
Security Analysis and Formal
Verification on Blockchain

and its Applications

Full text available at: http://dx.doi.org/10.1561/3300000044

Other titles in Foundations and Trends® in Privacy and Security

Recommender Systems Meet Large Language Model Agents: A Survey
Xi Zhu, Yu Wang, Hang Gao, Wujiang Xu, Chen Wang, Zhiwei Liu,
Kun Wang, Mingyu Jin, Linsey Pang, Qingsong Weng, Philip S. Yu
and Yongfeng Zhang
ISBN: 978-1-63828-564-9

Trustworthy Machine Learning: From Data to Models
Bo Han, Jiangchao Yao, Tongliang Liu, Bo Li, Sanmi Koyejo and Feng
Liu
ISBN: 978-1-63828-548-9

Advances in Secure IoT Data Sharing
Phu Nguyen, Arda Goknil, Gencer Erdogan, Shukun Tokas, Nicolas
Ferry and Thanh Thao Thi Tran
ISBN: 978-1-63828-422-2

Navigating the Soundscape of Deception: A Comprehensive Survey on
Audio Deepfake Generation, Detection, and Future Horizons
Taiba Majid Wani, Syed Asif Ahmad Qadri, Farooq Ahmad Wani and
Irene Amerini
ISBN: 978-1-63828-492-5

Reverse Engineering of Deceptions on Machine- and Human-Centric
Attacks
Yuguang Yao, Xiao Guo, Vishal Asnani, Yifan Gong, Jiancheng Liu,
Xue Lin, Xiaoming Liu and Sijia Liu
ISBN: 978-1-63828-340-9

Identifying and Mitigating the Security Risks of Generative AI
Clark Barrett et al.
ISBN: 978-1-63828-312-6

Full text available at: http://dx.doi.org/10.1561/3300000044

Security Analysis and Formal
Verification on Blockchain and its

Applications

Kang Li
CertiK

Ronghui Gu
Columbia University

Jun Xu
University of Utah

Zhaofeng Chen
CertiK

Siwei Wu
Zhejiang University

Yajin Zhou
Zhejiang University

Mu Zhang
University of Utah

Xiapu Luo
Hong Kong PolyU

Yuzhe Tang
Syracuse University

Yi Li
NTU

Xiaokuan Zhang
George Mason University

Yibo Wang
Syracuse University

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/3300000044

Foundations and Trends® in Privacy and Security

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

K. Li et al.. Security Analysis and Formal Verification on Blockchain and its Appli-
cations. Foundations and Trends® in Privacy and Security, vol. 8, no. 1, pp. 1–121,
2025.

ISBN: 978-1-63828-569-4
© 2025 K. Li et al.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/3300000044

Foundations and Trends® in Privacy and Security
Volume 8, Issue 1, 2025

Editorial Board

Editor-in-Chief
Jonathan Katz
University of Maryland, USA

Founding Editors

Anupam Datta
Carnegie Mellon University, USA

Jeannette Wing
Columbia University, USA

Editors

Martín Abadi
Google and University of California,
Santa Cruz
Michael Backes
Saarland University
Dan Boneh
Stanford University
Véronique Cortier
LORIA, CNRS
Lorrie Cranor
Carnegie Mellon University
Cédric Fournet
Microsoft Research
Virgil Gligor
Carnegie Mellon University
Jean-Pierre Hubaux
EPFL

Deirdre Mulligan
University of California, Berkeley

Andrew Myers
Cornell University

Helen Nissenbaum
New York University

Michael Reiter
Duke University

Shankar Sastry
University of California, Berkeley

Dawn Song
University of California, Berkeley

Daniel Weitzner
Massachusetts Institute of Technology

Full text available at: http://dx.doi.org/10.1561/3300000044

Editorial Scope
Foundations and Trends® in Privacy and Security publishes survey and tutorial
articles in the following topics:

• Access control
• Accountability
• Anonymity
• Application security
• Artifical intelligence methods in

security and privacy
• Authentication
• Big data analytics and privacy
• Cloud security
• Cyber-physical systems security

and privacy
• Distributed systems security and

privacy
• Embedded systems security and

privacy
• Forensics
• Hardware security

• Human factors in security and pri-
vacy

• Information flow
• Intrusion detection
• Malware
• Metrics
• Mobile security and privacy
• Language-based security and pri-

vacy
• Network security
• Privacy-preserving systems
• Protocol security
• Security and privacy policies
• Security architectures
• System security
• Web security and privacy

Information for Librarians

Foundations and Trends® in Privacy and Security, 2025, Volume 8, 4
issues. ISSN paper version 2474-1558. ISSN online version 2474-1566.
Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/3300000044

Contents

1 Introduction 3
1.1 Blockchain and its Applications 3
1.2 The Need for Verification 8
1.3 Outline . 9

2 Problems of Focus 11
2.1 Infrastructure Flaws . 12
2.2 Application Flaws . 19

3 Formal Verification 34
3.1 Formal Verification for Infrastructures 35
3.2 Formal Verification for Applications 44

4 Security Analysis 58
4.1 Security Analysis for Infrastructures 58
4.2 Security Analysis for Applications 68

5 Persisting Challenges 88
5.1 Unknown Flaw Families 88
5.2 Limited Eco-system Support 89
5.3 Guarantees v.s. Practicality 90
5.4 Significant Usability Barriers 90

Full text available at: http://dx.doi.org/10.1561/3300000044

6 On the Horizon 92
6.1 Efforts on Infrastructures 92
6.2 Advanced Attack Prevention and Rescue 93
6.3 ML-assisted Verification Methods 93
6.4 Toward Broader and Deeper Blockchain Verification 94

References 95

Full text available at: http://dx.doi.org/10.1561/3300000044

Security Analysis and Formal
Verification on Blockchain and its
Applications
Kang Li1, Ronghui Gu2, Jun Xu3, Zhaofeng Chen1, Siwei Wu4,
Yajin Zhou4,5, Mu Zhang3, Xiapu Luo6, Yuzhe Tang7, Yi Li8,
Xiaokuan Zhang9 and Yibo Wang7

1CertiK, USA; kang.li@certik.com, zhaofeng.chen@certik.com
2Columbia University, USA; rg3123@columbia.edu
3The University of Utah, USA; junxzm@cs.utah.edu,
muzhang@cs.utah.edu
4Zhejiang University, China; wusw1020@zju.edu.cn
5BlockSec, Hong Kong; yajin_zhou@zju.edu.cn
6The Hong Kong Polytechnic University, Hong Kong;
csxluo@comp.polyu.edu.hk
7Syracuse University, USA; ytang100@syr.edu, ywang349@syr.edu
8Nanyang Technological University, Singapore; yi_li@ntu.edu.sg
9George Mason University, USA; xiaokuan@gmu.edu

ABSTRACT
Blockchains have become an integrated part of our finance
infrastructures. Being monetary yet fully automated, block-
chains and their applications are unanimously deemed im-
practicable before undergoing necessary verification. This
monograph reviews the previous attempts at verifying two
fundamental properties of blockchains: correctness (where
flaws lead to unintentional damages) and security (where
vulnerabilities incur attacks and losses). First, it summarizes

Kang Li, Ronghui Gu, Jun Xu, Zhaofeng Chen, Siwei Wu, Yajin Zhou, Mu Zhang, Xi-
apu Luo, Yuzhe Tang, Yi Li, Xiaokuan Zhang and Yibo Wang (2025), “Security Anal-
ysis and Formal Verification on Blockchain and its Applications”, Foundations and
Trends® in Privacy and Security: Vol. 8, No. 1, pp 1–121. DOI: 10.1561/3300000044.
©2025 K. Li et al.

Full text available at: http://dx.doi.org/10.1561/3300000044

2

and categorizes the correctness and security flaws encoun-
tered by real-world blockchains. Second, it systematizes the
development of formal verification to address the flaws in
blockchains, covering the aspects of models, specifications,
and techniques. Third, it unveils the progress of security
analysis for mitigating the flaws, unveiling the analysis prin-
ciples being followed, the flaw oracles being devised, and the
detection methods being used. Finally, it summarizes the
challenges remaining to be addressed, followed by our vision
of the trend in the near future. Throughout this monograph,
we anticipate shedding light on future blockchain verification
advances, especially in expanding its applicability, making
specification generation easier, and discovering previously
unknown vulnerabilities. By identifying gaps such as missing
tools for infrastructure-level components and the difficulty of
writing formal specifications, this work aims to motivate the
development of more automated, intelligent, and practical
verification frameworks.

Full text available at: http://dx.doi.org/10.1561/3300000044

1
Introduction

1.1 Blockchain and its Applications

1.1.1 A Brief History

In 2008, Satoshi Nakamoto’s white paper, “Bitcoin: A Peer-to-Peer
Electronic Cash System” (Nakamoto, 2008), was released to the public,
proposing a solution enabled by peer-to-peer network for electronic cash
payments without needing a trusted third party. This was the first time
the concept of blockchain and the technology underlying Bitcoin (the
first decentralized cryptocurrency) came to our attention.

Since the advent of Bitcoin, blockchain technology has evolved sig-
nificantly. Ethereum, introduced by Vitalik Buterin in 2013 (Buterin
et al., 2013), expanded the capabilities of blockchain by enabling smart
contracts, which are self-executing programs with agreement terms writ-
ten into code. This development opened up unprecedented possibilities
for decentralized applications across various sectors.

1.1.2 Blockchain Technology

Overview: At its core, blockchain is a distributed database that main-
tains a continuously growing list of records, called blocks, which are

3

Full text available at: http://dx.doi.org/10.1561/3300000044

4 Introduction

securely linked using cryptographic techniques. Each block contains a
cryptographic hash of the previous block, a timestamp, and transaction
data, making it virtually tamper-proof and resistant to modification.
This structure ensures that once a block is added to the chain, the infor-
mation it contains is immutable and can be trusted by all participants
in the network.

Most blockchains today are supported by networks following a peer-
to-peer (P2P) model (Buford et al., 2009), where each node acts as
a peer and can perform operations independently of central servers
or authorities. Data on blockchains, especially the transactions, are
distributed across nodes, ensuring each node can access the entire of it.
Block Operations: The creation of blocks depends on the block-
chain’s consensus mechanism (Lashkari and Musilek, 2021). Blockchain
consensus mechanisms are foundational protocols that allow network
participants to agree on the current state of a distributed ledger, en-
suring all transactions are accurate and preventing potential fraud. For
illustrations, we introduce the two most popular consensus mechanisms
and how blocks are created under them.

• Proof of Work (PoW, Nakamoto, 2008): In PoW blockchains
like Bitcoin, a subset of nodes called miners compete to solve
complex cryptographic puzzles (known as mining), and the first
miner to solve the puzzle gets the right to add a new block
consisting of transactions to the blockchain. Full nodes, a super-
set of miners, validate the new block and its transactions. If the
block violates the rules of the blockchain network, it is rejected
to prevent invalid transactions or fraudulent blocks from being
added to the blockchain.

• Proof of Stake (PoS, Smith, 2024): In PoS blockchains like
Tendermint-based Ethereum (Buchman, 2016), creating and vali-
dating blocks are handled by nodes called validators, which are
required to stake a certain amount of their assets as collateral.
Validators are selected to create a new block based on various
factors, such as the size of their stake, random selection processes,
and the length of time they have held the stake. Once chosen,

Full text available at: http://dx.doi.org/10.1561/3300000044

1.1. Blockchain and its Applications 5

the validator can create a block with transactions and broadcast
it to other nodes. If accepted by other validators, the block is
added to the blockchain. To discourage validators from acting
maliciously or negligently, PoS blockchains can penalize them by
slashing a portion of their staked tokens if they attempt to approve
fraudulent transactions or fail to remain online and functional.

User Interactions: Users in the wild can interact with blockchains
through transactions (precisely, units of exchange on blockchain net-
works to enable the transfer of value and information between partic-
ipants). To issue transactions, users usually need a wallet—a digital
identity that allows users to manage their cryptocurrency or digital
assets. With a wallet ready, a user can create a transaction by specifying
the necessary information (e.g., transaction type, recipient’s address,
transfer amount, etc.) and sign it with the private key associated with
their wallet. A signed transaction is first submitted to a blockchain node
and propagated across the peer-to-peer network. Miners or validators
then select pending transactions from the network for execution and
inclusion in a new block. Once a block is created, it is broadcast to
the network for validation. If a majority of nodes accept the block as
valid according to the consensus protocol, the block is appended to the
blockchain. At this point, the transaction is considered finalized and
immutable. An overview of the transaction life cycle is presented in
Figure 1.1.

Figure 1.1: Transaction life cycle.

Full text available at: http://dx.doi.org/10.1561/3300000044

6 Introduction

To incentivize the miners or validators to include a transaction,
the users need to offer a transaction fee. Usually, higher fees can lead
to faster processing, especially on congested networks. With different
blockchains, transaction fees are collected using different mechanisms.
On Bitcoin, transaction fees are calculated based on the transaction
size in bytes, and users pay the fees implicitly with Bitcoins from their
inputs to the transaction. On Ethereum, transaction fees are measured
by the gas needed for completing the transaction. Specifically, each
operation, from sending the transaction to executing the transaction,
requires a predetermined amount of gas. The total gas, after completion
of the transaction, will be paid from the user’s wallet with Ether.

1.1.3 Blockchain Applications

Blockchain technology has enabled a wide range of applications across
various industries. However, the diversity of applications escalated
dramatically after smart contracts were invented.
Before Smart Contracts: Before the advent of smart contracts,
blockchain technology was primarily known for its application as a
decentralized ledger for cryptocurrencies, with Bitcoin being the pioneer.
The most fundamental use of cryptocurrencies is to enable transfers
between two user wallets without needing a trusted intermediary like a
bank. A side use is to earn rewards for participating in the blockchain
operations. For instance, Bitcoin miners receive rewards for each block
mined, including a combination of newly minted bitcoins and transaction
fees from all transactions included in the block.

Besides peer-to-peer transfers, early blockchains have enabled a few
applications in other domains, including but not limited to:

— proof of ownership of digital art and virtual properties;

— timestamping of documents to prove existence at a particular time;

— tracking the origin and journey of products in industries;

— voting systems with reduced fraud and enhanced transparency.

Clarification: Some early applications, such as proof of ownership and
product tracking, resemble later use cases like NFTs and supply chain

Full text available at: http://dx.doi.org/10.1561/3300000044

1.1. Blockchain and its Applications 7

automation. However, smart contracts significantly enhanced these do-
mains by enabling programmability and automation. For example, NFTs
formalized ownership through standardized token interfaces, and supply
chain systems now benefit from automatic updates and conditional
payments via smart contracts. Thus, while the core ideas existed before,
smart contracts expanded their scope, functionality, and adoption.
After Smart Contracts: Smart contracts, introduced by Ethereum,
are self-executing programs with the terms of the agreement between
participants being directly written into lines of code. These contracts au-
tomatically enforce and execute themselves when predefined conditions
are met, providing a secure, transparent, and efficient way to facilitate
and verify transactions without intermediaries.

Smart contracts are typically written in high-level programming
languages crafted for blockchains, such as Solidity for Ethereum. Once
finalized, a smart contract is usually compiled into bytecode, a low-level
representation runnable in the blockchains’ virtual machine (VM). A
special transaction can be created to deploy the bytecode to a block. To
execute a function defined in the smart contract, users send transactions
directly to the smart contract’s address with details such as function
identifier and any parameters required by the function.

The programmability and automation provided by smart contracts
have spurred a wide range of applications across various domains. Some
representative categories include:

• Decentralized Finance (DeFi): Smart contracts have been
used to create protocols that replicate existing financial services,
enabling the DeFi ecosystem. In this ecosystem, we have witnessed
lending and borrowing platforms where users loan cryptocurrencies
and pay interest automatically, stablecoins where smart contracts
maintain a peg to other assets like USD, yield farming and liquidity
mining where users stake liquidity and earn rewards in the form
of transaction fees or governance tokens.

• Decentralized Exchanges (DEXs): Smart contracts have en-
abled Automated Market Makers (AMMs) like Uniswap and
SushiSwap to create liquidity pools that automatically execute

Full text available at: http://dx.doi.org/10.1561/3300000044

8 Introduction

trades based on algorithms. Smart contracts have also created
space where users can exchange tokens directly from their wallets,
bypassing the need for centralized exchanges.

• Non-Fungible Tokens (NFTs): Smart contracts have been
adopted to verify the authenticity and ownership of digital assets,
allowing artists and creators to sell unique digital art pieces
directly to consumers. Similarly, in games, smart contracts can
manage in-game assets that players can own, trade, or use across
different gaming platforms.

• Supply Chain Management: Smart contracts can record the
journey of a product through its supply chain, automatically
updating at each stage when conditions are met to ensure trans-
parency and authenticity. With smart contracts, payments can be
automatically triggered when goods are delivered or milestones are
met, reducing delays and removing the need for manual processing.

1.2 The Need for Verification

Compared to conventional computation platforms, blockchains offer the
following set of unique properties, leading to their rapid development
and tremendous deployment.

• Decentralization: A blockchain is maintained by a network of
nodes, each holding a copy of the entire ledger. This decentraliza-
tion enhances security and reduces the risk of data manipulation.

• Transparency: Transactions on a blockchain are visible to all
participants in the network, providing a high level of transparency.
This feature is particularly valuable in applications requiring
accountability and auditability.

• Immutability: Once recorded on a blockchain, data cannot be
altered or deleted. This immutability ensures the integrity and
reliability of the data, making blockchain an ideal solution for
record-keeping and verification purposes.

• Security: Blockchain employs advanced cryptographic techniques
to secure transactions and control the creation of new units. The

Full text available at: http://dx.doi.org/10.1561/3300000044

1.3. Outline 9

consensus mechanisms used in blockchain networks further en-
hance security by making it computationally infeasible for mali-
cious actors to alter the blockchain.

However, the properties shall never be taken for granted. The designs
and implementations of blockchains and their applications can involve
high complexities and subtleness. If not properly handled, they can
introduce various flaws compromising those properties. As we will
systematize in Section 2, we have witnessed numerous flaws in real-world
blockchains and applications, spanning all aspects and components.

When the flaws are triggered, especially when exploited by adver-
saries, the four properties above can break, and assumptions about the
safety of assets no longer hold. This often leads to financial damage at an
astonishing level. In 2023 alone, the top ten attacks against blockchain
flaws have led to asset losses totaling around $1,146 million. These
notorious attacks have shaken society’s confidence in blockchains. For
instance, the DAO hack against Ethereum in 2016 (Chen, 2019) not only
incurred a $60 million theft but, more importantly, led to a hard fork of
the blockchain. This sparked a significant debate over the immutability
of blockchains, threatening the foundations of blockchain technology.
Thus, verification of the core properties of blockchains and
their applications is a must to ensure the development and
sustainability of the entire ecosystem.

1.3 Outline

In this monograph, we aim to present a review of the existing efforts on
verification for mitigating flaws in blockchains and their applications. We
differentiate these efforts into two big categories of formal verification
and security analysis and discuss them separately. Unlike previous
attempts that organize the literature based on how the methods work
(modeling, specification, techniques, etc.), we take a problem-driven
strategy: we organize the existing methods based on the flaws they focus
on. Specifically, we elaborate on each family of major flaws, and under
each flaw, we discuss the applicable formal verification and security
analysis methods. This way, we deliver a clear understanding of what

Full text available at: http://dx.doi.org/10.1561/3300000044

10 Introduction

problems have been addressed and what have not.
The follow-up sections of this review are organized as follows. In Sec-

tion 2, we categorize and summarize the common flaws we have observed
in the real world. In Section 3 and Section 4, we systematize the formal
verification and security analysis methods to address those flaws. In Sec-
tion 5, we discuss the remaining challenge faced by formal verification
and security analysis, followed by sharing our opinions about the future
in Section 6.

Full text available at: http://dx.doi.org/10.1561/3300000044

References

Abate, A., C. David, P. Kesseli, D. Kroening, and E. Polgreen. (2018).
“Counterexample guided inductive synthesis modulo theories”. In:
International Conference on Computer Aided Verification. Springer.
270–288.

Abdelaziz, T. and A. Hobor. (2023). “Smart learning to find dumb con-
tracts”. In: 32nd USENIX Security Symposium (USENIX Security
23). 1775–1792.

Alchemy. (2022). “How to Send Private Transactions on Ethereum”.
url: https ://www.alchemy.com/overviews/ethereum- private -
transactions.

Aleth. (2021). “Ethereum C++ client, tools and libraries”. url: https:
//github.com/ethereum/aleth.

Almakhour, M., L. Sliman, A. E. Samhat, and A. Mellouk. (2020).
“Verification of smart contracts: A survey”. Pervasive and Mobile
Computing. 67: 101227.

Alt, L., M. Blicha, A. E. J. Hyvärinen, and N. Sharygina. (2022).
“SolCMC: Solidity Compiler’s Model Checker”. In: Computer Aided
Verification - 34th International Conference, CAV 2022, Haifa, Israel,
August 7-10, 2022, Proceedings, Part I. Ed. by S. Shoham and Y.
Vizel. Vol. 13371. Lecture Notes in Computer Science. Springer.
325–338. doi: 10.1007/978-3-031-13185-1_16.

95

Full text available at: http://dx.doi.org/10.1561/3300000044

https://www.alchemy.com/overviews/ethereum-private-transactions
https://www.alchemy.com/overviews/ethereum-private-transactions
https://github.com/ethereum/aleth
https://github.com/ethereum/aleth
https://doi.org/10.1007/978-3-031-13185-1_16

96 References

Alturki, M. A., J. Chen, V. Luchangco, B. Moore, K. Palmskog, L. Peña,
and G. Roşu. (2020). “Towards a verified model of the algorand con-
sensus protocol in coq”. In: Formal Methods. FM 2019 International
Workshops: Porto, Portugal, October 7–11, 2019, Revised Selected
Papers, Part I 3. Springer. 362–367.

Alur, R. (1999). “Timed automata”. In: Computer Aided Verification:
11th International Conference, CAV’99 Trento, Italy, July 6–10,
1999 Proceedings 11. Springer. 8–22.

Analog. (2022). “A Timeline and History of Recent Cross-Chain Bridge
Attacks”. url: https://medium.com/@analogtime/a- timeline-
and-history-of-recent-cross-chain-bridge-attacks-analog-insights-
507349381a4b.

Ashraf, I., X. Ma, B. Jiang, and W. K. Chan. (2020). “GasFuzzer:
Fuzzing Ethereum Smart Contract Binaries to Expose Gas-Oriented
Exception Security Vulnerabilities”. IEEE Access. 8: 99552–99564.
doi: 10.1109/ACCESS.2020.2995183.

Atzei, N., M. Bartoletti, and T. Cimoli. (2017). “A survey of attacks
on ethereum smart contracts (sok)”. In: Principles of Security and
Trust: 6th International Conference, POST 2017, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings 6.
Springer. 164–186.

Baldoni, R., E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finoc-
chi. (2018). “A survey of symbolic execution techniques”. ACM
Computing Surveys (CSUR). 51(3): 1–39.

Basu, A., B. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen,
and J. Sifakis. (2011). “Rigorous component-based system design
using the BIP framework”. IEEE software. 28(3): 41–48.

Belchior, R., P. Somogyvari, J. Pfannschmidt, A. Vasconcelos, and M.
Correia. (2024). “Hephaestus: Modeling, Analysis, and Performance
Evaluation of Cross-Chain Transactions”. IEEE Trans. Reliab. 73(2):
1132–1146. doi: 10.1109/TR.2023.3336246.

Bertrand, N., P. Ghorpade, S. Rubin, B. Scholz, and P. Subotic. (2024).
“Reusable Formal Verification of DAG-based Consensus Protocols”.
arXiv preprint arXiv:2407.02167.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://medium.com/@analogtime/a-timeline-and-history-of-recent-cross-chain-bridge-attacks-analog-insights-507349381a4b
https://medium.com/@analogtime/a-timeline-and-history-of-recent-cross-chain-bridge-attacks-analog-insights-507349381a4b
https://medium.com/@analogtime/a-timeline-and-history-of-recent-cross-chain-bridge-attacks-analog-insights-507349381a4b
https://doi.org/10.1109/ACCESS.2020.2995183
https://doi.org/10.1109/TR.2023.3336246

References 97

Bertrand, N., V. Gramoli, I. Konnov, M. Lazić, P. Tholoniat, and
J. Widder. (2022). “Holistic verification of blockchain consensus”.
arXiv preprint arXiv:2206.04489.

Blanchard, J. and A. Popowycz. (2023). “Analysis & Remediation
of the Precompile Attack on the Hedera Network”. url: https :
//hedera.com/blog/analysis-remediation-of-the-precompile-attack-
on-the-hedera-network.

Block, T. (2023). “BlockSec prevents $5 million from being stolen on
Paraspace”. url: https://www.theblock.co/post/220761/blocksec-
prevents-5-million-from-being-stolen-on-paraspace.

BlockSec. (2021a). “A Short Analysis of the Wild Exploitation of CVE-
2021–39137”. url: https://blocksec.com/blog/a-short-analysis-of-
the-wild-exploitation-of-cve-2021-39137.

BlockSec. (2021b). “New Integer Overflow Bug Discovered in Solana
rBPF”. url: https://blocksec.com/blog/new-integer-overflow-bug-
discovered-in-solana-r-bpf.

BlockSec. (2023a). “#10: ThirdWeb Incident: Incompatibility Between
Trusted Modules Exposes Vulnerability”. url: https://blocksec.
com/blog/10-third-web-incident-incompatibility-between-trusted-
modules-exposes-vulnerability.

BlockSec. (2023b). “Systematic Approach to Maintaining EVM Com-
patibility and Security”. url: https://blocksecteam.medium.com/
systematic - approach - to - maintaining - evm - compatibility - and -
security-32d0f42846f5.

BlockSec. (2024a). “Reflecting on Reflection Tokens: A Security Per-
spective”. url: https://blocksec.com/blog/reflecting-on-reflection-
tokens-a-security-perspective.

BlockSec. (2024b). “Security Check: Do EVM-Compatible Chains Hold
Up?” url: https://blocksec.com/blog/security- check-do- evm-
compatible-chains-hold-up.

Bodell III, W. E., S. Meisami, and Y. Duan. (2023). “Proxy hunting:
understanding and characterizing proxy-based upgradeable smart
contracts in blockchains”. In: 32nd USENIX Security Symposium
(USENIX Security 23). 1829–1846.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://hedera.com/blog/analysis-remediation-of-the-precompile-attack-on-the-hedera-network
https://hedera.com/blog/analysis-remediation-of-the-precompile-attack-on-the-hedera-network
https://hedera.com/blog/analysis-remediation-of-the-precompile-attack-on-the-hedera-network
https://www.theblock.co/post/220761/blocksec-prevents-5-million-from-being-stolen-on-paraspace
https://www.theblock.co/post/220761/blocksec-prevents-5-million-from-being-stolen-on-paraspace
https://blocksec.com/blog/a-short-analysis-of-the-wild-exploitation-of-cve-2021-39137
https://blocksec.com/blog/a-short-analysis-of-the-wild-exploitation-of-cve-2021-39137
https://blocksec.com/blog/new-integer-overflow-bug-discovered-in-solana-r-bpf
https://blocksec.com/blog/new-integer-overflow-bug-discovered-in-solana-r-bpf
https://blocksec.com/blog/10-third-web-incident-incompatibility-between-trusted-modules-exposes-vulnerability
https://blocksec.com/blog/10-third-web-incident-incompatibility-between-trusted-modules-exposes-vulnerability
https://blocksec.com/blog/10-third-web-incident-incompatibility-between-trusted-modules-exposes-vulnerability
https://blocksecteam.medium.com/systematic-approach-to-maintaining-evm-compatibility-and-security-32d0f42846f5
https://blocksecteam.medium.com/systematic-approach-to-maintaining-evm-compatibility-and-security-32d0f42846f5
https://blocksecteam.medium.com/systematic-approach-to-maintaining-evm-compatibility-and-security-32d0f42846f5
https://blocksec.com/blog/reflecting-on-reflection-tokens-a-security-perspective
https://blocksec.com/blog/reflecting-on-reflection-tokens-a-security-perspective
https://blocksec.com/blog/security-check-do-evm-compatible-chains-hold-up
https://blocksec.com/blog/security-check-do-evm-compatible-chains-hold-up

98 References

Boxler, D. and K. R. Walcott. (2018). “Static taint analysis tools to
detect information flows”. In: Proceedings of the International Con-
ference on Software Engineering Research and Practice (SERP). The
Steering Committee of The World Congress in Computer Science,
Computer. 46–52.

Bradley, A. R. (2011). “SAT-based model checking without unrolling”.
In: International Workshop on Verification, Model Checking, and
Abstract Interpretation. Springer. 70–87.

Brent, L., N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis.
(2020). “Ethainter: a smart contract security analyzer for compos-
ite vulnerabilities”. In: Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation.
454–469.

Brent, L., A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R.
Holz, and B. Scholz. (2018). “Vandal: A scalable security analysis
framework for smart contracts”. arXiv preprint arXiv:1809.03981.

Büchi, J. R. (1966). “Symposium on decision problems: On a decision
method in restricted second order arithmetic”. In: Studies in Logic
and the Foundations of Mathematics. Vol. 44. Elsevier. 1–11.

Buchman, E. (2016). “Tendermint: Byzantine fault tolerance in the age
of blockchains”. PhD thesis. University of Guelph.

Buford, J., H. Yu, and E. K. Lua. (2009). P2P networking and applica-
tions. Morgan Kaufmann.

Buterin, V. et al. (2013). “Ethereum white paper”. GitHub repository.
1: 22–23.

Caversaccio, P. (2024). “pcaversaccio/reentrancy-attacks: A chronolog-
ical and (hopefully) complete list of reentrancy attacks to date.”
url: https://github.com/pcaversaccio/reentrancy-attacks.

Cecchetti, E., S. Yao, H. Ni, and A. C. Myers. (2021). “Compositional
security for reentrant applications”. In: 2021 IEEE Symposium on
Security and Privacy (SP). IEEE. 1249–1267.

CertiK. (2023). “The HamsterWheel: An In-Depth Exploration of a
Novel Attack Vector on the Sui Blockchain”. url: https://www.
certik . com / resources / blog / the - hamsterwheel - an - in - depth -
exploration-of-a-novel-attack-vector-on-the-sui.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://github.com/pcaversaccio/reentrancy-attacks
https://www.certik.com/resources/blog/the-hamsterwheel-an-in-depth-exploration-of-a-novel-attack-vector-on-the-sui
https://www.certik.com/resources/blog/the-hamsterwheel-an-in-depth-exploration-of-a-novel-attack-vector-on-the-sui
https://www.certik.com/resources/blog/the-hamsterwheel-an-in-depth-exploration-of-a-novel-attack-vector-on-the-sui

References 99

Chain-Split, B. C. (2018). “Bitcoin Cash Chain-Split Bug (2018)”. url:
https://www.bitcoinabc.org/2018-05-07-incident-report/.

Chainlink. (2023). “What Are Cross-Chain Smart Contracts?” url:
https://chain.link/education-hub/cross-chain-smart-contracts.

ChainWall. (2023). “Reentrancy Attack in Smart Contracts”. url: https:
//medium.com/chainwall-io/reentrancy-attack-in-smart-contracts-
4837ed0f9d73.

Chandra, A. K. and D. Harel. (1985). “Horn clause queries and general-
izations”. The Journal of Logic Programming. 2(1): 1–15.

Chen, J., Y. Wang, Y. Zhou, W. Ding, Y. Tang, X. Wang, and K.
Li. (2023a). “Understanding the Security Risks of Decentralized
Exchanges by Uncovering Unfair Trades in the Wild”. In: 8th
IEEE European Symposium on Security and Privacy, EuroS&P
2023, Delft, Netherlands, July 3-7, 2023. IEEE. 332–351. doi: 10.
1109/EUROSP57164.2023.00028.

Chen, J. and S. Micali. (2016). “Algorand”. arXiv preprint
arXiv:1607.01341.

Chen, T., R. Cao, T. Li, X. Luo, G. Gu, Y. Zhang, Z. Liao, H. Zhu,
G. Chen, Z. He, et al. (2020). “SODA: A Generic Online Detection
Framework for Smart Contracts.” In: NDSS.

Chen, Y., F. Ma, Y. Zhou, Y. Jiang, T. Chen, and J. Sun. (2023b).
“Tyr: Finding consensus failure bugs in blockchain system with
behaviour divergent model”. In: 2023 IEEE Symposium on Security
and Privacy (SP). IEEE. 2517–2532.

Chen, Z. (2019). “Smart Contract Reentrancy: TheDAO”. url: https:
//medium.com/@zhongqiangc/smart-contract-reentrancy-thedao-
f2da1d25180c.

Choi, J., D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha. (2021).
“Smartian: Enhancing smart contract fuzzing with static and dy-
namic data-flow analyses”. In: 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE. 227–
239.

Clarke, E. M. (1997). “Model checking”. In: Foundations of Software
Technology and Theoretical Computer Science: 17th Conference
Kharagpur, India, December 18–20, 1997 Proceedings 17. Springer.
54–56.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://www.bitcoinabc.org/2018-05-07-incident-report/
https://chain.link/education-hub/cross-chain-smart-contracts
https://medium.com/chainwall-io/reentrancy-attack-in-smart-contracts-4837ed0f9d73
https://medium.com/chainwall-io/reentrancy-attack-in-smart-contracts-4837ed0f9d73
https://medium.com/chainwall-io/reentrancy-attack-in-smart-contracts-4837ed0f9d73
https://doi.org/10.1109/EUROSP57164.2023.00028
https://doi.org/10.1109/EUROSP57164.2023.00028
https://medium.com/@zhongqiangc/smart-contract-reentrancy-thedao-f2da1d25180c
https://medium.com/@zhongqiangc/smart-contract-reentrancy-thedao-f2da1d25180c
https://medium.com/@zhongqiangc/smart-contract-reentrancy-thedao-f2da1d25180c

100 References

Colby, C. and P. Lee. (1996). “Trace-based program analysis”. In:
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. 195–207.

Consensus-Bug, G. (2016). “Ethereum Geth Consensus Bug (2016)”.
url: https:///2016/11/25/security-alert-11242016-consensus-bug-
geth-v1-4-19-v1-5-2/.

Cosmos. (2023). “ICS04: Something confusing about function timeout-
Packet and timeoutOnClose”. url: https://github.com/cosmos/ibc/
issues/965.

Cosmos. (2024). “Interchain Standards (ICS) for the Cosmos network
& interchain ecosystem.” url: https://github.com/cosmos/ibc.

Cosmos Hub Forum. (2024). “EVM Precompiled contract bug allowing
unlimited token mint”. url: https://forum.cosmos.network/t/
critical-evm-precompiled-contract-bug-allowing-unlimited-token-
mint/14060.

Cousineau, D., D. Doligez, L. Lamport, S. Merz, D. Ricketts, and H.
Vanzetto. (2012). “TLA + Proofs”. In: FM 2012: Formal Methods.
Ed. by D. Giannakopoulou and D. Méry. Berlin, Heidelberg: Springer
Berlin Heidelberg. 147–154.

Crain, T., C. Natoli, and V. Gramoli. (2021). “Red belly: A secure,
fair and scalable open blockchain”. In: 2021 IEEE Symposium on
Security and Privacy (SP). IEEE. 466–483.

Cui, S., G. Zhao, Y. Gao, T. Tavu, and J. Huang. (2022). “VRust:
Automated vulnerability detection for solana smart contracts”. In:
Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. 639–652.

CVE. (2018). “NVD - CVE-2018-11329”. url: https://nvd.nist.gov/
vuln/detail/CVE-2018-11329.

CWA-2023-004. (2023). “CWA-2023-004”. url: https://github.com/
CosmWasm/advisories/blob/main/CWAs/CWA-2023-004.md.

Danila, R. (2020). “Responsible Vulnerability Disclosure”. url: https:
//medium.com/nexus-mutual/responsible-vulnerability-disclosure-
ece3fe3bcefa.

Das, S. and D. L. Dill. (2001). “Successive approximation of abstract
transition relations”. In: Proceedings 16th Annual IEEE Symposium
on Logic in Computer Science. IEEE. 51–58.

Full text available at: http://dx.doi.org/10.1561/3300000044

https:///2016/11/25/security-alert-11242016-consensus-bug-geth-v1-4-19-v1-5-2/
https:///2016/11/25/security-alert-11242016-consensus-bug-geth-v1-4-19-v1-5-2/
https://github.com/cosmos/ibc/issues/965
https://github.com/cosmos/ibc/issues/965
https://github.com/cosmos/ibc
https://forum.cosmos.network/t/critical-evm-precompiled-contract-bug-allowing-unlimited-token-mint/14060
https://forum.cosmos.network/t/critical-evm-precompiled-contract-bug-allowing-unlimited-token-mint/14060
https://forum.cosmos.network/t/critical-evm-precompiled-contract-bug-allowing-unlimited-token-mint/14060
https://nvd.nist.gov/vuln/detail/CVE-2018-11329
https://nvd.nist.gov/vuln/detail/CVE-2018-11329
https://github.com/CosmWasm/advisories/blob/main/CWAs/CWA-2023-004.md
https://github.com/CosmWasm/advisories/blob/main/CWAs/CWA-2023-004.md
https://medium.com/nexus-mutual/responsible-vulnerability-disclosure-ece3fe3bcefa
https://medium.com/nexus-mutual/responsible-vulnerability-disclosure-ece3fe3bcefa
https://medium.com/nexus-mutual/responsible-vulnerability-disclosure-ece3fe3bcefa

References 101

Desharnais, J. and P. Panangaden. (2003). “Continuous stochastic logic
characterizes bisimulation of continuous-time Markov processes”.
The Journal of Logic and Algebraic Programming. 56(1-2): 99–115.

Ding, W., Y. Tang, and Y. Wang. (2025). “ Asymmetric Mempool DoS
Security: Formal Definitions and Provable Secure Designs ”. In: 2025
IEEE Symposium on Security and Privacy (SP). Los Alamitos, CA,
USA: IEEE Computer Society. 61–61. doi: 10.1109/SP61157.2025.
00061.

Doshi, V. (2023). “Types of attacks on smart contracts”. url: https:
//varunx.hashnode.dev/smart-contract-attack-vectors.

Durieux, T., J. F. Ferreira, R. Abreu, and P. Cruz. (2020). “Empiri-
cal review of automated analysis tools on 47,587 ethereum smart
contracts”. In: Proceedings of the ACM/IEEE 42nd International
conference on software engineering. 530–541.

Ethereum. (2016). “Exception on overflow”. url: https://github.com/
ethereum/solidity/issues/796%5C#issuecomment-253578925.

Ethereum. (2018). “Utilities for interacting with the Ethereum virtual
machine”. url: https://github.com/ethereum/evmlab.

Ethereum. (2020). “Go Ethereum: Official Go implementation of the
Ethereum protocol”. url: https : / / github . com / ethereum / go -
ethereum.

Ethereum. (2024a). “Common tests for all Ethereum implementations”.
url: https://github.com/ethereum/tests.

Ethereum. (2024b). “Contract ABI Specification — Solidity 0.8.27
documentation”. url: https://docs.soliditylang.org/en/latest/abi-
spec.html.

Ethereum. (2024c). “ERC-20 Token Standard”. url: https://ethereum.
org/en/developers/docs/standards/tokens/erc-20/.

Ethereum. (2024d). “Solidity 0.8.27 documentation”. url: https://docs.
soliditylang.org/en/v0.8.27/.

Ethereum. (2024e). “Solidity, the Smart Contract Programming Lan-
guage”. url: https://github.com/ethereum/solidity.

Ethereum. (2024f). “theRun Contract”. url: https : / / etherscan .
io/address/0xcac337492149bdb66b088bf5914bedfbf78ccc18%5C#
code.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://doi.org/10.1109/SP61157.2025.00061
https://doi.org/10.1109/SP61157.2025.00061
https://varunx.hashnode.dev/smart-contract-attack-vectors
https://varunx.hashnode.dev/smart-contract-attack-vectors
https://github.com/ethereum/solidity/issues/796%5C#issuecomment-253578925
https://github.com/ethereum/solidity/issues/796%5C#issuecomment-253578925
https://github.com/ethereum/evmlab
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/tests
https://docs.soliditylang.org/en/latest/abi-spec.html
https://docs.soliditylang.org/en/latest/abi-spec.html
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://docs.soliditylang.org/en/v0.8.27/
https://docs.soliditylang.org/en/v0.8.27/
https://github.com/ethereum/solidity
https://etherscan.io/address/0xcac337492149bdb66b088bf5914bedfbf78ccc18%5C#code
https://etherscan.io/address/0xcac337492149bdb66b088bf5914bedfbf78ccc18%5C#code
https://etherscan.io/address/0xcac337492149bdb66b088bf5914bedfbf78ccc18%5C#code

102 References

Etherscan. (2024). “Ethereum (ETH) Blockchain Explorer”. url: https:
//etherscan.io/.

Py-EVM. (2024). “A Python implementation of the Ethereum Virtual
Machine”. url: https://github.com/ethereum/py-evm.

EVM. (2024). “EVM Codes - Precompiled Contracts”. url: https :
//www.evm.codes/precompiled.

JS-EVM. (2024). “TypeScript implementation of the Ethereum EVM.”
url: https://www.npmjs.com/package/@ethereumjs/evm.

Feist, J., G. Grieco, and A. Groce. (2019). “Slither: a static analysis
framework for smart contracts”. In: 2019 IEEE/ACM 2nd Interna-
tional Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB). IEEE. 8–15.

Felleisen, M., R. B. Findler, M. Flatt, S. Krishnamurthi, E. Barzilay, J.
McCarthy, and S. Tobin-Hochstadt. (2015). “The racket manifesto”.
In: 1st Summit on Advances in Programming Languages (SNAPL
2015). Schloss-Dagstuhl-Leibniz Zentrum für Informatik.

Feng, Y., E. Torlak, and R. Bodík. (2020). “Summary-based sym-
bolic evaluation for smart contracts”. In: Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engi-
neering. 1141–1152.

Filliâtre, J.-C. and A. Paskevich. (2013). “Why3—where programs meet
provers”. In: Programming Languages and Systems: 22nd European
Symposium on Programming, ESOP 2013, Held As Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings 22.
Springer. 125–128.

Finance, B. (2021). “Economic Exploit Attack on Bunny Protocol”.
url: https : / / pancakebunny. medium . com / hello - bunny - fam -
a7bf0c7a07ba.

Fioraldi, A., A. Mantovani, D. Maier, and D. Balzarotti. (2023). “Dissect-
ing american fuzzy lop: a fuzzbench evaluation”. ACM transactions
on software engineering and methodology. 32(2): 1–26.

Flashbots. (2024). “Flashbots Docs”. url: https://docs.flashbots.net/
flashbots-auction/overview/.

Flaws, S. (2024). “Solidity compiler bugs”. url: https://github.com/
ethereum/solidity/blob/develop/docs/bugs.json.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://etherscan.io/
https://etherscan.io/
https://github.com/ethereum/py-evm
https://www.evm.codes/precompiled
https://www.evm.codes/precompiled
https://www.npmjs.com/package/@ethereumjs/evm
https://pancakebunny.medium.com/hello-bunny-fam-a7bf0c7a07ba
https://pancakebunny.medium.com/hello-bunny-fam-a7bf0c7a07ba
https://docs.flashbots.net/flashbots-auction/overview/
https://docs.flashbots.net/flashbots-auction/overview/
https://github.com/ethereum/solidity/blob/develop/docs/bugs.json
https://github.com/ethereum/solidity/blob/develop/docs/bugs.json

References 103

Fu, Y., M. Ren, F. Ma, H. Shi, X. Yang, Y. Jiang, H. Li, and X. Shi.
(2019). “Evmfuzzer: detect evm vulnerabilities via fuzz testing”.
In: Proceedings of the 2019 27th ACM joint meeting on european
software engineering conference and symposium on the foundations
of software engineering. 1110–1114.

Gorrieri, R. and R. Gorrieri. (2017). “Labeled transition systems”.
Process Algebras for Petri Nets: The Alphabetization of Distributed
Systems: 15–34.

Graves, A. and A. Graves. (2012). “Long short-term memory”. Super-
vised sequence labelling with recurrent neural networks: 37–45.

Grech, N., M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y.
Smaragdakis. (2018). “MadMax: surviving out-of-gas conditions
in Ethereum smart contracts”. Proc. ACM Program. Lang. 2(OOP-
SLA): 116:1–116:27. doi: 10.1145/3276486.

Grieco, G., W. Song, A. Cygan, J. Feist, and A. Groce. (2020). “Echidna:
effective, usable, and fast fuzzing for smart contracts”. In: Pro-
ceedings of the 29th ACM SIGSOFT international symposium on
software testing and analysis. 557–560.

Grishchenko, I., M. Maffei, and C. Schneidewind. (2018). “A semantic
framework for the security analysis of ethereum smart contracts”.
In: Principles of Security and Trust: 7th International Conference,
POST 2018, Held As Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings 7. Springer. 243–269.

Gritti, F., N. Ruaro, R. McLaughlin, P. Bose, D. Das, I. Grishchenko,
C. Kruegel, and G. Vigna. (2023). “Confusum contractum: con-
fused deputy vulnerabilities in ethereum smart contracts”. In: 32nd
USENIX Security Symposium (USENIX Security 23). 1793–1810.

Groce, A. (2021). “A Year in the Life of a Compiler Fuzzing Campaign”.
url: https://blog.trailofbits.com/2021/03/23/a-year-in-the-life-of-
a-compiler-fuzzing-campaign/.

Groce, A. (2024). “Variation of american fuzzy lop for testing compilers”.
url: https://github.com/agroce/afl-compiler-fuzzer.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://doi.org/10.1145/3276486
https://blog.trailofbits.com/2021/03/23/a-year-in-the-life-of-a-compiler-fuzzing-campaign/
https://blog.trailofbits.com/2021/03/23/a-year-in-the-life-of-a-compiler-fuzzing-campaign/
https://github.com/agroce/afl-compiler-fuzzer

104 References

Grossman, S., I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinet-
zky, M. Sagiv, and Y. Zohar. (2017). “Online detection of effectively
callback free objects with applications to smart contracts”. Proceed-
ings of the ACM on Programming Languages. 2(POPL): 1–28.

Gurfinkel, A. and N. Bjørner. (2019). “The science, art, and magic
of constrained horn clauses”. In: 2019 21st International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC). IEEE. 6–10.

Hafer, T. and W. Thomas. (1987). “Computation tree logic CTL* and
path quantifiers in the monadic theory of the binary tree”. In: In-
ternational Colloquium on Automata, Languages, and Programming.
Springer. 269–279.

Hajdu, Á. and D. Jovanovic. (2019). “solc-verify: A Modular Verifier for
Solidity Smart Contracts”. In: Verified Software. Theories, Tools,
and Experiments - 11th International Conference, VSTTE 2019,
New York City, NY, USA, July 13-14, 2019, Revised Selected Papers.
Ed. by S. Chakraborty and J. A. Navas. Vol. 12031. Lecture Notes
in Computer Science. Springer. 161–179. doi: 10.1007/978-3-030-
41600-3_11.

Hallberg, B. J. (2012). Return to First Principles. AuthorHouse.
Harbor. (2023). “Edition of series on security audits: Risk of precompiled

contracts”. url: https://medium.com/coinmonks/edition-of-series-
on-security-audits-risk-of-precompiled-contracts-c99b64006cef.

Harper, C. (2020). “Ethereum’s ‘Unannounced Hard Fork’ Was Trying
to Prevent the Very Disruption It Caused”. url: https://www.
coindesk.com/tech/2020/11/11/ethereums-unannounced-hard-
fork-was-trying-to-prevent-the-very-disruption-it-caused.

Hart, S. and M. Sharir. (1984). “Probabilistic temporal logics for finite
and bounded models”. In: Proceedings of the sixteenth annual ACM
symposium on Theory of computing. 1–13.

Harz, D. and W. Knottenbelt. (2018). “Towards safer smart contracts:
A survey of languages and verification methods”. arXiv preprint
arXiv:1809.09805.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1007/978-3-030-41600-3_11
https://medium.com/coinmonks/edition-of-series-on-security-audits-risk-of-precompiled-contracts-c99b64006cef
https://medium.com/coinmonks/edition-of-series-on-security-audits-risk-of-precompiled-contracts-c99b64006cef
https://www.coindesk.com/tech/2020/11/11/ethereums-unannounced-hard-fork-was-trying-to-prevent-the-very-disruption-it-caused
https://www.coindesk.com/tech/2020/11/11/ethereums-unannounced-hard-fork-was-trying-to-prevent-the-very-disruption-it-caused
https://www.coindesk.com/tech/2020/11/11/ethereums-unannounced-hard-fork-was-trying-to-prevent-the-very-disruption-it-caused

References 105

He, J., M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev.
(2019). “Learning to fuzz from symbolic execution with application
to smart contracts”. In: Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security. 531–548.

He, N., R. Zhang, H. Wang, L. Wu, X. Luo, Y. Guo, T. Yu, and X.
Jiang. (2021). “{EOSAFE}: security analysis of {EOSIO} smart
contracts”. In: 30th USENIX security symposium (USENIX Security
21). 1271–1288.

Hildenbrandt, E., M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, et al. (2018). “Kevm:
A complete formal semantics of the ethereum virtual machine”. In:
2018 IEEE 31st Computer Security Foundations Symposium (CSF).
IEEE. 204–217.

Hirai, Y. (2017). “Defining the ethereum virtual machine for interactive
theorem provers”. In: Financial Cryptography and Data Security:
FC 2017 International Workshops, WAHC, BITCOIN, VOTING,
WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected
Papers 21. Springer. 520–535.

Hoare, C. A. R. (1978). “Communicating sequential processes”. Com-
munications of the ACM. 21(8): 666–677.

Huang, M., J. Chen, Z. Jiang, and Z. Zheng. (2024). “Revealing Hidden
Threats: An Empirical Study of Library Misuse in Smart Contracts”.
In: Proceedings of the 46th IEEE/ACM International Conference
on Software Engineering. 1–12.

Huet, G., G. Kahn, and C. Paulin-Mohring. (1997). “The coq proof
assistant a tutorial”. Rapport Technique. 178.

Imeri, A., N. Agoulmine, and D. Khadraoui. (2020). “Smart contract
modeling and verification techniques: A survey”. In: 8th Interna-
tional Workshop on ADVANCEs in ICT Infrastructures and Services
(ADVANCE 2020). 1–8.

Immunefi. (2023). “Common Cross-Chain Bridge Vulnerabilities”. url:
https : //medium.com/ immunefi/common- cross - chain - bridge -
vulnerabilities-d8c161ffaf8f.

Inspex. (2022). “Cross-Contract Reentrancy Attack”. url: https :
/ / inspexco . medium . com / cross - contract - reentrancy - attack -
402d27a02a15.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://medium.com/immunefi/common-cross-chain-bridge-vulnerabilities-d8c161ffaf8f
https://medium.com/immunefi/common-cross-chain-bridge-vulnerabilities-d8c161ffaf8f
https://inspexco.medium.com/cross-contract-reentrancy-attack-402d27a02a15
https://inspexco.medium.com/cross-contract-reentrancy-attack-402d27a02a15
https://inspexco.medium.com/cross-contract-reentrancy-attack-402d27a02a15

106 References

Iosiro. (2024). “Geth Out-of-Order EIP Application Denial-of-Service”.
url: https://iosiro.com/blog/geth-out-of-order-eip-application-
denial-of-service.

Jeltsch, W. (2019). “A process calculus for formally verifying blockchain
consensus protocols”. In: International Conference on Applications
of Declarative Programming and Knowledge Management. Springer.
24–39.

Jiang, B., Y. Liu, and W. K. Chan. (2018). “Contractfuzzer: Fuzzing
smart contracts for vulnerability detection”. In: Proceedings of the
33rd ACM/IEEE international conference on automated software
engineering. 259–269.

Jiao, J., S. Kan, S.-W. Lin, D. Sanan, Y. Liu, and J. Sun. (2020).
“Semantic understanding of smart contracts: Executable operational
semantics of solidity”. In: 2020 IEEE Symposium on Security and
Privacy (SP). IEEE. 1695–1712.

Jiao, T., Z. Xu, M. Qi, S. Wen, Y. Xiang, and G. Nan. (2024). “A Survey
of Ethereum Smart Contract Security: Attacks and Detection”.
Distributed Ledger Technologies: Research and Practice.

Jones, E. and D. Marmsoler. (2024). “Towards Mechanised Consensus
in Isabelle”. In: 5th International Workshop on Formal Methods for
Blockchains, FMBC 2024, April 7, 2024, Luxembourg City, Lux-
embourg. Ed. by B. Bernardo and D. Marmsoler. Vol. 118. OASIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik. 4:1–4:22. doi:
10.4230/OASICS.FMBC.2024.4.

Jordan, H., B. Scholz, and P. Subotić. (2016). “Soufflé: On synthesis of
program analyzers”. In: Computer Aided Verification: 28th Interna-
tional Conference, CAV 2016, Toronto, ON, Canada, July 17-23,
2016, Proceedings, Part II 28. Springer. 422–430.

Jurafsky, D. and J. H. Martin. (2024). “Speech and Language Processing:
An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition”.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://iosiro.com/blog/geth-out-of-order-eip-application-denial-of-service
https://iosiro.com/blog/geth-out-of-order-eip-application-denial-of-service
https://doi.org/10.4230/OASICS.FMBC.2024.4

References 107

Kado, C., N. Yanai, J. P. Cruz, and S. Okamura. (2023). “An Empirical
Study of Impact of Solidity Compiler Updates on Vulnerabilities”.
In: IEEE International Conference on Pervasive Computing and
Communications Workshops and other Affiliated Events, PerCom
Workshops 2023, Atlanta, GA, USA, March 13-17, 2023. IEEE. 92–
97. doi: 10.1109/PERCOMWORKSHOPS56833.2023.10150389.

Kalra, S., S. Goel, M. Dhawan, and S. Sharma. (2018). “Zeus: analyzing
safety of smart contracts.” In: Ndss. 1–12.

Ke, C.-S. and Y.-R. Chen. (2020). “Instruction Verification of Ethereum
Virtual Machine by Formal Method”. In: 2020 Indo–Taiwan 2nd
International Conference on Computing, Analytics and Networks
(Indo-Taiwan ICAN). IEEE. 69–74.

Keidar, I., E. Kokoris-Kogias, O. Naor, and A. Spiegelman. (2021). “All
you need is dag”. In: Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing. 165–175.

Komuravelli, A., A. Gurfinkel, and S. Chaki. (2016). “SMT-based model
checking for recursive programs”. Formal Methods in System Design.
48: 175–205.

Kong, Q., J. Chen, Y. Wang, Z. Jiang, and Z. Zheng. (2023). “Defitainter:
Detecting price manipulation vulnerabilities in defi protocols”. In:
Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis. 1144–1156.

Konnov, I., M. Lazić, H. Veith, and J. Widder. (2017). “A short coun-
terexample property for safety and liveness verification of fault-
tolerant distributed algorithms”. In: Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages.
719–734.

Kremer, S. and R. Künnemann. (2016). “Automated analysis of security
protocols with global state”. Journal of Computer Security. 24(5):
583–616.

Krishna, A. (2024). “Blockchain Security Issues: A Complete Guide”.
url: https://www.getastra.com/blog/knowledge-base/blockchain-
security-issues/.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://doi.org/10.1109/PERCOMWORKSHOPS56833.2023.10150389
https://www.getastra.com/blog/knowledge-base/blockchain-security-issues/
https://www.getastra.com/blog/knowledge-base/blockchain-security-issues/

108 References

Kwiatkowska, M., G. Norman, and D. Parker. (2004). “Probabilistic
symbolic model checking with PRISM: A hybrid approach”. Inter-
national journal on software tools for technology transfer. 6: 128–
142.

Kwiatkowska, M., G. Norman, and D. Parker. (2010). “Advances and
challenges of probabilistic model checking”. In: 2010 48th Annual
Allerton Conference on Communication, Control, and Computing
(Allerton). IEEE. 1691–1698.

Lahiri, S. K., K. Vaswani, and C. A. Hoare. (2010). “Differential static
analysis: Opportunities, applications, and challenges”. In: Proceed-
ings of the FSE/SDP workshop on Future of software engineering
research. 201–204.

Lamport, L. (1983). “What good is temporal logic?” In: IFIP congress.
Vol. 83. 657–668.

Lamport, L. (2021). “A High-Level View of TLA+”. url: https://
lamport.azurewebsites.net/tla/high-level-view.html.

Laneve, C. and A. Veschetti. (2020). “A Formal Analysis of Blockchain
Consensus”. AFABC. pdf.

Larsen, K. G., P. Pettersson, and W. Yi. (1997). “UPPAAL in a nutshell”.
International journal on software tools for technology transfer. 1:
134–152.

Lashkari, B. and P. Musilek. (2021). “A comprehensive review of block-
chain consensus mechanisms”. IEEE access. 9: 43620–43652.

Laszka, A., S. Eisele, A. Dubey, G. Karsai, and K. Kvaternik. (2018).
“TRANSAX: A blockchain-based decentralized forward-trading en-
ergy exchanged for transactive microgrids”. In: 2018 IEEE 24th
International Conference on Parallel and Distributed Systems (IC-
PADS). IEEE. 918–927.

Li, B., Z. Pan, and T. Hu. (2022). “ReDefender: Detecting Reentrancy
Vulnerabilities in Smart Contracts Automatically”. IEEE Trans.
Reliab. 71(2): 984–999. doi: 10.1109/TR.2022.3161634.

Li, H., Y. Chen, X. Shi, X. Bai, N. Mo, W. Li, R. Guo, Z. Wang,
and Y. Sun. (2023). “Fisco-bcos: An enterprise-grade permissioned
blockchain system with high-performance”. In: Proceedings of the
International Conference for High Performance Computing, Net-
working, Storage and Analysis. 1–17.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://lamport.azurewebsites.net/tla/high-level-view.html
https://lamport.azurewebsites.net/tla/high-level-view.html
https://doi.org/10.1109/TR.2022.3161634

References 109

Li, K., J. Chen, X. Liu, Y. R. Tang, X. Wang, and X. Luo. (2021a).
“As Strong As Its Weakest Link: How to Break Blockchain DApps
at RPC Service”. In: 28th Annual Network and Distributed System
Security Symposium, NDSS 2021, virtually, February 21-25, 2021.
The Internet Society. url: https://www.ndss-symposium.org/ndss-
paper/as- strong-as- its-weakest- link-how-to-break-blockchain-
dapps-at-rpc-service/.

Li, K., Y. Tang, J. Chen, Y. Wang, and X. Liu. (2021b). “TopoShot:
uncovering Ethereum’s network topology leveraging replacement
transactions”. In: IMC ’21: ACM Internet Measurement Confer-
ence, Virtual Event, USA, November 2-4, 2021. Ed. by D. Levin,
A. Mislove, J. Amann, and M. Luckie. ACM. 302–319. doi: 10.1145/
3487552.3487814.

Li, K., Y. Wang, and Y. Tang. (2021c). “DETER: Denial of Ethereum
Txpool sERvices”. In: CCS ’21: 2021 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, Republic of
Korea, November 15 - 19, 2021. Ed. by Y. Kim, J. Kim, G. Vigna,
and E. Shi. ACM. 1645–1667. doi: 10.1145/3460120.3485369.

Li, X., J. Yang, J. Chen, Y. Tang, and X. Gao. (2024). “Character-
izing Ethereum Upgradable Smart Contracts and Their Security
Implications”. In: Proceedings of the ACM on Web Conference 2024,
WWW 2024, Singapore, May 13-17, 2024. Ed. by T. Chua, C. Ngo,
R. Kumar, H. W. Lauw, and R. K. Lee. ACM. 1847–1858. doi:
10.1145/3589334.3645640.

Li, X., C. Su, Y. Xiong, W. Huang, and W. Wang. (2019). “Formal
verification of BNB smart contract”. In: 2019 5th International Con-
ference on Big Data Computing and Communications (BIGCOM).
IEEE. 74–78.

Liao, Z., Y. Nan, H. Liang, S. Hao, J. Zhai, J. Wu, and Z. Zheng.
(2024). “SmartAxe: Detecting Cross-Chain Vulnerabilities in Bridge
Smart Contracts via Fine-Grained Static Analysis”. Proceedings of
the ACM on Software Engineering. 1(FSE): 249–270.

Liu, C., H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe. (2018).
“Reguard: finding reentrancy bugs in smart contracts”. In: Proceed-
ings of the 40th International Conference on Software Engineering:
Companion Proceeedings. 65–68.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://www.ndss-symposium.org/ndss-paper/as-strong-as-its-weakest-link-how-to-break-blockchain-dapps-at-rpc-service/
https://www.ndss-symposium.org/ndss-paper/as-strong-as-its-weakest-link-how-to-break-blockchain-dapps-at-rpc-service/
https://www.ndss-symposium.org/ndss-paper/as-strong-as-its-weakest-link-how-to-break-blockchain-dapps-at-rpc-service/
https://doi.org/10.1145/3487552.3487814
https://doi.org/10.1145/3487552.3487814
https://doi.org/10.1145/3460120.3485369
https://doi.org/10.1145/3589334.3645640

110 References

Luo, Y., W. Xu, K. Andersson, M. S. Hossain, and D. Xu. (2024).
“FELLMVP: An Ensemble LLM Framework for Classifying Smart
Contract Vulnerabilities”. In: 2024 IEEE International Conference
on Blockchain (Blockchain). IEEE. 89–96.

Lutz, O., H. Chen, H. Fereidooni, C. Sendner, A. Dmitrienko, A. R.
Sadeghi, and F. Koushanfar. (2021). “ESCORT: Ethereum Smart
COntRacTs Vulnerability Detection using Deep Neural Network and
Transfer Learning”. url: https://arxiv.org/abs/2103.12607.

Luu, L., D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. (2016).
“Making smart contracts smarter”. In: Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security. 254–
269.

Ma, F., Y. Chen, M. Ren, Y. Zhou, Y. Jiang, T. Chen, H. Li, and
J. Sun. (2023). “LOKI: State-Aware Fuzzing Framework for the
Implementation of Blockchain Consensus Protocols”. In: 30th Annual
Network and Distributed System Security Symposium, NDSS 2023,
San Diego, California, USA, February 27 - March 3, 2023. The
Internet Society. url: https://www.ndss- symposium.org/ndss-
paper/loki-state-aware-fuzzing-framework-for-the-implementation-
of-blockchain-consensus-protocols/.

Ma, H., W. Zhang, Q. Shen, Y. Tian, J. Chen, and S. Cheung. (2024).
“Towards Understanding the Bugs in Solidity Compiler”. In: Proceed-
ings of the 33rd ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, ISSTA 2024, Vienna, Austria, September
16-20, 2024. Ed. by M. Christakis and M. Pradel. ACM. 1312–1324.
doi: 10.1145/3650212.3680362.

Maier, D., F. Fäßler, and J.-P. Seifert. (2021). “Uncovering Smart
Contract VM Bugs Via Differential Fuzzing”. In: Reversing and
Offensive-oriented Trends Symposium. 11–22.

Mavridou, A. and A. Laszka. (2018). “Designing secure ethereum smart
contracts: A finite state machine based approach”. In: Financial
Cryptography and Data Security: 22nd International Conference, FC
2018, Nieuwpoort, Curaçao, February 26–March 2, 2018, Revised
Selected Papers 22. Springer. 523–540.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://arxiv.org/abs/2103.12607
https://www.ndss-symposium.org/ndss-paper/loki-state-aware-fuzzing-framework-for-the-implementation-of-blockchain-consensus-protocols/
https://www.ndss-symposium.org/ndss-paper/loki-state-aware-fuzzing-framework-for-the-implementation-of-blockchain-consensus-protocols/
https://www.ndss-symposium.org/ndss-paper/loki-state-aware-fuzzing-framework-for-the-implementation-of-blockchain-consensus-protocols/
https://doi.org/10.1145/3650212.3680362

References 111

Mavridou, A., A. Laszka, E. Stachtiari, and A. Dubey. (2019). “VeriSolid:
Correct-by-design smart contracts for Ethereum”. In: Financial
Cryptography and Data Security: 23rd International Conference,
FC 2019, Frigate Bay, St. Kitts and Nevis, February 18–22, 2019,
Revised Selected Papers 23. Springer. 446–465.

Mazieres, D. (2015). “The stellar consensus protocol: A federated model
for internet-level consensus”. Stellar Development Foundation. 32:
1–45.

McKeeman, W. M. (1998). “Differential testing for software”. Digital
Technical Journal. 10(1): 100–107.

Meier, S., B. Schmidt, C. Cremers, and D. Basin. (2013). “The
TAMARIN prover for the symbolic analysis of security protocols”.
In: Computer Aided Verification: 25th International Conference,
CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings
25. Springer. 696–701.

Meisami, S., H. Dabadie, S. Li, Y. Tang, and Y. Duan. (2025). “SigScope:
Detecting and Understanding Off-Chain Message Signing-related
Vulnerabilities in Decentralized Applications”. In: THE WEB CON-
FERENCE 2025. url: https : / / openreview . net / forum ? id =
8OIqXq455O.

Miller, C., Z. N. Peterson, et al. (2007). “Analysis of mutation and
generation-based fuzzing”. Independent Security Evaluators, Tech.
Rep. 4.

Monarch. (2017). “King of the Ether”. url: https://www.kingoftheether.
com/thrones/kingoftheether/index.html.

Mossberg, M., F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg. (2019). “Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts”.
In: 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE. 1186–1189.

Mueller, B. (2017). “Mythril: security analysis tool for evm bytecode”.
Mulligan, D. P., S. Owens, K. E. Gray, T. Ridge, and P. Sewell. (2014).

“Lem: reusable engineering of real-world semantics”. ACM SIGPLAN
Notices. 49(9): 175–188.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://openreview.net/forum?id=8OIqXq455O
https://openreview.net/forum?id=8OIqXq455O
https://www.kingoftheether.com/thrones/kingoftheether/index.html
https://www.kingoftheether.com/thrones/kingoftheether/index.html

112 References

Murray, Y. and D. A. Anisi. (2019). “Survey of formal verification
methods for smart contracts on blockchain”. In: 2019 10th IFIP
International Conference on New Technologies, Mobility and Security
(NTMS). IEEE. 1–6.

Nakamoto, S. (2008). “Bitcoin: A Peer-to-Peer Electronic Cash System”.
url: https://bitcoin.org/bitcoin.pdf.

Nehaí, Z., F. Bobot, S. Tucci-Piergiovanni, C. Delporte-Gallet, and
H. Fauconnier. (2022). “A tla+ formal proof of a cross-chain swap”.
In: Proceedings of the 23rd International Conference on Distributed
Computing and Networking. 148–159.

Neo. (2024). “NeoVM - NEO Developer Resource”. url: https : / /
developers.neo.org/docs/n3/foundation/neovm.

Nervos. (2024). “CKB Consensus”. url: https://docs-old.nervos.org/
docs/basics/concepts/consensus.

Nguyen, T. D., L. H. Pham, and J. Sun. (2021). “SGUARD: towards
fixing vulnerable smart contracts automatically”. In: 2021 IEEE
Symposium on Security and Privacy (SP). IEEE. 1215–1229.

Nguyen, T. D., L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh. (2020).
“sfuzz: An efficient adaptive fuzzer for solidity smart contracts”. In:
Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. 778–788.

Nielsen, J. B. and B. Spitters. (2019). “Smart contract interactions in
Coq”. In: International Symposium on Formal Methods. Springer.
380–391.

Nielson, F., H. R. Nielson, and C. Hankin. (2015). Principles of program
analysis. springer.

Nikolic, I., A. Kolluri, I. Sergey, P. Saxena, and A. Hobor. (2018).
“Finding The Greedy, Prodigal, and Suicidal Contracts at Scale”.
In: Proceedings of the 34th Annual Computer Security Applications
Conference, ACSAC 2018, San Juan, PR, USA, December 03-07,
2018. ACM. 653–663. doi: 10.1145/3274694.3274743.

NIST. (2018). “CVE-2018-10376 Detail”. url: https://nvd.nist.gov/
vuln/detail/CVE-2018-10376.

NIST. (2020a). “NVD - CVE-2020-26241”. url: https://nvd.nist.gov/
vuln/detail/CVE-2020-26241.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://bitcoin.org/bitcoin.pdf
https://developers.neo.org/docs/n3/foundation/neovm
https://developers.neo.org/docs/n3/foundation/neovm
https://docs-old.nervos.org/docs/basics/concepts/consensus
https://docs-old.nervos.org/docs/basics/concepts/consensus
https://doi.org/10.1145/3274694.3274743
https://nvd.nist.gov/vuln/detail/CVE-2018-10376
https://nvd.nist.gov/vuln/detail/CVE-2018-10376
https://nvd.nist.gov/vuln/detail/CVE-2020-26241
https://nvd.nist.gov/vuln/detail/CVE-2020-26241

References 113

NIST. (2020b). “NVD - CVE-2020-26265”. url: https://nvd.nist.gov/
vuln/detail/CVE-2020-26265.

NIST. (2021). “NVD - CVE-2021-39137”. url: https://nvd.nist.gov/
vuln/detail/CVE-2021-39137.

NIST. (2022). “NVD - CVE-2022-26534”. url: https://nvd.nist.gov/
vuln/detail/CVE-2022-26534.

OpenZeppelin. (2024). “Math - OpenZeppelin Docs”. url: https://docs.
openzeppelin.com/contracts/2.x/api/math.

Palladino, S. (2017). “The Parity Wallet Hack Explained”. url: https:
//blog.openzeppelin .com/on- the- parity- wallet - multisig- hack-
405a8c12e8f7.

Pcaversaccio. (2024). “A chronological and (hopefully) complete list of
reentrancy attacks to date.” url: https://github.com/pcaversaccio/
reentrancy-attacks?tab=readme-ov-file.

Permenev, A., D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and M.
Vechev. (2020). “Verx: Safety verification of smart contracts”. In:
2020 IEEE symposium on security and privacy (SP). IEEE. 1661–
1677.

Pillai, B., Z. Hóu, K. Biswas, and V. Muthukkumarasamy. (2023).
“Formal Verification of the Burn-to-Claim Blockchain Interopera-
ble Protocol”. In: International Conference on Formal Engineering
Methods. Springer. 249–254.

Plotkin, G. D. (1981). “A structural approach to operational semantics”.
Popescu, M.-C., V. E. Balas, L. Perescu-Popescu, and N. Mastorakis.

(2009). “Multilayer perceptron and neural networks”. WSEAS Trans-
actions on Circuits and Systems. 8(7): 579–588.

Praitheeshan, P., L. Pan, J. Yu, J. Liu, and R. Doss. (2019). “Security
analysis methods on ethereum smart contract vulnerabilities: a
survey”. arXiv preprint arXiv:1908.08605.

Priami, C. (1995). “Stochastic π-calculus”. The Computer Journal.
38(7): 578–589.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://nvd.nist.gov/vuln/detail/CVE-2020-26265
https://nvd.nist.gov/vuln/detail/CVE-2020-26265
https://nvd.nist.gov/vuln/detail/CVE-2021-39137
https://nvd.nist.gov/vuln/detail/CVE-2021-39137
https://nvd.nist.gov/vuln/detail/CVE-2022-26534
https://nvd.nist.gov/vuln/detail/CVE-2022-26534
https://docs.openzeppelin.com/contracts/2.x/api/math
https://docs.openzeppelin.com/contracts/2.x/api/math
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://github.com/pcaversaccio/reentrancy-attacks?tab=readme-ov-file
https://github.com/pcaversaccio/reentrancy-attacks?tab=readme-ov-file

114 References

Pusceddu, D. and M. Bartoletti. (2024). “Formalizing Automated Mar-
ket Makers in the Lean 4 Theorem Prover”. In: 5th International
Workshop on Formal Methods for Blockchains, FMBC 2024, April
7, 2024, Luxembourg City, Luxembourg. Ed. by B. Bernardo and D.
Marmsoler. Vol. 118. OASIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik. 5:1–5:13. doi: 10.4230/OASICS.FMBC.2024.5.

Puterman, M. L. (1990). “Markov decision processes”. Handbooks in
operations research and management science. 2: 331–434.

Qian, P., Z. Liu, Q. He, B. Huang, D. Tian, and X. Wang. (2022).
“Smart contract vulnerability detection technique: A survey”. arXiv
preprint arXiv:2209.05872.

Qin, K., S. Chaliasos, L. Zhou, B. Livshits, D. Song, and A. Gervais.
(2023). “The blockchain imitation game”. In: 32nd USENIX Security
Symposium (USENIX Security 23). 3961–3978.

Qin, K., L. Zhou, B. Livshits, and A. Gervais. (2021). “Attacking the
DeFi Ecosystem with Flash Loans for Fun and Profit”. In: Financial
Cryptography and Data Security - 25th International Conference,
FC 2021, Virtual Event, March 1-5, 2021, Revised Selected Papers,
Part I. Ed. by N. Borisov and C. Díaz. Vol. 12674. Lecture Notes in
Computer Science. Springer. 3–32. doi: 10.1007/978-3-662-64322-
8_1.

Rodler, M., W. Li, G. O. Karame, and L. Davi. (2019). “Sereum: Pro-
tecting Existing Smart Contracts Against Re-Entrancy Attacks”.
In: Proceedings 2019 Network and Distributed System Security Sym-
posium. Internet Society.

Rodler, M., W. Li, G. O. Karame, and L. Davi. (2021). “{EVMPatch}:
Timely and automated patching of ethereum smart contracts”. In:
30th usenix security symposium (USENIX Security 21). 1289–1306.

Ros,u, G. and T. F. S, erbănută. (2010). “An overview of the K semantic
framework”. The Journal of Logic and Algebraic Programming. 79(6):
397–434.

Ruaro, N., F. Gritti, R. McLaughlin, I. Grishchenko, C. Kruegel, and
G. Vigna. (2024a). “Not your Type! Detecting Storage Collision
Vulnerabilities in Ethereum Smart Contracts”. In: Proceedings of
the Network and Distributed System Security (NDSS) Symposium.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://doi.org/10.4230/OASICS.FMBC.2024.5
https://doi.org/10.1007/978-3-662-64322-8_1
https://doi.org/10.1007/978-3-662-64322-8_1

References 115

Ruaro, N., F. Gritti, R. McLaughlin, I. Grishchenko, C. Kruegel, and
G. Vigna. (2024b). “Not your Type! Detecting Storage Collision
Vulnerabilities in Ethereum Smart Contracts”. In: Netw. Distrib.
Syst. Security Symp.

Samreen, N. F. and M. H. Alalfi. (2020). “A survey of security vulner-
abilities in ethereum smart contracts”. In: Proceedings of the 30th
Annual International Conference on Computer Science and Software
Engineering. 73–82.

Samreen, N. F. and M. H. Alalfi. (2021). “A survey of security vulnerabil-
ities in ethereum smart contracts”. arXiv preprint arXiv:2105.06974.

Schneidewind, C., I. Grishchenko, M. Scherer, and M. Maffei. (2020).
“ethor: Practical and provably sound static analysis of ethereum
smart contracts”. In: Proceedings of the 2020 ACM SIGSAC Con-
ference on Computer and Communications Security. 621–640.

Secure3. (2023). “Analysis of the Blockchain Security Chain Events
Caused by Vyper Compiler Vulnerabilities”. url: https://medium.
com/@Secure3/analysis-of-the-blockchain-security-chain-events-
caused-by-vyper-compiler-vulnerabilities-37b66ad8aa45.

Sen, K., M. Viswanathan, and G. Agha. (2004). “Statistical model
checking of black-box probabilistic systems”. In: Computer Aided
Verification: 16th International Conference, CAV 2004, Boston, MA,
USA, July 13-17, 2004. Proceedings 16. Springer. 202–215.

Sendner, C., H. Chen, H. Fereidooni, L. Petzi, J. König, J. Stang, A.
Dmitrienko, A.-R. Sadeghi, and F. Koushanfar. (2023). “Smarter
Contracts: Detecting Vulnerabilities in Smart Contracts with Deep
Transfer Learning.” In: NDSS.

Serah, O. (2023). “Mastering Delegatecall in Solidity: A Compre-
hensive Guide with EVM Walkthrough”. url: https://medium.
com / @ajaotosinserah / mastering - delegatecall - in - solidity - a -
comprehensive-guide-with-evm-walkthrough-6ddf027175c7.

Serebryany, K. (2016). “Continuous fuzzing with libfuzzer and ad-
dresssanitizer”. In: 2016 IEEE Cybersecurity Development (SecDev).
IEEE. 157–157.

SlowMist. (2021). “The Analysis and Q&A Of Poly Network Being
Hacked”. url: https://slowmist.medium.com/the-analysis-and-q-a-
of-poly-network-being-hacked-8112a35beb39.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://medium.com/@Secure3/analysis-of-the-blockchain-security-chain-events-caused-by-vyper-compiler-vulnerabilities-37b66ad8aa45
https://medium.com/@Secure3/analysis-of-the-blockchain-security-chain-events-caused-by-vyper-compiler-vulnerabilities-37b66ad8aa45
https://medium.com/@Secure3/analysis-of-the-blockchain-security-chain-events-caused-by-vyper-compiler-vulnerabilities-37b66ad8aa45
https://medium.com/@ajaotosinserah/mastering-delegatecall-in-solidity-a-comprehensive-guide-with-evm-walkthrough-6ddf027175c7
https://medium.com/@ajaotosinserah/mastering-delegatecall-in-solidity-a-comprehensive-guide-with-evm-walkthrough-6ddf027175c7
https://medium.com/@ajaotosinserah/mastering-delegatecall-in-solidity-a-comprehensive-guide-with-evm-walkthrough-6ddf027175c7
https://slowmist.medium.com/the-analysis-and-q-a-of-poly-network-being-hacked-8112a35beb39
https://slowmist.medium.com/the-analysis-and-q-a-of-poly-network-being-hacked-8112a35beb39

116 References

Smith, C. (2024). “Proof-of-stake (PoS)”. url: https://ethereum.org/
en/developers/docs/consensus-mechanisms/pos/.

Smolka, S., J.-R. Giesen, P. Winkler, O. Draissi, L. Davi, G. Karame,
and K. Pohl. (2023). “Fuzz on the beach: Fuzzing solana smart
contracts”. In: Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security. 1197–1211.

So, S., S. Hong, and H. Oh. (2021). “{SmarTest}: Effectively hunt-
ing vulnerable transaction sequences in smart contracts through
language {Model-Guided} symbolic execution”. In: 30th USENIX
Security Symposium (USENIX Security 21). 1361–1378.

So, S., M. Lee, J. Park, H. Lee, and H. Oh. (2020). “Verismart: A highly
precise safety verifier for ethereum smart contracts”. In: 2020 IEEE
Symposium on Security and Privacy (SP). IEEE. 1678–1694.

SOL-2020-5. (2024). “Solidity compiler flaw SOL-2020-5”. url: https:
//github.com/ethereum/solidity/blob/develop/docs/bugs.json/
%5C#L224.

Solidity. (2024a). “Function Modifiers”. url: https://docs.soliditylang.
org/en/latest/contracts.html%5C#function-modifiers.

Solidity. (2024b). “Sending Ether (transfer, send, call)”. url: https:
//solidity-by-example.org/sending-ether/.

Solidity. (2024c). “Solidity, the Smart Contract Programming Lan-
guage”. url: https://github.com/ethereum/solidity.

Stephens, J., K. Ferles, B. Mariano, S. Lahiri, and I. Dillig. (2021).
“SmartPulse: automated checking of temporal properties in smart
contracts”. In: 2021 IEEE Symposium on Security and Privacy (SP).
IEEE. 555–571.

Su, L., X. Shen, X. Du, X. Liao, X. Wang, L. Xing, and B. Liu. (2021).
“Evil under the sun: Understanding and discovering attacks on
ethereum decentralized applications”. In: 30th USENIX Security
Symposium (USENIX Security 21). 1307–1324.

Sun, J., Y. Liu, J. S. Dong, and C. Chen. (2009a). “Integrating spec-
ification and programs for system modeling and verification”. In:
2009 Third IEEE International Symposium on Theoretical Aspects
of Software Engineering. IEEE. 127–135.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://github.com/ethereum/solidity/blob/develop/docs/bugs.json/%5C#L224
https://github.com/ethereum/solidity/blob/develop/docs/bugs.json/%5C#L224
https://github.com/ethereum/solidity/blob/develop/docs/bugs.json/%5C#L224
https://docs.soliditylang.org/en/latest/contracts.html%5C#function-modifiers
https://docs.soliditylang.org/en/latest/contracts.html%5C#function-modifiers
https://solidity-by-example.org/sending-ether/
https://solidity-by-example.org/sending-ether/
https://github.com/ethereum/solidity

References 117

Sun, J., Y. Liu, J. S. Dong, and J. Pang. (2009b). “PAT: Towards
flexible verification under fairness”. In: Computer Aided Verification:
21st International Conference, CAV 2009, Grenoble, France, June
26-July 2, 2009. Proceedings 21. Springer. 709–714.

Sun, M., Y. Lu, Y. Feng, Q. Zhang, and S. Liu. (2021). “Modeling and
verifying the CKB blockchain consensus protocol”. Mathematics.
9(22): 2954.

Sun, T. and W. Yu. (2020). “A formal verification framework for security
issues of blockchain smart contracts”. Electronics. 9(2): 255.

Sun, Y., D. Wu, Y. Xue, H. Liu, H. Wang, Z. Xu, X. Xie, and Y. Liu.
(2024). “Gptscan: Detecting logic vulnerabilities in smart contracts
by combining gpt with program analysis”. In: Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering.
1–13.

SWC. (2024). “SWC-115 - Smart Contract Weakness Classification
(SWC)”. url: https://swcregistry.io/docs/SWC-115/.

Thin, W. Y. M. M., N. Dong, G. Bai, and J. S. Dong. (2018). “Formal
analysis of a proof-of-stake blockchain”. In: 2018 23rd Interna-
tional Conference on Engineering of Complex Computer Systems
(ICECCS). IEEE. 197–200.

Thummavet, P. (2022). “Solidity Security By Example #04: Cross-
Function Reentrancy”. url: https://medium.com/valixconsulting/
solidity- smart-contract- security-by-example-04-cross- function-
reentrancy-de9cbce0558e.

Tian, Z., F. Wang, Y. Chen, and L. Chen. (2024). “Differential testing
solidity compiler through deep contract manipulation and mutation”.
Software Quality Journal: 1–26.

Tolmach, P., Y. Li, S.-W. Lin, Y. Liu, and Z. Li. (2021). “A survey of
smart contract formal specification and verification”. ACM Com-
puting Surveys (CSUR). 54(7): 1–38.

Tsankov, P., A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev. (2018). “Securify: Practical security analysis of smart
contracts”. In: Proceedings of the 2018 ACM SIGSAC conference
on computer and communications security. 67–82.

Ullman Jeffrey, D. and W. Freeman. (1988). “Principles of database
and knowledge-base systems”.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://swcregistry.io/docs/SWC-115/
https://medium.com/valixconsulting/solidity-smart-contract-security-by-example-04-cross-function-reentrancy-de9cbce0558e
https://medium.com/valixconsulting/solidity-smart-contract-security-by-example-04-cross-function-reentrancy-de9cbce0558e
https://medium.com/valixconsulting/solidity-smart-contract-security-by-example-04-cross-function-reentrancy-de9cbce0558e

118 References

Verge. (2018). “Verge (XVG) Time-Warp Exploit (2018)”. url: https:
//www.reddit.com/r/CryptoCurrency/comments/avvmb9/verge_
xvg_has_lost_94_percent_of_its_value_after/.

Verma, S., D. Yadav, and G. Chandra. (2022). “Introduction of formal
methods in blockchain consensus mechanism and its associated
protocols”. IEEE Access. 10: 66611–66624.

Veschetti, A. (2022). “Source Code of PRISM+”. url: https://github.
com/adeleveschetti/bitcoin-analysis/tree/master.

Veschetti, A. (2023). “A formal analysis of blockchain consensus”. url:
http://amsdottorato.unibo.it/10835/.

Vyper. (2024). “Compiling a Contract”. url: https://docs.vyperlang.
org/en/stable/compiling-a-contract.html.

Wan, Z., D. Lo, X. Xia, and L. Cai. (2017). “Bug characteristics in
blockchain systems: a large-scale empirical study”. In: Proceedings of
the 14th International Conference on Mining Software Repositories,
MSR 2017, Buenos Aires, Argentina, May 20-28, 2017. Ed. by J. M.
González-Barahona, A. Hindle, and L. Tan. IEEE Computer Society.
413–424. doi: 10.1109/MSR.2017.59.

Wang, D., S. Wu, Z. Lin, L. Wu, X. Yuan, Y. Zhou, H. Wang, and K.
Ren. (2021a). “Towards a first step to understand flash loan and its
applications in defi ecosystem”. In: Proceedings of the Ninth Inter-
national Workshop on Security in Blockchain and Cloud Computing.
23–28.

Wang, P. et al. (2019a). “Type system for resource bounds with type-
preserving compilation”. PhD thesis. Massachusetts Institute of
Technology.

Wang, S., C. Zhang, and Z. Su. (2019b). “Detecting nondeterministic
payment bugs in ethereum smart contracts”. Proceedings of the
ACM on Programming Languages. 3(OOPSLA): 1–29.

Wang, W., W. Huang, Z. Meng, Y. Xiong, F. Miao, X. Fang, C. Tu,
and R. Ji. (2023). “Automated inference on financial security of
Ethereum smart contracts”. In: 32nd USENIX Security Symposium
(USENIX Security 23). 3367–3383.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://www.reddit.com/r/CryptoCurrency/comments/avvmb9/verge_xvg_has_lost_94_percent_of_its_value_after/
https://www.reddit.com/r/CryptoCurrency/comments/avvmb9/verge_xvg_has_lost_94_percent_of_its_value_after/
https://www.reddit.com/r/CryptoCurrency/comments/avvmb9/verge_xvg_has_lost_94_percent_of_its_value_after/
https://github.com/adeleveschetti/bitcoin-analysis/tree/master
https://github.com/adeleveschetti/bitcoin-analysis/tree/master
http://amsdottorato.unibo.it/10835/
https://docs.vyperlang.org/en/stable/compiling-a-contract.html
https://docs.vyperlang.org/en/stable/compiling-a-contract.html
https://doi.org/10.1109/MSR.2017.59

References 119

Wang, Y., Y. Tang, K. Li, W. Ding, and Z. Yang. (2024). “Understanding
Ethereum Mempool Security under Asymmetric DoS by Symbolized
Stateful Fuzzing”. In: 33rd USENIX Security Symposium, USENIX
Security 2024, Philadelphia, PA, USA, August 14-16, 2024. Ed. by
D. Balzarotti and W. Xu. USENIX Association. url: https://www.
usenix.org/conference/usenixsecurity24/presentation/wang-yibo.

Wang, Y., Q. Zhang, K. Li, Y. Tang, J. Chen, X. Luo, and T. Chen.
(2021b). “iBatch: saving Ethereum fees via secure and cost-effective
batching of smart-contract invocations”. In: ESEC/FSE ’21: 29th
ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, Athens, Greece,
August 23-28, 2021. Ed. by D. Spinellis, G. Gousios, M. Chechik,
and M. D. Penta. ACM. 566–577. doi: 10.1145/3468264.3468568.

Wei, Q., X. Zhao, X.-Y. Zhu, and W. Zhang. (2023). “Formal Analysis
of IBC Protocol”. In: 2023 IEEE 31st International Conference on
Network Protocols (ICNP). IEEE. 1–11.

Wolper, P. (1985). “The tableau method for temporal logic: An
overview”. Logique et Analyse: 119–136.

Wood, G. et al. (2014). “Ethereum: A secure decentralised generalised
transaction ledger”. Ethereum project yellow paper. 151(2014): 1–32.

Wu, S., D. Wang, J. He, Y. Zhou, L. Wu, X. Yuan, Q. He, and K. Ren.
(2021). “Defiranger: Detecting price manipulation attacks on defi
applications”. arXiv preprint arXiv:2104.15068.

Wu, S., L. Wu, Y. Zhou, R. Li, Z. Wang, X. Luo, C. Wang, and K. Ren.
(2022). “Time-travel investigation: Toward building a scalable attack
detection framework on Ethereum”. ACM Transactions on Software
Engineering and Methodology (TOSEM). 31(3): 1–33.

Wu, S., Z. Yu, D. Wang, Y. Zhou, L. Wu, H. Wang, and X. Yuan. (2023).
“DeFiRanger: Detecting DeFi Price Manipulation Attacks”. IEEE
Transactions on Dependable and Secure Computing.

Wüstholz, V. and M. Christakis. (2020). “Harvey: a greybox fuzzer for
smart contracts”. In: ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Virtual Event, USA, November 8-13, 2020.
Ed. by P. Devanbu, M. B. Cohen, and T. Zimmermann. ACM. 1398–
1409. doi: 10.1145/3368089.3417064.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://www.usenix.org/conference/usenixsecurity24/presentation/wang-yibo
https://www.usenix.org/conference/usenixsecurity24/presentation/wang-yibo
https://doi.org/10.1145/3468264.3468568
https://doi.org/10.1145/3368089.3417064

120 References

Xi, R., Z. Wang, and K. Pattabiraman. (2024). “POMABuster: Detect-
ing Price Oracle Manipulation Attacks in Decentralized Finance”.
In: 2024 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society. 240–240.

Xscope. (2022). “Results: Xscope: Hunting for Cross-Chain Bridge
Attacks”. url: https://github.com/Xscope-Tool/Results?tab=
readme-ov-file.

Xue, Y., M. Ma, Y. Lin, Y. Sui, J. Ye, and T. Peng. (2020). “Cross-
contract static analysis for detecting practical reentrancy vulnera-
bilities in smart contracts”. In: Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. 1029–
1040.

Yang, X., Y. Chen, E. Eide, and J. Regehr. (2011). “Finding and
understanding bugs in C compilers”. In: Proceedings of the 32nd
ACM SIGPLAN conference on Programming language design and
implementation. 283–294.

Yang, Y., T. Kim, and B.-G. Chun. (2021). “Finding consensus bugs
in ethereum via multi-transaction differential fuzzing”. In: 15th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 21). 349–365.

Yoo, J., Y. Jung, D. Shin, M. Bae, and E. Jee. (2019). “Formal modeling
and verification of a federated byzantine agreement algorithm for
blockchain platforms”. In: 2019 IEEE International Workshop on
Blockchain Oriented Software Engineering (IWBOSE). IEEE. 11–21.

Zhang, J., J. Gao, Y. Li, Z. Chen, Z. Guan, and Z. Chen. (2022).
“Xscope: Hunting for cross-chain bridge attacks”. In: Proceedings
of the 37th IEEE/ACM International Conference on Automated
Software Engineering. 1–4.

Zhang, M., X. Zhang, J. Barbee, Y. Zhang, and Z. Lin. (2023a). “SoK:
Security of Cross-chain Bridges: Attack Surfaces, Defenses, and
Open Problems”. arXiv preprint arXiv:2312.12573.

Zhang, M., X. Zhang, Y. Zhang, and Z. Lin. (2020a). “{TXSPECTOR}:
Uncovering attacks in ethereum from transactions”. In: 29th
USENIX Security Symposium (USENIX Security 20). 2775–2792.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://github.com/Xscope-Tool/Results?tab=readme-ov-file
https://github.com/Xscope-Tool/Results?tab=readme-ov-file

References 121

Zhang, X., Y. Li, and M. Sun. (2020b). “Towards a formally verified
EVM in production environment”. In: Coordination Models and
Languages: 22nd IFIP WG 6.1 International Conference, COOR-
DINATION 2020, Held as Part of the 15th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2020,
Valletta, Malta, June 15–19, 2020, Proceedings 22. Springer. 341–
349.

Zhang, Z., Z. Lin, M. Morales, X. Zhang, and K. Zhang. (2023b). “Your
exploit is mine: instantly synthesizing counterattack smart contract”.
In: 32nd USENIX Security Symposium (USENIX Security 23). 1757–
1774.

Zhang, Z., B. Zhang, W. Xu, and Z. Lin. (2023c). “Demystifying Ex-
ploitable Bugs in Smart Contracts”. In: 45th IEEE/ACM Inter-
national Conference on Software Engineering, ICSE 2023, Mel-
bourne, Australia, May 14-20, 2023. IEEE. 615–627. doi: 10.1109/
ICSE48619.2023.00061.

Zhou, L., X. Xiong, J. Ernstberger, S. Chaliasos, Z. Wang, Y. Wang,
K. Qin, R. Wattenhofer, D. Song, and A. Gervais. (2023). “SoK:
Decentralized Finance (DeFi) Attacks”. In: 44th IEEE Symposium
on Security and Privacy, SP 2023, San Francisco, CA, USA, May 21-
25, 2023. IEEE. 2444–2461. doi: 10.1109/SP46215.2023.10179435.

Full text available at: http://dx.doi.org/10.1561/3300000044

https://doi.org/10.1109/ICSE48619.2023.00061
https://doi.org/10.1109/ICSE48619.2023.00061
https://doi.org/10.1109/SP46215.2023.10179435

