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ABSTRACT
Interactive proofs (IPs) and arguments are cryptographic
protocols that enable an untrusted prover to provide a guar-
antee that it performed a requested computation correctly.
Introduced in the 1980s, IPs and arguments represented a
major conceptual expansion of what constitutes a “proof”
that a statement is true.
Traditionally, a proof is a static object that can be easily
checked step-by-step for correctness. In contrast, IPs allow
for interaction between prover and verifier, as well as a
tiny but nonzero probability that an invalid proof passes
verification. Arguments (but not IPs) even permit there to be
“proofs” of false statements, so long as those “proofs” require
exorbitant computational power to find. To an extent, these
notions mimic in-person interactions that mathematicians
use to convince each other that a claim is true, without
going through the painstaking process of writing out and
checking a traditional static proof.
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2

Celebrated theoretical results from the 1980s and 1990s such
as IP = PSPACE and MIP = NEXP showed that, in
principle, surprisingly complicated statements can be veri-
fied efficiently. What is more, any argument can in principle
be transformed into one that is zero-knowledge, which means
that proofs reveal no information other than their own valid-
ity. Zero-knowledge arguments have a myriad of applications
in cryptography.
Within the last decade, general-purpose zero-knowledge ar-
guments have made the jump from theory to practice. This
has opened new doors in the design of cryptographic sys-
tems, and generated additional insights into the power of
IPs and arguments (zero-knowledge or otherwise). There
are now no fewer than five promising approaches to de-
signing efficient, general-purpose zero-knowledge arguments.
This survey covers these approaches in a unified manner,
emphasizing commonalities between them.

Full text available at: http://dx.doi.org/10.1561/3300000030



1
Introduction

This monograph is about verifiable computing (VC). VC refers to
cryptographic protocols called interactive proofs (IPs) and arguments
that enable a prover to provide a guarantee to a verifier that the prover
performed a requested computation correctly. Introduced in the 1980s,
IPs and arguments represented a major conceptual expansion of what
constitutes a “proof” that a statement is true. Traditionally, a proof is
a static object that can be easily checked step-by-step for correctness,
because each individual step of the proof should be trivial to verify. In
contrast, IPs allow for interaction between prover and verifier, as well as
a tiny but nonzero probability that an invalid proof passes verification.
The difference between IPs and arguments is that arguments (but not
IPs) permit the existence of “proofs” of incorrect statements, so long as
those “proofs” require exorbitant computational power to find.1

Celebrated theoretical results from the mid-1980s and early 1990s
indicated that VC protocols can, at least in principle, accomplish amaz-
ing feats. These include enabling a cell phone to monitor the execution
of a powerful but untrusted (even malicious) supercomputer, enabling

1For example, an argument, but not an IP, might make use of a cryptosystem,
such that it is possible for a cheating prover to find a convincing “proof” of a false
statement if (and only if) the prover can break the cryptosystem.

3
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4 Introduction

computationally weak peripheral devices (e.g., security card readers)
to offload security-critical work to powerful remote servers, or letting
a mathematician obtain a high degree of confidence that a theorem is
true by looking at only a few symbols of a purported proof.2

VC protocols can be especially useful in cryptographic contexts
when they possess a property called zero-knowledge. This means that
the proof or argument reveals nothing but its own validity.

To give a concrete sense of why zero-knowledge protocols are use-
ful, consider the following quintessential example from authentication.
Suppose that Alice chooses a random password x and publishes a hash
z = h(x), where h is a one-way function. This means that given z = h(x)
for a randomly chosen x, enormous computational power should be
required to find a preimage of z under h, i.e., an x′ such that h(x′) = z.
Later, suppose that Alice wants to convince Bob that she is the same
person who published z. She can do this by proving to Bob that she
knows an x′ such that h(x′) = z. This will convince Bob that Alice is
the same person who published z, since it means that either Alice knew
x to begin with, or she inverted h (which is assumed to be beyond the
computational capabilities of Alice).

How can Alice convince Bob that she knows a preimage of z under
h? A trivial proof is for Alice to send x to Bob, and Bob can easily
check that h(x) = z. But this reveals much more information than that
Alice knows a preimage of z. In particular it reveals the preimage itself.
Bob can use this knowledge to impersonate Alice forevermore, since
now he too knows the preimage of z.

In order to prevent Bob from learning information that can com-
promise the password x, it is important that the proof reveals nothing
beyond its own validity. This is exactly what the zero-knowledge prop-
erty guarantees.

A particular goal of this survey is to describe a variety of approaches
to constructing so-called zero-knowledge Succinct Non-interactive Ar-
guments of Knowledge, or zk-SNARKs for short. “Succinct” means
that the proofs are short. “Non-interactive” means that the proof is

2So long as the proof is written in a specific, mildly redundant format. See our
treatment of probabilistically checkable proofs (PCPs) in Section 9.
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5

static, consisting of a single message from the prover. “Of Knowledge”
roughly means that the protocol establishes not only that a statement
is true, but also that the prover knows a “witness” to the veracity of the
statement.3 Argument systems satisfying all of these properties have a
myriad of applications throughout cryptography.

Practical zero-knowledge protocols for highly specialized statements
of cryptographic relevance (such as proving knowledge of a discrete
logarithm [223]) have been known for decades. However, general-purpose
zero-knowledge protocols have only recently become plausibly efficient
enough for cryptographic deployment. By general-purpose, we mean
protocol design techniques that apply to arbitrary computations. This
exciting progress has involved the introduction of beautiful new pro-
tocols, and brought a surge of interest in zero-knowledge proofs and
arguments. This survey seeks to make accessible, in a unified manner,
the main ideas and approaches to the design of these protocols.

Background and Context. In the mid-1980s and 1990s, theoretical
computer scientists showed that IPs and arguments can be vastly more
efficient (at least, in an asymptotic sense) than traditional NP proofs,4
which are static and information-theoretically secure.5 The foundational
results characterizing the power of these protocols (such as IP =
PSPACE [186], [231], MIP = NEXP [17], and the PCP theorem [10],
[11]) are some of the most influential and celebrated in computational
complexity theory.6

Despite their remarkable asymptotic efficiency, general-purpose VC
protocols were long considered wildly impractical, and with good reason:
naive implementations of the theory would have had comically high

3For example, the authentication scenario above really requires a zero-knowledge
proof of knowledge for the statement “there exists a password x such that h(x) = z”.
This is because the application requires that Bob be convinced not just of the fact
that there exists a preimage x of z under h (which will always be true if h is a
surjective function), but also that Alice knows x.

4We formally define notions such as NP and IP in Section 3.3.
5The term information-theoretically secure here refers to the fact that NP proofs

(like IPs, but unlike arguments) are secure against computationally unbounded
provers.

6The results IP = PSPACE and MIP = NEXP are both covered in this
survey (see Sections 4.5.5 and 8.5 respectively).
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6 Introduction

concrete costs (trillions of years for the prover, even for very short
computations). But the last decade has seen major improvements in
the costs of VC protocols, with a corresponding jump from theory to
practice. Even though implementations of general-purpose VC protocols
remain somewhat costly (especially for the prover), paying this cost
can often be justified if the VC protocol is zero-knowledge, since zero-
knowledge protocols enable applications that may be totally impossible
without them. Moreover, emerging applications to public blockchains
have elevated the importance of proving relatively simple statements,
on which it is feasible to run modern VC protocols despite their costs.

Approaches to Zero-Knowledge Protocol Design, and Philosophy of
This Survey. Argument systems are typically developed in a two-step
process. First, an information-theoretically secure protocol, such as an
IP, multi-prover interactive proof (MIP), or probabilistically checkable
proof (PCP), is developed for a model involving one or more provers
that are assumed to behave in some restricted manner (e.g., in an MIP,
the provers are assumed not to send information to each other about
the challenges they receive from the verifier). Second, the information-
theoretically secure protocol is combined with cryptography to “force”
a (single) prover to behave in the restricted manner, thereby yielding
an argument system. This second step also often endows the resulting
argument system with important properties, such as zero-knowledge,
succinctness, and non-interactivity. If the resulting argument satisfies
all of these properties, then it is in fact a zk-SNARK.

By now, there are a variety promising approaches to developing effi-
cient zk-SNARKs, which can be categorized by the type of information-
theoretically secure protocol upon which they are based. These include
(1) IPs, (2) MIPs, (3) PCPs, or more precisely a related notion called
interactive oracle proofs (IOPs), which is a hybrid between an IP and
a PCP, and (4) linear PCPs. Sections 1.2.1–1.2.3 below give a more
detailed overview of these models. This survey explains in a unified man-
ner how to design efficient protocols in all four information-theoretically
secure models, emphasizing commonalities between them.

Full text available at: http://dx.doi.org/10.1561/3300000030
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IPs, MIPs, and PCPs/IOPs can all be transformed into succinct
interactive arguments by combining them with a cryptographic primi-
tive called a polynomial commitment scheme; the interactive arguments
can then be rendered non-interactive and publicly verifiable by apply-
ing a cryptographic technique called the Fiat-Shamir transformation
(Section 5.2), yielding a SNARK. Transformations from linear PCPs
to arguments are somewhat different, though closely related to certain
polynomial commitment schemes. As with the information-theoretically
secure protocols themselves, this survey covers these cryptographic
transformations in a unified manner.

Because of the two-step nature of zk-SNARK constructions, it is
often helpful to first understand proofs and arguments without worrying
about zero-knowledge, and then at the very end understand how to
achieve zero-knowledge as an “add on” property. Accordingly, we do not
discuss zero-knowledge until relatively late in this survey (Section 11).
Earlier sections are devoted to describing efficient protocols in each
of the information-theoretically secure models, and explaining how to
transform them into succinct arguments.

By now, zk-SNARKs have been deployed in a number of real-world
systems, and there is a large and diverse community of researchers,
industry professionals, and open source software developers working
to improve and deploy the technology. This survey assumes very little
formal mathematical background—mainly comfort with modular arith-
metic, some notions from the theory of finite fields and groups, and basic
probability theory—and is intended as a resource for anyone interested
in verifiable computing and zero-knowledge. However, it does require
significant mathematical maturity and considerable comfort with theo-
rems and proofs. Also helpful (but not strictly necessary) is knowledge
of standard complexity classes like P and NP, and complexity-theoretic
notions such as NP-completeness.

Ordering of Information-Theoretically Secure Models in This Survey.
We first cover IPs, then MIPs, then PCPs and IOPs, then linear PCPs.
This ordering roughly follows the chronology of the models’ introduction
to the research literature. Perhaps ironically, the models have been
applied to practical SNARK design in something resembling reverse

Full text available at: http://dx.doi.org/10.1561/3300000030



8 Introduction

chronological order. For example, the first practical SNARKs were based
on linear PCPs. In fact, this is not a coincidence: a primary motivation
for introducing linear PCPs in the first place was the goal of obtaining
simpler and more practical succinct arguments, and specifically the
impracticality of arguments derived from PCPs.

Section-by-section Outline. Section 2 familiarizes the reader with
randomness and the power of probabilistic proof systems, through
two easy but important case studies. Section 3 introduces technical
notions that will be useful throughout the survey. Sections 4 describes
state-of-the-art interactive proofs. Section 5 describes the Fiat-Shamir
transformation, a key technique that is used to remove interaction from
cryptographic protocols. Section 7 introduces the notion of a polynomial
commitment scheme, and combines it with the IPs of Section 4 and
the Fiat-Shamir transformation of Section 5 to obtain the first SNARK
covered in the survey. Section 8 describes state-of-the-art MIPs and
SNARKs derived thereof. Sections 9–10 describe PCPs and IOPs, and
SNARKs derived thereof.

Section 6 is a standalone section describing techniques for repre-
senting computer programs in formats amenable to application of such
SNARKs.

Section 11 introduces the notion of zero-knowledge. Section 12 de-
scribes a particularly simple type of zero-knowledge argument called
Σ-protocols, and uses them to derive commitment schemes. These
commitment schemes serve as important building blocks for more com-
plicated protocols covered in subsequent sections. Section 13 describes
efficient techniques for transforming non-zero-knowledge protocols into
zero-knowledge ones. Sections 14–16 cover practical polynomial com-
mitment schemes, which can be used to turn any IP, MIP, or IOP
into a succinct zero-knowledge argument of knowledge (zkSNARK).
Section 17 covers our final approach to designing zkSNARKs, namely
through linear PCPs. Section 18 describes how to recursively compose
SNARKs to improve their costs and achieve important primitives such
as so-called incrementally verifiable computation. Finally, Section 19
provides a taxonomy of design paradigms for practical zkSNARKs, and
delineates the pros and cons of each approach.
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Suggestions for Reading the Monograph. The monograph may
happily be read from start to finish, but non-linear paths may offer a
faster route to a big-picture understanding of SNARK design techniques.
Suggestions to this effect are as follows.

Sections 2 and 3 introduce basic technical notions used throughout all
subsequent sections (finite fields, IPs, arguments, low-degree extensions,
the Schwartz-Zippel lemma, etc.), and should not be skipped by readers
unfamiliar with these concepts.

Readers may next wish to read the final section, Section 19, which
provides a birds-eye view of all SNARK design approaches and how
they relate to each other. Section 19 uses some terminology that may
be unfamiliar to the reader at this point, but it should nonetheless be
understandable and it provides context that is helpful to have in mind
when working through more technical sections.

After that, there are many possible paths through the monograph.
Readers specifically interested in the SNARKs that were the first to
be deployed in commercial settings can turn to Section 17 on linear
PCPs. This section is essentially self-contained but for its use of pairing-
based cryptography that is introduced in Section 15.1 (and, at the very
end, its treatment of zero-knowledge, a concept introduced formally in
Section 11).

Otherwise, readers should turn to understanding the alternative
approach to SNARK design, namely to combine a polynomial IOP
(of which IPs, MIPs, and PCPs are special cases) with a polynomial
commitment scheme.

To quickly understand polynomial IOPs, we suggest a careful reading
of Section 4.1 on the sum-check protocol, followed by Section 4.6 on the
GKR interactive proof protocol for circuit evaluation, or Section 8.2
giving a 2-prover MIP for circuit satisfiability. Next, the reader can
turn to Section 7, which explains how to combine such protocols with
polynomial commitments to obtain succinct arguments.

To understand polynomial commitment schemes, the reader can
either tackle Sections 10.4 and 10.5 to understand IOP-based polynomial
commitments, or instead turn to Sections 12 and 14–16 (in that order)
to understand polynomial commitments based on the discrete logarithm
problem and pairings.
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A compressed overview of polynomial IOPs and polynomial com-
mitments is provided in a sequence of three talk videos posted on this
monograph’s webpage.7 Readers may find it useful to watch these videos
prior to a detailed reading of Sections 4–10.

Material That can be Skipped on a First Reading. Sections 4.2–4.5
are devoted to detailed example applications of the sum-check protocol
and explaining how to efficiently implement the prover within it. While
these sections contain interesting results and are useful for familiarizing
oneself with the sum-check protocol, subsequent sections do not depend
on them. Similarly, Section 5 on the Fiat-Shamir transformation and
Section 6 on front-ends are optional on a first reading. Sections 9.3
and 9.4 provide PCPs that are mainly of historical interest and can be
skipped.

Sections 11 and 13 offer treatments of zero-knowledge that largely
stand on their own. Similarly, Section 18 discusses SNARK composition
and stands on its own.

1.1 Mathematical Proofs

This survey covers different notions of mathematical proofs and their
applications in computer science and cryptography. Informally, what we
mean by a proof is anything that convinces someone that a statement
is true, and a “proof system” is any procedure that decides what is
and is not a convincing proof. That is, a proof system is specified by a
verification procedure that takes as input any statement and a claimed
“proof” that the statement is true, and decides whether or not the proof
is valid.

What properties do we want in a proof system? Here are four obvious
ones.

• Any true statement should have a convincing proof of its validity.
This property is typically referred to as completeness.

• No false statement should have a convincing proof. This property
is referred to as soundness.

7https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html.
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• Ideally, the verification procedure will be “efficient”. Roughly,
this means that simple statements should have short (convincing)
proofs that can be checked quickly.

• Ideally, proving should be efficient too. Roughly, this means that
simple statements should have short (convincing) proofs that can
be found quickly.

Traditionally, a mathematical proof is something that can be written
and checked line-by-line for correctness. This traditional notion of proof
is precisely the one captured by the complexity class NP.8 However,
over the last 30+ years, computer scientists have studied much more
general and exotic notions of proofs. This has transformed computer
scientists’ notions of what it means to prove something, and has led to
major advances in complexity theory and cryptography.

1.2 What Kinds of Non-Traditional Proofs Will We Study?

All of the notions of proofs that we study in this survey will be proba-
bilistic in nature. This means that the verification procedure will make
random choices, and the soundness guarantee will hold with (very) high
probability over those random choices. That is, there will be a (very)
small probability that the verification procedure will declare a false
statement to be true.

1.2.1 Interactive Proofs (IPs)

To understand what an interactive proof is, it is helpful to think of
the following application. Imagine a business (verifier) that is using a
commercial cloud computing provider to store and process its data. The
business sends all of its data up to the cloud (prover), which stores it,
while the business stores only a very small “secret” summary of the
data (meaning that the cloud does not know the user’s secret summary).
Later, the business asks the cloud a question about its data, typically

8Roughly speaking, the complexity class NP contains all problems for which the
correct answer on any input is either YES or NO, and for all YES instances, there
is an efficiently-checkable (traditional) proof that the correct answer is YES. See
Section 3.3 for details.
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Figure 1.1: Depiction of an interactive proof or argument used to check that a
cloud computing provider is storing and processing a user’s data correctly.

in the form of a computer program f that the business wants the cloud
to run on its data using the cloud’s vast computing infrastructure. The
cloud does so, and sends the user the claimed output of the program,
f(data). Rather than blindly trust that the cloud executed the program
on the data correctly, the business can use an interactive proof system
(IP) to obtain a formal guarantee that the claimed output is correct.

In the IP, the business interrogates the cloud, sending a sequence
of challenges and receiving a sequence of responses. At the end of the
interrogation, the business must decide whether to accept the answer
as valid or reject it as invalid. See Figure 1.1 for a diagram of this
interaction.

Completeness of the IP means that if the cloud correctly runs the
program on the data and follows the prescribed protocol, then the user
will be convinced to accept the answer as valid. Soundness of the IP
means that if the cloud returns the wrong output, then the user will
reject the answer as invalid with high probability no matter how hard
the cloud works to trick the user into accepting the answer as valid.
Intuitively, the interactive nature of the IP lets the business exploit
the element of surprise (i.e., the fact that the cloud cannot predict the
business’s next challenge) to catch a lying cloud in a lie.

It is worth remarking on an interesting difference between IPs and
traditional static proofs. Static proofs are transferrable, meaning that if
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Peggy (prover) hands Victor (verifier) a proof that a statement is true,
Victor can turn around and convince Tammy (a third party) that the
same statement is true, simply by copying the proof. In contrast, an
interactive proof may not be transferrable. Victor can try to convince
Tammy that the statement is true by sending Tammy a transcript of his
interaction with Peggy, but Tammy will not be convinced unless Tammy
trusts that Victor correctly represented the interaction. This is because
soundness of the IP only holds if, every time Peggy sends a response to
Victor, Peggy does not know what challenge Victor will respond with
next. The transcript alone does not give Tammy a guarantee that this
holds.

1.2.2 Argument Systems

Argument systems are IPs, but where the soundness guarantee need only
hold against cheating provers that run in polynomial time.9 Argument
systems make use of cryptography. Roughly speaking, in an argument
system a cheating prover cannot trick the verifier into accepting a
false statement unless it breaks some cryptosystem, and breaking the
cryptosystem is assumed to require superpolynomial time.

1.2.3 Multi-Prover Interactive Proofs, Probabilistically Checkable
Proofs, etc.

An MIP is like an IP, except that there are multiple provers, and these
provers are assumed not to share information with each other regarding
what challenges they receive from the verifier. A common analogy for
MIPs is placing two or more criminal suspects in separate rooms before
interrogating them, to see if they can keep their story straight. Law
enforcement officers may be unsurprised to learn that the study of
MIPs has lent theoretical justification to this practice. Specifically, the
study of MIPs has revealed that if one locks the provers in separate
rooms and then interrogates them separately, they can convince their

9Roughly speaking, this means that if the input has size n, then the prover’s
runtime (for sufficiently large values of n) should be bounded above by some constant
power of n, e.g., n10.
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interrogators of much more complicated statements than if they are
questioned together.

In a PCP, the proof is static as in a traditional mathematical proof,
but the verifier is only allowed to read a small number of (possibly
randomly chosen) characters from the proof.10 This is in analogy to a lazy
referee for a mathematical journal, who does not feel like painstakingly
checking the proofs in a submitted paper for correctness. The PCP
theorem [10], [11] essentially states that any traditional mathematical
proof can be written in a format that enables this lazy reviewer to obtain
a high degree of confidence in the validity of the proof by inspecting
just a few words of it.

Philosophically, MIPs and PCPs are extremely interesting objects
to study, but they are not directly applicable in most cryptographic
settings, because they make unrealistic or onerous assumptions about the
prover(s). For example, soundness of any MIP only holds if the provers
do not share information with each other regarding what challenges they
receive from the verifier. This is not directly useful in most cryptographic
settings, because typically in these settings there is only a single prover,
and even if there is more than one, there is no way to force the provers
not to communicate. Similarly, although the verifier only reads a few
characters of a PCP, a direct implementation of a PCP would require
the prover to transmit the whole proof to the verifier, and this would be
the dominant cost in most real-world scenarios (the example of a lazy
journal referee notwithstanding). That is, once the prover transmits the
whole proof to the verifier, there is little real-world benefit to having
the verifier avoid reading the whole proof.

However, by combining MIPs and PCPs with cryptography, we will
see how to turn them into argument systems, and these are directly
applicable in cryptographic settings. For example, we will see in Sec-
tion 9.2 how to turn a PCP into an argument system in which the
prover does not have to send the whole PCP to the verifier.

10More precisely, a PCP verifier is allowed to read as much of the proof as it
wants. However, for the PCP to be considered efficient, it must be the case that
the verifier only needs to read a tiny fraction of the proof to ascertain with high
confidence whether or not the proof is valid.
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Section 10.2 of this survey in fact provides a unifying abstraction,
called polynomial IOPs, of which all of the IPs, MIPs, and PCPs that
we cover are a special case. It turns out that any polynomial IOP
can be transformed into an argument system with short proofs, via a
cryptographic primitive called a polynomial commitment scheme.
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