proceedings of the
30th USENIX Security Symposium (USENIX Security 21).

Barham, P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield. (2003). “Xen and the Art
of Virtualization”. In: Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP 2003). Bolton Landing, NY.
164–177.

Bates, A., B. Mood, J. Pletcher, H. Pruse, M. Valafar, and K. Butler.
(2012). “Detecting co-residency with active traffic analysis tech-
niques”. In: Proceedings of the 2012 ACM Workshop on Cloud com-
puting security workshop (CCSW 12). 1–12.

Baumann, A., M. Peinado, and G. Hunt. (2014a). “Shielding Appli-
cations from an Untrusted Cloud with Haven”. In: Proceedings of
the 11th USENIX Conference on Operating Systems Design and
Implementation (OSDI 2014). Broomfield, CO. 267–283.

Full text available at: http://dx.doi.org/10.1561/3300000028

https://aws.amazon.com/cloudhsm/

84 References

Baumann, A., M. Peinado, and G. Hunt. (2014b). “Shielding Appli-
cations from an Untrusted Cloud with Haven”. In: Proceedings of
the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14).

Beaver, D. (1989). “Multiparty Protocols Tolerating Half Faulty Pro-
cessors”. In: Advances in Cryptology—Crypto ’89. Vol. 435. Lecture
Notes in Computer Science. Springer. 560–572.

Beaver, D. and S. Goldwasser. (1989). “Multiparty Computation with
Faulty Majority”. In: Advances in Cryptology—Crypto ’89. Vol. 435.
Lecture Notes in Computer Science. Springer. 589–590.

Ben-Or, M., S. Goldwasser, and A. Wigderson. (1988). “Completeness
Theorems for Non-Cryptographic Fault-Tolerant Distributed Com-
putation (Extended Abstract)”. In: Proceedings of the 20th Annual
ACM Symposium on Theory of Computing (STOC). ACM. 1–10.

Benson, K., R. Dowsley, and H. Shacham. (2011). “Do You Know
Where Your Cloud Files Are?” In: Proceedings of the 3rd ACM
Cloud Computing Security Workshop (CCSW 11). Association for
Computing Machinery. 73–82.

Bernstein, D. J. (2005). “Cache-timing attacks on AES”. url: https:
//cr.yp.to/antiforgery/cachetiming-20050414.pdf.

Bhattacharyya, A., A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus. (2019). “SMoTherSpectre:
exploiting speculative execution through port contention”. In: Pro-
ceedings of the 26th ACM SIGSAC Conference on Computer and
Communications Security (CCS 19). 785–800.

Bindschaedler, V., M. Naveed, X. Pan, X. Wang, and Y. Huang. (2015).
“Practicing Oblivious Access on Cloud Storage: The Gap, the Fal-
lacy, and the New Way Forward”. In: Poceedings of the 2015 ACM
SIGSAC Conference on Computer and Communication Security
(CCS 15).

Blass, E., T. Mayberry, G. Noubir, and K. Onarlioglu. (2014). “Toward
Robust Hidden Volumes Using Write-Only Oblivious RAM”. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security (CCS 14).

Full text available at: http://dx.doi.org/10.1561/3300000028

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

References 85

Bogdanov, D., S. Laur, and J. Willemson. (2008). “Sharemind: A Frame-
work for Fast Privacy-Preserving Computations”. In: Proceedings of
the 13th European Symposium on Research in Computer Security
(ESORICS). Springer-Verlag. 192–206.

Boneh, D., G. D. Crescenzo, R. Ostrovsky, and G. Persiano. (2004).
“Public key encryption with keyword search”. In: Proceedings of
Eurocrypt 2004. LNCS 3027. 506–522.

Bonneau, J. and I. Mironov. (2006). “Cache-collision timing attacks
against AES”. In: Proceedings of the International Workshop on
Cryptographic Hardware and Embedded Systems. Springer. 201–215.

Bowers, K. D., A. Juels, and A. Oprea. (2009). “HAIL: a high-availability
and integrity layer for cloud storage”. In: Proceedings of 2009 ACM
SIGSAC Conference on Computer and Communication Security
(CCS 09).

Bowers, K. D., M. van Dijk, A. Juels, A. Oprea, and R. L. Rivest. (2011).
“How to Tell If Your Cloud Files Are Vulnerable to Drive Crashes”.
In: Proceedings of the 18th ACM SIGSAC Conference on Computer
and Communications Security (CCS 11). ACM. 501–514.

Boyle, E., K.-M. Chung, and R. Pass. (2016). “Oblivious Parallel RAM
and Applications”. In: Theory of Cryptography. Ed. by E. Kushilevitz
and T. Malkin.

Brasser, F., T. Frassetto, K. Riedhammer, A.-R. Sadeghi, T. Schneider,
and C. Weinert. (2018). “VoiceGuard: Secure and Private Speech
Processing”. In: Interspeech.

Brumley, D. and D. Boneh. (2005). “Remote timing attacks are practi-
cal”. Computer Networks. 48(5): 701–716.

Bugnion, E., J. Nieh, and D. Tsafrir. (2017). Hardware and Software Sup-
port for Virtualization. Synthesis Lectures on Computer Architecture.
Morgan and Claypool Publishers.

Butt, S., H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy. (2012).
“Self-service Cloud Computing”. In: Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS 2012).
Raleigh, NC. 253–264.

Full text available at: http://dx.doi.org/10.1561/3300000028

86 References

Cash, D., S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M.
Steiner. (2013a). “Highly-Scalable Searchable Symmetric Encryption
with Support for Boolean Queries”. In: Advances in Cryptology –
CRYPTO 2013. Ed. by R. Canetti and J. A. Garay. Berlin, Heidel-
berg: Springer Berlin Heidelberg. 353–373.

Cash, D., A. Küpçü, and D. Wichs. (2013b). “Dynamic Proofs of
Retrievability via Oblivious RAM”. In: Advances in Cryptology –
EUROCRYPT 2013. Springer Berlin Heidelberg. 279–295.

Chakraborti, A., A. J. Aviv, S. G. Choi, T. Mayberry, D. S. Roche, and
R. Sion. (2019). “rORAM: Efficient Range ORAM with O(log2N)
Locality”. In: Proceedings of the 26th ISOC Network and Distributed
System Security Symposium (NDSS 19).

Chakraborti, A. and R. Sion. (2019). “ConcurORAM: High-Throughput
Stateless Parallel Multi-Client ORAM”. In: Proceedings of the 26th
ISOC Network and Distributed System Security Symposium (NDSS
19).

Chan, T.-H. H., K.-M. Chung, and E. Shi. (2017a). “On the Depth
of Oblivious Parallel RAM”. In: Advances in Cryptology – ASI-
ACRYPT 2017. Ed. by T. Takagi and T. Peyrin.

Chan, T.-H. H., Y. Guo, W.-K. Lin, and E. Shi. (2017b). “Oblivious
Hashing Revisited, and Applications to Asymptotically Efficient
ORAM and OPRAM”. In: Advances in Cryptology – ASIACRYPT
2017. Ed. by T. Takagi and T. Peyrin.

Chang, Y.-C. and M. Mitzenmacher. (2005). “Privacy Preserving Key-
word Searches on Remote Encrypted Data”. In: Applied Cryptography
and Network Security. Ed. by J. Ioannidis, A. Keromytis, and M.
Yung. Berlin, Heidelberg: Springer Berlin Heidelberg.

Chaum, D., C. Crépeau, and I. Damgård. (1988). “Multiparty Uncondi-
tionally Secure Protocols (Extended Abstract)”. In: Proceedings of
the 20th Annual ACM Symposium on Theory of Computing (STOC).
ACM. 11–19.

Chen, B., R. Curtmola, G. Ateniese, and R. Burns. (2010). “Remote
Data Checking for Network Coding-based Distributed Storage Sys-
tems”. In: Proceedings of the 2010 ACM Cloud Computing Security
Workshop (CCSW 10).

Full text available at: http://dx.doi.org/10.1561/3300000028

References 87

Chen, B., H. Lin, and S. Tessaro. (2016). “Oblivious Parallel RAM:
Improved Efficiency and Generic Constructions”. In: Theory of Cryp-
tography. Ed. by E. Kushilevitz and T. Malkin. Berlin, Heidelberg:
Springer Berlin Heidelberg. 205–234.

Chen, B. and R. Curtmola. (2013). “Towards Self-Repairing Replication-
Based Storage Systems Using Untrusted Clouds”. In: Proceedings of
the Third ACM Conference on Data and Application Security and
Privacy. ACM. 377–388.

Chen, B. and R. Curtmola. (2014). “Auditable Version Control Systems”.
In: Proceedings of the 21th ISOC Network and Distributed System
Security Symposium (NDSS ’14).

Chen, B. and R. Curtmola. (2017). “Remote data integrity checking
with server-side repair”. Journal of Computer Security. 25(6): 537–
584.

Chen, D., H. Yuan, S. Hu, Q. Wang, and C. Wang. (2021). “BOSSA: A
Decentralized System for Proofs of Data Retrievability and Repli-
cation”. IEEE Transactions on Parallel and Distributed Systems.
32(4): 786–798.

Chen, G., M. Li, F. Zhang, and Y. Zhang. (2019a). “Defeating Speculative-
Execution Attacks on SGX with HyperRace”. In: Proceedings of the
2019 IEEE Conference on Dependable and Secure Computing (DSC
19).

Chen, H., I. Chillotti, and L. Ren. (2019b). “Onion Ring ORAM: Effi-
cient Constant Bandwidth Oblivious RAM from (Leveled) TFHE”.
In: Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS 19). Dallas, Texas, USA:
Association for Computing Machinery. 491–505.

Chen, S., F. Liu, Z. Mi, Y. Zhang, R. B. Lee, H. Chen, and X. Wang.
(2018). “Leveraging hardware transactional memory for cache side-
channel defenses”. In: Proceedings of the 2018 on Asia Conference
on Computer and Communications Security. 601–608.

Chen, S., X. Zhang, M. K. Reiter, and Y. Zhang. (2017). “Detecting
privileged side-channel attacks in shielded execution with Déjá Vu”.
In: Proceedings of the 2017 ACM Asia Conference on Computer and
Communications Security (AsiaCCS 17). ACM. 7–18.

Full text available at: http://dx.doi.org/10.1561/3300000028

88 References

Chen, X., T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. Dwoskin, and D. R. Ports. (2008). “Over-
shadow: A Virtualization-based Approach to Retrofitting Protection
in Commodity Operating Systems”. In: Proceedings of the 13th In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2008). Seattle, WA.
2–13.

Chhabra, S., B. Rogers, Y. Solihin, and M. Prvulovic. (2011). “Se-
cureME: A Hardware-software Approach to Full System Security”.
In: Proceedings of the 25th International Conference on Supercom-
puting (ICS 2011). Tucson, AZ. 108–119.

Chiappetta, M., E. Savas, and C. Yilmaz. (2016). “Real time detection
of cache-based side-channel attacks using hardware performance
counters”. Applied Soft Computing. 49: 1162–1174.

Chor, B., E. Kushilevitz, O. Goldreich, and M. Sudan. (1998). “Private
information retrieval”. Journal of the ACM. 45(6).

Cohen, E., M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies. (2009). “VCC: A Practical
System for Verifying Concurrent C”. In: Proceedings of the 22nd In-
ternational Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2009). Munich, Germany. 23–42.

Colp, P., M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan, P.
Loscocco, and A. Warfield. (2011). “Breaking Up is Hard to Do:
Security and Functionality in a Commodity Hypervisor”. In: Proceed-
ings of the 23rd ACM Symposium on Operating Systems Principles
(SOSP 2011). Cascais, Portugal. 189–202.

Costanzo, D., Z. Shao, and R. Gu. (2016). “End-to-End Verification
of Information-Flow Security for C and Assembly Programs”. In:
Proceedings of the 37th ACM Conference on Programming Language
Design and Implementation (PLDI 2016).

“Cryptographic Module Validation Program”. url: https://csrc.nist.
gov/projects/cryptographic-module-validation-program.

Curtmola, R., O. Khan, and R. Burns. (2008a). “Robust Remote Data
Checking”. In: Proceedings of the 2008 ACM Workshop on Storage
Security and Survivability (StorageSS).

Full text available at: http://dx.doi.org/10.1561/3300000028

https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://csrc.nist.gov/projects/cryptographic-module-validation-program

References 89

Curtmola, R., O. Khan, R. Burns, and G. Ateniese. (2008b). “MR-PDP:
Multiple-Replica Provable Data Possession”. In: Proceedings of the
IEEE International Conference on Distributed Computing Systems
(ICDCS 08).

Curtmola, R., J. Garay, S. Kamara, and R. Ostrovsky. (2006). “Search-
able symmetric encryption: improved definitions and efficient con-
structions”. In: CCS ’06: Proceedings of the 13th ACM conference
on Computer and communications security.

Dall, C. and J. Nieh. (2014). “KVM/ARM: The Design and Implemen-
tation of the Linux ARM Hypervisor”. In: Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems. 333–348.

Damgård, I., C. Ganesh, and C. Orlandi. (2019). “Proofs of Replicated
Storage Without Timing Assumptions”. In: Advances in Cryptology
– CRYPTO 2019. Springer International Publishing. 355–380.

Dang, H., E. Purwanto, and E.-C. Chang. (2017). “Proofs of Data Resi-
dency: Checking Whether Your Cloud Files Have Been Relocated”.
In: Proceedings of the 2017 ACM Asia Conference on Computer and
Communications Security (AsiaCCS 17). Association for Computing
Machinery. 408–422.

Deswarte, Y., J.-J. Quisquater, and A. Saidane. (2003). “Remote in-
tegrity checking”. In: Proceedings of Conference on Integrity and
Internal Control in Information Systems (IICIS’03).

Devadas, S., M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs.
(2016). “Onion ORAM: A Constant Bandwidth Blowup Oblivious
RAM”. In: Theory of Cryptography. Ed. by E. Kushilevitz and T.
Malkin.

Didier, G. and C. Maurice. (2021). “Calibration Done Right: Noiseless
Flush+ Flush Attacks”. In: Proceedings of the 18th Conference on
Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA 2021).

Dijk, M. van, A. Juels, A. Oprea, R. L. Rivest, E. Stefanov, and N.
Triandopoulos. (2012). “Hourglass Schemes: How to Prove That
Cloud Files Are Encrypted”. In: Proceedings of the 2012 ACM
SIGSAC Conference on Computer and Communications Security
(CCS 12). ACM. 265–280.

Full text available at: http://dx.doi.org/10.1561/3300000028

90 References

Dimakis, A. G., B. Godfrey, M. J. Wainwright, and K. Ramchandran.
(2007). “Network Coding for Distributed Storage Systems”. In: IN-
FOCOM.

Dimakis, A. G., P. B. Godfrey, Y. Wu, M. O. Wainwright, and K.
Ramchandran. (2010). “Network Coding for Distributed Storage
Systems”. IEEE Transactions on Information Theory.

Dwork, C. and A. Roth. (2014). “The Algorithmic Foundations of
Differential Privacy”. Foundations and Trends® in Theoretical Com-
puter Science. 9(3-4): 211–407. url: http://dx.doi.org/10.1561/
0400000042.

“ENFORCER Server”. url: https://enforcerserver.com/.
Erway, C. C., A. Küpçü, C. Papamanthou, and R. Tamassia. (2009).

“Dynamic Provable Data Possession”. In: Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security
(CCS 09).

Erway, C. C., A. Küpçü, C. Papamanthou, and R. Tamassia. (2015).
“Dynamic Provable Data Possession”. ACM Trans. Inf. Syst. Secur.
17(4).

Eskandarian, S. and M. Zaharia. (2019). “ObliDB: Oblivious Query
Processing for Secure Databases”. Proc. VLDB Endow. 13(2).

Etemad, M. and A. Küpçü. (2013). “Transparent, Distributed, and
Replicated Dynamic Provable Data Possession”. In: Applied Cryp-
tography and Network Security. Springer Berlin Heidelberg. 1–18.

Etemad, M. and A. Küpçü. (2020). “Generic Dynamic Data Outsourcing
Framework for Integrity Verification”. ACM Comput. Surv. 53(1).

Evans, D., V. Kolesnikov, and M. Rosulek. (2018). “A Pragmatic In-
troduction to Secure Multi-Party Computation”. Foundations and
Trends® in Privacy and Security. 2(2-3): 70–246. url: http://dx.doi.
org/10.1561/3300000019.

Falzon, F., E. A. Markatou, Akshima, D. Cash, A. Rivkin, J. Stern,
and R. Tamassia. (2020). “Full Database Reconstruction in Two
Dimensions”. In: Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security (CCS 20). New York,
NY, USA: Association for Computing Machinery.

Filho, D. L. G. and P. S. L. M. Baretto. (2006). “Demonstrating data
possession and uncheatable data transfer”. IACR ePrint archive.

Full text available at: http://dx.doi.org/10.1561/3300000028

http://dx.doi.org/10.1561/0400000042
http://dx.doi.org/10.1561/0400000042
https://enforcerserver.com/
http://dx.doi.org/10.1561/3300000019
http://dx.doi.org/10.1561/3300000019

References 91

“FIPS 140-2”. url: https://en.wikipedia.org/wiki/FIPS_140-2.
“FIPS 140-3”. url: https://en.wikipedia.org/wiki/FIPS_140-3.
Fletcher, C., M. Naveed, L. Ren, E. Shi, and E. Stefanov. (2015). “Bucket

ORAM: Single Online Roundtrip, Constant Bandwidth Oblivious
RAM”. Cryptology ePrint Archive, Report 2015/1065.

“Frequently Asked Questions on seL4”. url: https://docs.sel4.systems/
projects/sel4/frequently-asked-questions.html.

Fuller, B., M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin, V. Gade-
pally, R. Shay, J. D. Mitchell, and R. K. Cunningham. (2017). “SoK:
Cryptographically Protected Database Search”. In: Proceedings of
the 2017 IEEE Symposium on Security and Privacy (S&P 17). 172–
191.

Garfinkel, T., B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. (2003).
“Terra: A Virtual Machine-based Platform for Trusted Computing”.
In: Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles (SOSP 2003). Bolton Landing, NY. 193–206.

Garg, S., P. Mohassel, and C. Papamanthou. (2016). “TWORAM: Effi-
cient Oblivious RAM in Two Rounds with Applications to Searchable
Encryption”. In: Advances in Cryptology – CRYPTO 2016. Ed. by
M. Robshaw and J. Katz. Springer Berlin Heidelberg.

Gentry, C., K. A. Goldman, S. Halevi, C. S. Jutla, M. Raykova, and
D. Wichs. (2013). “Optimizing ORAM and Using It Efficiently for
Secure Computation”. In: Proceedings of the 13th Privacy Enhancing
Technologies Symposium (PETS 13).

Godfrey, M. and M. Zulkernine. (2014). “Preventing cache-based side-
channel attacks in a cloud environment”. IEEE transactions on
cloud computing. 2(4): 395–408.

Goh, E. (2003). “Secure Indexes”. Cryptology ePrint Archive, Report
2003/216.

Goldreich, O. (2004). Foundations of Cryptography, vol. II: Basic Ap-
plications. Cambridge University Press.

Goldreich, O., S. Micali, and A. Wigderson. (1987). “How to Play any
Mental Game or A Completeness Theorem for Protocols with Honest
Majority”. In: Proceedings of the 19th Annual ACM Symposium on
Theory of Computing (STOC). ACM. 218–229.

Full text available at: http://dx.doi.org/10.1561/3300000028

https://en.wikipedia.org/wiki/FIPS_140-2
https://en.wikipedia.org/wiki/FIPS_140-3
https://docs.sel4.systems/projects/sel4/frequently-asked-questions.html
https://docs.sel4.systems/projects/sel4/frequently-asked-questions.html

92 References

Goldreich, O. and R. Ostrovsky. (1996). “Software Protection and
Simulation on Oblivious RAMs”. Journal of the ACM. 43: 431–473.

Goldwasser, S. and L. A. Levin. (1990). “Fair Computation of Gen-
eral Functions in Presence of Immoral Majority”. In: Advances
in Cryptology—Crypto ’90. Vol. 537. Lecture Notes in Computer
Science. Springer. 77–93.

Golle, P., S. Jarecki, and I. Mironov. (2002). “Cryptographic Primitives
Enforcing Communication and Storage Complexity.” In: Proceedings
of the Internation Conference on Financial Cryptography and Data
Security (FC 02). 120–135.

Golle, P., J. Staddon, and B. Waters. (2004). “Secure conjunctive
keyword search over encrypted data”. In: Proceedings of ACNS.
Springer-Verlag; Lecture Notes in Computer Science 3089. 31–45.

Gondree, M. and Z. N. Peterson. (2013). “Geolocation of Data in the
Cloud”. In: Proceedings of the Third ACM Conference on Data
and Application Security and Privacy. Association for Computing
Machinery. 25–36.

Goodrich, M. T. and M. Mitzenmacher. (2011). “Privacy-preserving
Access of Outsourced Data via Oblivious RAM Simulation”. In:
Proceedings of the 38th International Conference on Automata, Lan-
guages and Programming (ICALP 11).

Goodrich, M. T., M. Mitzenmacher, O. Ohrimenko, and R. Tamassia.
(2011). “Oblivious RAM Simulation with Efficient Worst-case Access
Overhead”. In: Proceedings of the 2011 ACM Cloud Computing
Security Workshop (CCSW 11). 95–100.

Goodrich, M. T. and J. A. Simons. (2014). “Data-Oblivious Graph
Algorithms in Outsourced External Memory”. In: Combinatorial
Optimization and Applications. Ed. by Z. Zhang, L. Wu, W. Xu,
and D.-Z. Du.

“Google Cloud Key Management”. url: https://cloud.google.com/
security-key-management.

Goyal, V., A. Polychroniadou, and Y. Song. (2021). “Unconditional
Communication-Efficient MPC via Hall’s Marriage Theorem”. In:
Advances in Cryptology—Crypto 2021, Part II. Vol. 12826. Lecture
Notes in Computer Science. Springer. 275–304.

Full text available at: http://dx.doi.org/10.1561/3300000028

https://cloud.google.com/security-key-management
https://cloud.google.com/security-key-management

References 93

Gras, B., K. Razavi, H. Bos, and C. Giuffrida. (2018). “Translation leak-
aside buffer: Defeating cache side-channel protections with {TLB}
attacks”. In: Proceedings of the 27th USENIX Security Symposium
(USENIX Security 18). 955–972.

Grubbs, P., M.-S. Lacharite, B. Minaud, and K. G. Paterson. (2018).
“Pump up the Volume: Practical Database Reconstruction from Vol-
ume Leakage on Range Queries”. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security.

Grubbs, P., T. Ristenpart, and V. Shmatikov. (2017). “Why Your
Encrypted Database Is Not Secure”. In: Proceedings of the 16th
Workshop on Hot Topics in Operating Systems.

Gruss, D., J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M.
Costa. (2017). “Strong and efficient cache side-channel protection
using hardware transactional memory”. In: Proceedings of the 26th
USENIX Security Symposium (USENIX Security 17). 217–233.

Gruss, D., C. Maurice, K. Wagner, and S. Mangard. (2016). “Flush+
Flush: a fast and stealthy cache attack”. In: International Con-
ference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA 16). Springer. 279–299.

Gu, R., Z. Shao, H. Chen, J. Kim, J. Koenig, X. Wu, V. Sjöberg, and
D. Costanzo. (2019). “Building Certified Concurrent OS Kernels”.
Communications of the ACM. 62(10): 89–99.

Gu, R., Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D.
Costanzo. (2016). “CertiKOS: An Extensible Architecture for Build-
ing Certified Concurrent OS Kernels”. In: Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 2016). Savannah, GA. 653–669.

Gullasch, D., E. Bangerter, and S. Krenn. (2011). “Cache games–
bringing access-based cache attacks on AES to practice”. In: Proceed-
ings of the 32nd IEEE Symposium on Security and Privacy (S&P
11). IEEE. 490–505.

Halderman, J. A., S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten.
(2009). “Lest we remember: cold-boot attacks on encryption keys”.
Communications of the ACM. 52(5): 91–98.

Full text available at: http://dx.doi.org/10.1561/3300000028

94 References

“Hardware Security Module (HSM)”. url: https://en.wikipedia.org/
wiki/Hardware%5C_security%5C_module.

Hastings, M., B. Hemenway, D. Noble, and S. Zdancewic. (2019). “SoK:
General Purpose Compilers for Secure Multi-Party Computation”.
In: Proceedings of the IEEE Symposium on Security and Privacy
(S&P 19). IEEE. 1220–1237.

Hazay, C. and Y. Lindell. (2010). Efficient Secure Two-Party Protocols:
Techniques and Constructions. Springer.

He, Y., Y. Xu, X. Jia, S. Zhang, P. Liu, and S. Chang. (2020). “En-
clavePDP: A General Framework to Verify Data Integrity in Cloud
Using Intel SGX”. In: Proceedings of the 23rd International Sympo-
sium on Research in Attacks, Intrusions and Defenses (RAID 2020).
USENIX Association. 195–208.

Heiser, G. and B. Leslie. (2010). “The OKL4 Microvisor: Convergence
Point of Microkernels and Hypervisors”. In: Proceedings of the 1st
ACM Asia-pacific Workshop on Workshop on Systems (APSys 2010).
New Delhi, India. 19–24.

Hetzelt, F. and R. Buhren. (2017). “Security analysis of encrypted
virtual machines”. ACM SIGPLAN Notices. 52(7): 129–142.

Hoang, T., J. Guajardo, and A. A. Yavuz. (2020). “MACAO: A Ma-
liciously-Secure and Client-Efficient Active ORAM Framework”.
In: Proeccedings of the 27th ISOC Network and Distributed System
Security Symposium (NDSS 20).

Hoang, T., C. D. Ozkaptan, A. A. Yavuz, J. Guajardo, and T. Nguyen.
(2017). “S³ORAM: A Computation-Efficient and
Constant Client Bandwidth Blowup ORAM with Shamir Secret
Sharing”. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS 17). Dallas, Texas,
USA: Association for Computing Machinery. 491–505.

Hoang, T., M. O. Ozmen, Y. Jang, and A. A. Yavuz. (2018). “Hardware-
Supported ORAM in Effect: Practical Oblivious Search and Update
on Very Large Dataset”. Proceedings on Privacy Enhancing Tech-
nologies (PETS 18). 2019: 172–191.

Full text available at: http://dx.doi.org/10.1561/3300000028

https://en.wikipedia.org/wiki/Hardware%5C_security%5C_module
https://en.wikipedia.org/wiki/Hardware%5C_security%5C_module

References 95

Hofmann, O. S., S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel.
(2013). “InkTag: Secure Applications on an Untrusted Operating
System”. In: Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2013). Houston, TX. 265–278.

Hua, Z., J. Gu, Y. Xia, H. Chen, B. Zang, and Haibing. (2017). “vTZ: Vir-
tualizing ARM Trustzone”. In: Proceedings of the 26th USENIX Se-
curity Symposium (USENIX Security 2017). Vancouver, BC, Canada.
541–556.

Huang, Y., J. Katz, and D. Evans. (2012). “Quid-Pro-Quo-tocols:
Strengthening Semi-honest Protocols with Dual Execution”. In:
Proceedings of the IEEE Symposium on Security and Privacy 2012
(S&P 12). IEEE Computer Society. 272–284.

Hubert Chan, T.-H. and E. Shi. (2017). “Circuit OPRAM: Unifying
Statistically and Computationally Secure ORAMs and OPRAMs”.
In: Theory of Cryptography. Ed. by Y. Kalai and L. Reyzin.

Inci, M. S., B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar.
(2016). “Cache attacks enable bulk key recovery on the cloud”. In:
Proceedings of the 2016 International Conference on Cryptographic
Hardware and Embedded Systems. Springer. 368–388.

Intel. (2014). “Intel Software Guard Extensions Programming Refer-
ence”. url: https://software.intel.com/sites/default/files/managed/
48/88/329298-002.pdf.

Intel. (2017). “Overview of Intel Protected File System Library Using
Software Guard Extensions”. url: https://software.intel.com/en-
us/articles/overview-of-intel-protected-file-system-library-using-
software-guard-extensions.

Intel. (2021). “Intel Trust Domain CPU Architectural Extensions”. url:
https://software.intel.com/content/dam/develop/external/us/en/
documents-tps/intel-tdx-cpu-architectural-specification.pdf.

Intel Corporation. (2014). “Intel Software Guard Extensions Program-
ming Reference”. url: https://software.intel.com/sites/default/
files/managed/48/88/329298-002.pdf.

Full text available at: http://dx.doi.org/10.1561/3300000028

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/en-us/articles/overview-of-intel-protected-file-system-library-using-software-guard-extensions
https://software.intel.com/en-us/articles/overview-of-intel-protected-file-system-library-using-software-guard-extensions
https://software.intel.com/en-us/articles/overview-of-intel-protected-file-system-library-using-software-guard-extensions
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/intel-tdx-cpu-architectural-specification.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/intel-tdx-cpu-architectural-specification.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

96 References

Irazoqui, G., T. Eisenbarth, and B. Sunar. (2015). “S $ A: A shared
cache attack that works across cores and defies VM sandboxing–
and its application to AES”. In: Proceedings of the 2015 IEEE
Symposium on Security and Privacy (S&P 15). IEEE. 591–604.

Irazoqui, G., M. S. Inci, T. Eisenbarth, and B. Sunar. (2014). “Wait
a minute! A fast, Cross-VM attack on AES”. In: Proceedings of
the 2014 International Workshop on Recent Advances in Intrusion
Detection. Springer. 299–319.

Ishai, Y. and E. Kushilevitz. (2004). “On the Hardness of Information-
Theoretic Multiparty Computation”. In: Advances in Cryptology—
Eurocrypt 2004. Vol. 3027. Lecture Notes in Computer Science.
Springer. 439–455.

Johnson, S. (2018). “Intel SGX and Side-Channels”. url: https ://
software.intel.com/en-us/articles/intel-sgx-and-side-channels.

Juels, A. and B. S. Kaliski. (2007). “PORs: Proofs of Retrievability for
Large Files”. In: Proceedings of the 2007 ACM SIGSAC Conference
on Computer and Communication Security (CCS 07).

Kamara, S., C. Papamanthou, and T. Roeder. (2012). “Dynamic Search-
able Symmetric Encryption”. In: Proceedings of the 2012 ACM
Conference on Computer and Communications Security.

Kaplan, D. (2017). “Protecting VM register state with SEV-ES”. url:
https://www.amd.com/system/files/TechDocs/Protecting%5C%
20VM%5C%20Register%5C%20State%5C%20with%5C%20SEV-
ES.pdf.

Kaplan, D., J. Powell, and T. Woller. (2016). “AMD memory encryp-
tion”. White paper.

Kellaris, G., G. Kollios, K. Nissim, and A. O’Neill. (2016). “Generic
Attacks on Secure Outsourced Databases”. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security. 1329–1340.

Keller, E., J. Szefer, J. Rexford, and R. B. Lee. (2010). “NoHype:
Virtualized Cloud Infrastructure Without the Virtualization”. In:
Proceedings of the 37th Annual International Symposium on Com-
puter Architecture (ISCA 2010). Saint-Malo, France. 350–361.

Full text available at: http://dx.doi.org/10.1561/3300000028

https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://www.amd.com/system/files/TechDocs/Protecting%5C%20VM%5C%20Register%5C%20State%5C%20with%5C%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/Protecting%5C%20VM%5C%20Register%5C%20State%5C%20with%5C%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/Protecting%5C%20VM%5C%20Register%5C%20State%5C%20with%5C%20SEV-ES.pdf

References 97

Kelsey, J., B. Schneier, D. Wagner, and C. Hall. (1998). “Side channel
cryptanalysis of product ciphers”. In: Proceedings of the 1998 Euro-
pean Symposium on Research in Computer Security (ESORICS 98).
Springer. 97–110.

Kida, L. S., S. Desai, A. Trivedi, R. Lal, V. Scarlata, and S. K. Ghosh.
(2020). “HCC: 100 Gbps AES-GCM Encrypted Inline DMA Trans-
fers Between SGX Enclave and FPGA Accelerator”. In: Proceedings
of the 22nd International Conference on Information and Commu-
nications Security (ICICS 20).

Kim, T., M. Peinado, and G. Mainar-Ruiz. (2012). “{STEALTHMEM}:
System-level protection against cache-based side channel attacks in
the cloud”. In: Proceedings of the 21st USENIX Security Symposium
(USENIX Security 12). 189–204.

Kim, Y., R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu. (2014). “Flipping bits in memory without ac-
cessing them: An experimental study of DRAM disturbance errors”.
ACM SIGARCH Computer Architecture News. 42(3): 361–372.

Kivity, A., Y. Kamay, D. Laor, U. Lublin, and A. Liguori. (2007). “KVM:
the Linux Virtual Machine Monitor”. In: In Proceedings of the 2007
Ottawa Linux Symposium (OLS 2007). Ottawa, ON, Canada.

Klein, G., J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R.
Kolanski, and G. Heiser. (2014). “Comprehensive Formal Verification
of an OS Microkernel”. ACM Transactions on Computer Systems.

Klein, G., J. Andronick, M. Fernandez, I. Kuz, T. Murray, and G.
Heiser. (2018). “Formally Verified Software in the Real World”.
Communications of the ACM.

Klein, G., K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. (2009). “seL4: Formal Verification of
an OS Kernel”. In: Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSP 2009). Big Sky, MT. 207–220.

Kocher, P. C. (1996). “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems”. In: Annual International
Cryptology Conference. Springer. 104–113.

Full text available at: http://dx.doi.org/10.1561/3300000028

98 References

Koschel, J., C. Giuffrida, H. Bos, and K. Razavi. (2020). “TagBleed:
Breaking KASLR on the Isolated Kernel Address Space using Tagged
TLBs”. In: Proceedings of the 2020 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE. 309–321.

Kushilevitz, E., S. Lu, and R. Ostrovsky. (2012). “On the (in)Security
of Hash-based Oblivious RAM and a New Balancing Scheme”. In:
Proceedings of the Twenty-third Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 12).

Leinenbach, D. and T. Santen. (2009). “Verifying the Microsoft Hyper-V
hypervisor with VCC”. In: Proceedings of the 16th International
Symposium on Formal Methods (FM 2009). Eindhoven, The Nether-
lands. 806–809.

Leontiadis, I. and R. Curtmola. (2018). “Secure Storage with Replica-
tion and Transparent Deduplication”. In: Proceedings of the Eighth
ACM Conference on Data and Application Security and Privacy.
Association for Computing Machinery. 13–23.

Leontiadis, I. and R. Curtmola. (2019). “Auditable Compressed Stor-
age”. In: International Conference on Information Security. Springer
International Publishing. 67–86.

Li, L. and L. Lazos. (2020). “Proofs of Physical Reliability for Cloud
Storage Systems”. IEEE Transactions on Parallel and Distributed
Systems. 31(5): 1048–1065.

Li, L. and A. Datta. (2017). “Write-Only Oblivious RAM-Based Privacy-
Preserved Access of Outsourced Data”. Int. J. Inf. Secur.

Li, S.-W., J. S. Koh, and J. Nieh. (2019). “Protecting Cloud Virtual
Machines from Hypervisor and Host Operating System Exploits”.
In: Proceedings of the 28th USENIX Security Symposium (USENIX
Security 2019). Santa Clara, CA. 1357–1374.

Li, S.-W., X. Li, R. Gu, J. Nieh, and J. Z. Hui. (2021a). “A Secure and
Formally Verified Linux KVM Hypervisor”. In: Proceedings of the
42nd IEEE Symposium on Security & Privacy (IEEE SP 2021). San
Francisco, CA. 1782–1799.

Full text available at: http://dx.doi.org/10.1561/3300000028

References 99

Li, S.-W., X. Li, R. Gu, J. Nieh, and J. Z. Hui. (2021b). “Formally
Verified Memory Protection for a Commodity Multiprocessor Hy-
pervisor”. In: Proceedings of the 30th USENIX Security Symposium
(USENIX Security 2021). Vancouver, British Columbia, Canada.
3953–3970.

Lindell, Y. (2021). “Secure multiparty computation”. Communications
of the ACM. 64(1): 86–96.

Lindell, Y. and B. Pinkas. (2008). “Secure Multiparty Computation for
Privacy-Preserving Data Mining”.

Lindemann, J. and M. Fischer. (2018). “A Memory-Deduplication Side-
Channel Attack to Detect Applications in Co-Resident Virtual Ma-
chines”. In: Proceedings of the 33rd Annual ACM Symposium on
Applied Computing.

Liu, C., L. Zhu, M. Wang, and Y.-a. Tan. (2014a). “Search pattern
leakage in searchable encryption: Attacks and new construction”.
Inf. Sci. 265: 176–188.

Liu, F., Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee.
(2016). “Catalyst: Defeating last-level cache side channel attacks in
cloud computing”. In: Proceedings of the 2016 IEEE international
symposium on high performance computer architecture (HPCA 16).
IEEE. 406–418.

Liu, F., Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. (2015a). “Last-level
cache side-channel attacks are practical”. In: Proceedings of the 2015
IEEE symposium on security and privacy (S&P 15). IEEE. 605–622.

Liu, F., L. Ren, and H. Bai. (2014b). “Mitigating cross-VM side channel
attack on multiple tenants cloud platform.” J. Comput. 9(4): 1005–
1013.

Liu, Y., T. Zhou, K. Chen, H. Chen, and Y. Xia. (2015b). “Thwarting
Memory Disclosure with Efficient Hypervisor-enforced Intra-domain
Isolation”. In: Proceedings of the 22nd ACM Conference on Computer
and Communications Security (CCS 2015). Denver, CO. 1607–1619.

Maffei, M., G. Malavolta, M. Reinert, and D. Schröder. (2017). “Mali-
ciously Secure Multi-Client ORAM”. In: Applied Cryptography and
Network Security. Ed. by D. Gollmann, A. Miyaji, and H. Kikuchi.

Full text available at: http://dx.doi.org/10.1561/3300000028

100 References

Magouryk, C. (2021). “Arm-based cloud computing is the next big
thing: Introducing Arm on Oracle Cloud Infrastructure”. url: https:
//blogs.oracle.com/cloud-infrastructure/post/arm-based-cloud-
computing-is-the-next-big-thing-introducing-arm-on-oracle-cloud-
infrastructure.

Markettos, A., C. Rothwell, B. Gutstein, A. Pearce, P. Neumann, S.
Moore, and R. Watson. (2019). “Thunderclap: Exploring vulner-
abilities in Operating System IOMMU protection via DMA from
untrustworthy peripherals”. In: Proceedings of the ISOC Network
and Distributed System Security Symposium (NDSS 19).

Martin, R., J. Demme, and S. Sethumadhavan. (2012). “Timewarp:
Rethinking timekeeping and performance monitoring mechanisms
to mitigate side-channel attacks”. In: Proceedings of the 2012 39th
Annual International Symposium on Computer Architecture (ISCA
12). IEEE. 118–129.

McCune, J. M., Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig.
(2010). “TrustVisor: Efficient TCB Reduction and Attestation”. In:
Proceedings of the 2010 IEEE Symposium on Security and Privacy
(SP 2010). Oakland, CA. 143–158.

“Microsoft Azure Key Vault”. url: https://azure.microsoft.com/en-
us/services/key-vault/.

Ta-Min, R., L. Litty, and D. Lie. (2006). “Splitting Interfaces: Making
Trust Between Applications and Operating Systems Configurable”.
In: Proceedings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI 2006). Seattle, WA. 279–292.

Moon, S.-J., V. Sekar, and M. K. Reiter. (2015). “Nomad: Mitigating
arbitrary cloud side channels via provider-assisted migration”. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS 15). 1595–1606.

Murray, D. G., G. Milos, and S. Hand. (2008). “Improving Xen Se-
curity Through Disaggregation”. In: Proceedings of the 4th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE 2008). Seattle, WA. 151–160.

Full text available at: http://dx.doi.org/10.1561/3300000028

https://blogs.oracle.com/cloud-infrastructure/post/arm-based-cloud-computing-is-the-next-big-thing-introducing-arm-on-oracle-cloud-infrastructure
https://blogs.oracle.com/cloud-infrastructure/post/arm-based-cloud-computing-is-the-next-big-thing-introducing-arm-on-oracle-cloud-infrastructure
https://blogs.oracle.com/cloud-infrastructure/post/arm-based-cloud-computing-is-the-next-big-thing-introducing-arm-on-oracle-cloud-infrastructure
https://blogs.oracle.com/cloud-infrastructure/post/arm-based-cloud-computing-is-the-next-big-thing-introducing-arm-on-oracle-cloud-infrastructure
https://azure.microsoft.com/en-us/services/key-vault/
https://azure.microsoft.com/en-us/services/key-vault/

References 101

Nayak, K., C. W. Fletcher, L. Ren, N. Chandran, S. Lokam, E. Shi, and
V. Goyal. (2017). “HOP: Hardware makes Obfuscation Practical”.
In: Proceedings of the 2017 ISOC Network and Distributed System
Security Symposium (NDSS 17).

Nayak, K. and J. Katz. (2016). “An Oblivious Parallel RAM with O(log2
N) Parallel Runtime Blowup”. IACR Cryptology ePrint Archive.
2016: 1141.

Nguyen, A., H. Raj, S. Rayanchu, S. Saroiu, and A. Wolman. (2012).
“Delusional Boot: Securing Hypervisors Without Massive Re-engineer-
ing”. In: Proceedings of the 7th ACM European Conference on Com-
puter Systems (EuroSys 2012). Bern, Switzerland. 141–154.

Oberhauser, J., R. L. de Lima Chehab, D. Behrens, M. Fu, A. Paolillo,
L. Oberhauser, K. Bhat, Y. Wen, H. Chen, J. Kim, and V. Vafeiadis.
(2021). “VSync: Push-Button Verification and Optimization for Syn-
chronization Primitives on Weak Memory Models”. In: Proceedings
of the 26th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2021).
Detroit, MI.

Ohrimenko, O., F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K.
Vaswani, and M. Costa. (2016). “Oblivious Multi-Party Machine
Learning on Trusted Processors”. In: Proceedings of the 25th USENIX
Security Symposium (USENIX Security 16).

Osvik, D. A., A. Shamir, and E. Tromer. (2006). “Cache attacks and
countermeasures: the case of AES”. In: Cryptographers’ track at the
RSA conference. Springer. 1–20.

Owens, R. and W. Wang. (2011). “Non-Interactive OS Fingerprinting
through Memory de-Duplication Technique in Virtual Machines”. In:
Proceedings of the 30th IEEE International Performance Computing
and Communications Conference.

Oya, S. and F. Kerschbaum. (2021). “Hiding the Access Pattern is
Not Enough: Exploiting Search Pattern Leakage in Searchable En-
cryption”. In: Proceedings of the 30th USENIX Security Symposium
(USENIX Security 21).

Full text available at: http://dx.doi.org/10.1561/3300000028

102 References

Paccagnella, R., L. Luo, and C. W. Fletcher. (2021). “Lord of the Ring
(s): Side Channel Attacks on the {CPU} On-Chip Ring Intercon-
nect Are Practical”. In: Proceedings of the 30th USENIX Security
Symposium (USENIX Security 21).

Page, D. (2005). “Partitioned cache architecture as a side-channel
defence mechanism”. url: https://ia.cr/2005/280.

Page, D. (2002). “Theoretical use of cache memory as a cryptanalytic
side-channel.” IACR Cryptol. ePrint Arch. 2002(169): 1–23.

Pappas, V., F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi, W.
George, A. Keromytis, and S. Bellovin. (2014). “Blind Seer: A Scal-
able Private DBMS”. In: Proceedings of the 2014 IEEE Symposium
on Security and Privacy (S&P 14).

Patel, S., G. Persiano, M. Raykova, and K. Yeo. (2018). “PanORAMa:
Oblivious RAM with Logarithmic Overhead”. In: IEEE Annual
Symposium on Foundations of Computer Science (FOCS 18).

Percival, C. (2005). “Cache missing for fun and profit”.
Pessl, P., D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. (2016).

“DRAMA: Exploiting Dram Addressing for Cross-Cpu Attacks”. In:
Proceedings of the 25th USENIX Conference on Security Symposium.
SEC’16. Austin, TX, USA: USENIX Association. 565–581.

Peterson, Z. N. J., M. Gondree, and R. Beverly. (2011). “A Position
Paper on Data Sovereignty: The Importance of Geolocating Data in
the Cloud”. In: Proceedings of the 3rd USENIX Conference on Hot
Topics in Cloud Computing.

Pinkas, B. and T. Reinman. (2010). “Oblivious RAM Revisited”. In:
Proceedings of the 30th Annual Conference on Advances in Cryptol-
ogy (CRYPTO 10).

Popa, R. A., C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan.
(2011). “CryptDB: Protecting Confidentiality with Encrypted Query
Processing”. In: Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles.

Protocol Labs. (2017a). “Filecoin: A decentralized storage network”.
url: https://filecoin.io/filecoin.pdf.

Protocol Labs. (2017b). “Proof of replication”. url: https://filecoin.io/
proof-of-replication.pdf.

Full text available at: http://dx.doi.org/10.1561/3300000028

https://ia.cr/2005/280
https://filecoin.io/filecoin.pdf
https://filecoin.io/proof-of-replication.pdf
https://filecoin.io/proof-of-replication.pdf

References 103

Rabin, T. and M. Ben-Or. (1989). “Verifiable Secret Sharing and Multi-
party Protocols with Honest Majority”. In: Proceedings of the 21st
Annual ACM Symposium on Theory of Computing (STOC). ACM.
73–85.

Razavi, K., B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos.
(2016). “Flip feng shui: Hammering a needle in the software stack”.
In: Proceedings of the 25th USENIX Security Symposium (USENIX
Security 16). 1–18.

Ren, L., C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and
S. Devadas. (2015). “Constants Count: Practical Improvements to
Oblivious RAM”. In: Proceedings of the 24th USENIX Security
Symposium (USENIX Security 15).

Ren, L., X. Yu, C. W. Fletcher, M. van Dijk, and S. Devadas. (2013).
“Design Space Exploration and Optimization of Path Oblivious
RAM in Secure Processors”.

Riley, R., X. Jiang, and D. Xu. (2008). “Guest-Transparent Prevention
of Kernel Rootkits with VMM-Based Memory Shadowing”. In: Pro-
ceedings of the 11th International Symposium on Recent Advances
in Intrusion Detection (RAID 2008). Cambridge, MA. 1–20.

Ristenpart, T., E. Tromer, H. Shacham, and S. Savage. (2009). “Hey,
you, get off of my cloud: exploring information leakage in third-party
compute clouds”. In: Proceedings of the 16th ACM conference on
Computer and communications security. 199–212.

Roche, D. S., A. Aviv, S. G. Choi, and T. Mayberry. (2017). “Deter-
ministic, Stash-Free Write-Only ORAM”. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS 17).

Sahin, C., V. Zakhary, A. E. Abbadi, H. Lin, and S. Tessaro. (2016).
“TaoStore: Overcoming Asynchronicity in Oblivious Data Storage”.
In: Proceedings of the 2016 IEEE Symposium on Security and Pri-
vacy (S&P 16).

Sasy, S., S. Gorbunov, and C. W. Fletcher. (2018). “ZeroTrace: Oblivious
Memory Primitives from Intel SGX”. In: Proceedings of the 2018
ISOC Network and Distributed System Security Symposium (NDSS
18).

Full text available at: http://dx.doi.org/10.1561/3300000028

104 References

Schwarz, T. S. J. and E. L. Miller. (2006). “Store, Forget, and Check:
Using Algebraic Signatures to Check Remotely Administered Stor-
age.” In: Proceedings of the 2006 IEEE International Conference
on Distributed Computing Systems (ICDCS 06). IEEE Computer
Society.

Sebe, F., A. Martinez-Balleste, Y. Deswarte, J. Domingo-Ferrer, and
J.-J. Quisquater. (2004). “Time-Bounded Remote File Integrity
Checking”. Tech. rep. No. 04429. LAAS.

“Security Requirements for Cryptographic Modules”. url: https://
nvlpubs.nist.gov.

“seL4 Reference Manual Version 11.0.0”. (2019). Data61. url: http:
//sel4.systems/Info/Docs/seL4-manual-11.0.0.pdf.

“seL4 Supported Platforms”. url: https://docs.sel4.systems/Hardware.
Seshadri, A., M. Luk, N. Qu, and A. Perrig. (2007). “SecVisor: A Tiny

Hypervisor to Provide Lifetime Kernel Code Integrity for Commod-
ity OSes”. In: Proceedings of 21st ACM SIGOPS Symposium on
Operating Systems Principles (SOSP 2007). Stevenson, WA. 335–
350.

Shacham, H. and B. Waters. (2008). “Compact Proofs of Retrievabil-
ity”. In: Proceedings of the Annual International Conference on
the Theory and Application of Cryptology and Information Security
(Asiacrypt 2008).

Shacham, H. and B. Waters. (2013). “Compact Proofs of Retrievability”.
J. Cryptol. 26(3): 442–483.

Shah, M., M. Baker, J. C. Mogul, and R. Swaminathan. (2007). “Audit-
ing to Keep Online Storage Services Honest”. In: Proceedings of the
11th Workshop on Hot Topics in Operating Systems (HotOS XI).
Usenix.

Shah, M. A., R. Swaminathan, and M. Baker. (2008). “Privacy-Preserving
Audit and Extraction of Digital Contents”. ePrint Archive Report.
(2008/186).

Shen, J., F. Guo, X. Chen, and W. Susilo. (2020). “Secure Cloud
Auditing with Efficient Ownership Transfer”. In: Computer Security
– ESORICS 2020. Springer International Publishing. 611–631.

Full text available at: http://dx.doi.org/10.1561/3300000028

https://nvlpubs.nist.gov
https://nvlpubs.nist.gov
http://sel4.systems/Info/Docs/seL4-manual-11.0.0.pdf
http://sel4.systems/Info/Docs/seL4-manual-11.0.0.pdf
https://docs.sel4.systems/Hardware

References 105

Shi, E. (2020). “Path Oblivious Heap: Optimal and Practical Oblivious
Priority Queue”. In: Proceedings of the 2020 IEEE Symposium on
Security and Privacy (S&P 20).

Shi, E., T.-H. H. Chan, E. Stefanov, and M. Li. (2011a). “Oblivious
RAM with O((Logn)3) Worst-case Cost”. In: Proceedings of the
17th International Conference on The Theory and Application of
Cryptology and Information Security (ASIACRYPT 11).

Shi, E., E. Stefanov, and C. Papamanthou. (2013). “Practical Dynamic
Proofs of Retrievability”. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security (CCS 13).
ACM. 325–336.

Shi, J., X. Song, H. Chen, and B. Zang. (2011b). “Limiting cache-based
side-channel in multi-tenant cloud using dynamic page coloring”. In:
Proceedings of the 2011 IEEE/IFIP 41st International Conference
on Dependable Systems and Networks Workshops (DSN-W). IEEE.
194–199.

Shi, L., Y. Wu, Y. Xia, N. Dautenhahn, H. Chen, B. Zang, and J.
Li. (2017). “Deconstructing Xen”. In: 24th Annual Network and
Distributed System Security Symposium (NDSS 2017). San Diego,
CA.

Shih, M.-W., M. Kumar, T. Kim, and A. Gavrilovska. (2016). “S-
NFV: Securing NFV States by Using SGX”. In: Proceedings of the
2016 ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization (SDN-NFV Security
2016). New Orleans, LA. 45–48.

Shinagawa, T., H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T.
Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono, S.
Chiba, Y. Shinjo, and K. Kato. (2009). “BitVisor: A Thin Hypervisor
for Enforcing I/O Device Security”. In: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE 2009). Washington, DC. 121–130.

Siemens. (2019). “jailhouse - Linux-based partitioning hypervisor”. url:
https://github.com/siemens/jailhouse.

Full text available at: http://dx.doi.org/10.1561/3300000028

https://github.com/siemens/jailhouse

106 References

Song, D. X., D. Wagner, and A. Perrig. (2000). “Practical Techniques
for Searches on Encrypted Data”. In: SP ’00: Proceedings of the
2000 IEEE Symposium on Security and Privacy (S&P 2000). IEEE
Computer Society.

Sprabery, R., K. Evchenko, A. Raj, R. B. Bobba, S. Mohan, and R. H.
Campbell. (2017). “A novel scheduling framework leveraging hard-
ware cache partitioning for cache-side-channel elimination in clouds”.
arXiv preprint arXiv:1708.09538.

Stefanov, E., M. van Dijk, A. Juels, and A. Oprea. (2012). “Iris: A
Scalable Cloud File System with Efficient Integrity Checks”. In:
Proceedings of the 28th Annual Computer Security Applications
Conference (ACSAC 12). ACM. 229–238.

Stefanov, E., M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. De-
vadas. (2013). “Path ORAM: An Extremely Simple Oblivious RAM
Protocol”. In: Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security (CCS 13).

Steinberg, U. and B. Kauer. (2010). “NOVA: A Microhypervisor-based
Secure Virtualization Architecture”. In: Proceedings of the 5th Eu-
ropean Conference on Computer Systems (EuroSys 2010). Paris,
France. 209–222.

Strackx, R. and F. Piessens. (2012). “Fides: Selectively Hardening
Software Application Components Against Kernel-level or Process-
level Malware”. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security (CCS 2012). Raleigh, NC.
2–13.

Suzaki, K., K. Iijima, T. Yagi, and C. Artho. (2011). “Memory Dedupli-
cation as a Threat to the Guest OS”. In: Proceedings of the Fourth
European Workshop on System Security.

Tao, R., J. Yao, X. Li, S.-W. Li, J. Nieh, and R. Gu. (2021). “Formal
Verification of a Multiprocessor Hypervisor on Arm Relaxed Mem-
ory Hardware”. In: Proceedings of the 28th ACM Symposium on
Operating Systems Principles (SOSP 2021). Virtual Event, Germany.
866–881.

TrendForce. (2021). “Intel Responds to AMD’s Challenge with Ice Lake
CPUs as Competition in Server Market Intensifies”. url: https:
//www.trendforce.com/presscenter/news/20210318-10723.html.

Full text available at: http://dx.doi.org/10.1561/3300000028

https://www.trendforce.com/presscenter/news/20210318-10723.html
https://www.trendforce.com/presscenter/news/20210318-10723.html

References 107

Tromer, E., D. A. Osvik, and A. Shamir. (2010). “Efficient cache attacks
on AES, and countermeasures”. Journal of Cryptology. 23(1): 37–71.

Tsai, C.-C., K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.
Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter. (2014). “Co-
operation and Security Isolation of Library OSes for Multi-process
Applications”. In: Proceedings of the 9th European Conference on
Computer Systems (EuroSys 2014). Amsterdam, The Netherlands.
9:1–9:14.

Tsunoo, Y., T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi. (2003).
“Cryptanalysis of DES implemented on computers with cache”. In:
Proceedings of the 2003 International Workshop on Cryptographic
Hardware and Embedded Systems. Springer. 62–76.

Varadarajan, V., T. Ristenpart, and M. Swift. (2014). “Scheduler-based
defenses against cross-VM side-channels”. In: Proceedings of the
23rd USENIX Security Symposium (USENIX Security 14). 687–702.

Varadarajan, V., Y. Zhang, T. Ristenpart, and M. Swift. (2015). “A
placement vulnerability study in multi-tenant public clouds”. In:
Proceedings of the 24th USENIX Security Symposium (USENIX
Security 15). 913–928.

Vasudevan, A., S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta.
(2013). “Design, Implementation and Verification of an eXtensible
and Modular Hypervisor Framework”. In: Proceedings of the 2013
IEEE Symposium on Security and Privacy (SP 2013). San Francisco,
CA. 430–444.

Vasudevan, A., S. Chaki, P. Maniatis, L. Jia, and A. Datta. (2016).
“überSpark: Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor”. In: Proceedings
of the 25th USENIX Security Symposium (USENIX Security 2016).
Austin, TX. 87–104.

Vaucher, S., R. Pires, P. Felber, M. Pasin, V. Schiavoni, and C. Fetzer.
(2018). “SGX-Aware Container Orchestration for Heterogeneous
Clusters”. In: Proceedings of the 38th International Conference on
Distributed Computing Systems (ICDCS 18).

Wan, J., Y. Bi, Z. Zhou, and Z. Li. (2021). “Volcano: Stateless Cache
Side-channel Attack by Exploiting Mesh Interconnect”. arXiv preprint
arXiv:2103.04533.

Full text available at: http://dx.doi.org/10.1561/3300000028

108 References

Wang, W., G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter. (2017). “Leaky Cauldron on the Dark
Land: Understanding Memory Side-Channel Hazards in SGX”. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security.

Wang, X., H. Chan, and E. Shi. (2015a). “Circuit ORAM: On Tightness
of the Goldreich-Ostrovsky Lower Bound”. In: Proceedings of the
ACM Conference on Cloud and Computer Security (CCS 15).

Wang, X., A. J. Malozemoff, and J. Katz. (2016). “EMPtoolkit: Efficient
MultiParty computation toolkit”. url: https://github.com/emp-
toolkit.

Wang, X., Y. Chen, Z. Wang, Y. Qi, and Y. Zhou. (2015b). “SecPod: A
Framework for Virtualization-based Security Systems”. In: Proceed-
ings of the 2015 USENIX Annual Technical Conference (USENIX
ATC 2015). Santa Clara, CA. 347–360.

Wang, Z. and R. B. Lee. (2007). “New cache designs for thwarting
software cache-based side channel attacks”. In: Proceedings of the
34th annual international symposium on Computer architecture. 494–
505.

Wang, Z. and R. B. Lee. (2008). “A novel cache architecture with
enhanced performance and security”. In: 2008 41st IEEE/ACM
International Symposium on Microarchitecture. IEEE. 83–93.

Wang, Z., X. Jiang, W. Cui, and P. Ning. (2009). “Countering Kernel
Rootkits with Lightweight Hook Protection”. In: Proceedings of the
16th ACM Conference on Computer and Communications Security
(CCS 2009). Chicago, IL. 545–554.

Wang, Z., C. Wu, M. Grace, and X. Jiang. (2012). “Isolating Commodity
Hosted Hypervisors with HyperLock”. In: Proceedings of the 7th
ACM European Conference on Computer Systems (EuroSys 2012).
Bern, Switzerland. 127–140.

Watson, G. J., R. Safavi-Naini, M. Alimomeni, M. E. Locasto, and
S. Narayan. (2012). “LoSt: Location Based Storage”. In: Proceedings
of the 2012 ACM Cloud Computing Security Workshop (CCSW 12).
Association for Computing Machinery. 59–70.

Full text available at: http://dx.doi.org/10.1561/3300000028

https://github.com/emp-toolkit
https://github.com/emp-toolkit

References 109

Werner, M., T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and S.
Mangard. (2019). “Scattercache: Thwarting cache attacks via cache
set randomization”. In: Proceedings of the 28th USENIX Security
Symposium (USENIX Security 19). 675–692.

Williams, P. and R. Sion. (2008). “Usable PIR”. In: Proceedings of the
2008 ISOC Network and Distributed System Security Symposium
(NDSS 08).

Williams, P. and R. Sion. (2012). “Single Round Access Privacy on
Outsourced Storage”. In: Proceedings of the 2012 ACM SIGSAC
Conference on Computer and Communication Security (CCS 12).
Association for Computing Machinery.

Williams, P., R. Sion, and B. Carbunar. (2008). “Building Castles
out of Mud: Practical Access Pattern Privacy and Correctness on
Untrusted Storage”. In: Proceedings of the 15th ACM Conference
on Computer and Communications Security (CCS 08).

Williams, P., R. Sion, and A. Tomescu. (2012). “PrivateFS: A Parallel
Oblivious File System”. In: Proceedings of the 2012 ACM Conference
on Computer and Communications Security (CCS 12).

Wu, C., Z. Wang, and X. Jiang. (2013). “Taming Hosted Hypervisors
with (Mostly) Deprivileged Execution.” In: 20th Annual Network and
Distributed System Security Symposium (NDSS 2013). San Diego,
CA.

Wu, Z., Z. Xu, and H. Wang. (2012). “Whispers in the Hyper-space:
High-speed Covert Channel Attacks in the Cloud”. In: 21st USENIX
Security Symposium (USENIX Security 12).

Xiao, J., Z. Xu, H. Huang, and H. Wang. (2013). “Security Implications
of Memory Deduplication in a Virtualized Environment”. In: Pro-
ceedings of the 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. DSN ’13.

Xiao, Y., X. Zhang, Y. Zhang, and R. Teodorescu. (2016). “One bit
flips, one cloud flops: Cross-vm row hammer attacks and privilege
escalation”. In: Proceedings of the 25th USENIX security symposium
(USENIX security 16). 19–35.

Xu, Z., H. Wang, and Z. Wu. (2015). “A measurement study on
co-residence threat inside the cloud”. In: Proceedings of the 24th
USENIX Security Symposium (USENIX Security 15). 929–944.

Full text available at: http://dx.doi.org/10.1561/3300000028

110 References

Yang, J. and K. G. Shin. (2008). “Using Hypervisor to Provide Data
Secrecy for User Applications on a Per-page Basis”. In: Proceedings
of the 4th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE 2008). Seattle, WA. 71–80.

Yao, A. C. (1986). “How to Generate and Exchange Secrets”. In: Pro-
ceedings of the 27th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE Computer Society. 162–167.

Yarom, Y. and K. Falkner. (2014). “FLUSH+ RELOAD: A high resolu-
tion, low noise, L3 cache side-channel attack”. In: 23rd {USENIX}
Security Symposium ({USENIX} Security 14). 719–732.

Yu, J., L. Hsiung, M. E. Hajj, and C. W. Fletcher. (2019). “Data
Oblivious ISA Extensions for Side Channel-Resistant and High
Performance Computing”. In: Proceedings of the Annual Network
and Distributed System Security Symposium (NDSS 19).

Zhang, F., J. Chen, H. Chen, and B. Zang. (2011a). “CloudVisor:
Retrofitting Protection of Virtual Machines in Multi-tenant Cloud
with Nested Virtualization”. In: Proceedings of the 23rd ACM Sym-
posium on Operating Systems Principles (SOSP 2011). Cascais,
Portugal. 203–216.

Zhang, T., Y. Zhang, and R. B. Lee. (2016). “Cloudradar: A real-
time side-channel attack detection system in clouds”. In: Interna-
tional Symposium on Research in Attacks, Intrusions, and Defenses.
Springer. 118–140.

Zhang, Y., A. Juels, A. Oprea, and M. K. Reiter. (2011b). “Homealone:
Co-residency detection in the cloud via side-channel analysis”. In:
Proceedings of the 32nd IEEE Symposium on Security and Privacy
(S&P 11). IEEE. 313–328.

Zhang, Y., A. Juels, M. K. Reiter, and T. Ristenpart. (2012). “Cross-VM
side channels and their use to extract private keys”. In: Proceedings
of the 2012 ACM conference on Computer and communications
security (CCS 12). 305–316.

Zhang, Y., A. Juels, M. K. Reiter, and T. Ristenpart. (2014). “Cross-
tenant side-channel attacks in PaaS clouds”. In: Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security. 990–1003.

Full text available at: http://dx.doi.org/10.1561/3300000028

References 111

Zhang, Y. and M. K. Reiter. (2013). “Düppel: Retrofitting commodity
operating systems to mitigate cache side channels in the cloud”. In:
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security (CCS 13). 827–838.

Zhou, Z., M. K. Reiter, and Y. Zhang. (2016). “A software approach to
defeating side channels in last-level caches”. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security. 871–882.

Zhou, Z., V. D. Gligor, J. Newsome, and J. M. McCune. (2012). “Build-
ing verifiable trusted path on commodity x86 computers”. In: Pro-
ceedings of the 33rd IEEE symposium on security and privacy (IEEE
S&P 12). 616–630.

Zhou, Z., M. Yu, and V. D. Gligor. (2014). “Dancing with Giants:
Wimpy Kernels for On-Demand Isolated I/O”. In: Proceedings of
the 2014 IEEE Symposium on Security and Privacy (SP 2014). San
Jose, CA. 308–323.

Zhu, M., B. Tu, W. Wei, and D. Meng. (2017). “HA-VMSI: A Lightweight
Virtual Machine Isolation Approach with Commodity Hardware for
ARM”. In: Proceedings of the 13th ACM SIGPLAN/SIGOPS In-
ternational Conference on Virtual Execution Environments (VEE
2017). Xi’an, China. 242–256.

Full text available at: http://dx.doi.org/10.1561/3300000028

