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ABSTRACT
Blockchains have become an integrated part of our finance
infrastructures. Being monetary yet fully automated, block-
chains and their applications are unanimously deemed im-
practicable before undergoing necessary verification. This
monograph reviews the previous attempts at verifying two
fundamental properties of blockchains: correctness (where
flaws lead to unintentional damages) and security (where
vulnerabilities incur attacks and losses). First, it summarizes
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and categorizes the correctness and security flaws encoun-
tered by real-world blockchains. Second, it systematizes the
development of formal verification to address the flaws in
blockchains, covering the aspects of models, specifications,
and techniques. Third, it unveils the progress of security
analysis for mitigating the flaws, unveiling the analysis prin-
ciples being followed, the flaw oracles being devised, and the
detection methods being used. Finally, it summarizes the
challenges remaining to be addressed, followed by our vision
of the trend in the near future. Throughout this monograph,
we anticipate shedding light on future blockchain verification
advances, especially in expanding its applicability, making
specification generation easier, and discovering previously
unknown vulnerabilities. By identifying gaps such as missing
tools for infrastructure-level components and the difficulty of
writing formal specifications, this work aims to motivate the
development of more automated, intelligent, and practical
verification frameworks.
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1
Introduction

1.1 Blockchain and its Applications

1.1.1 A Brief History

In 2008, Satoshi Nakamoto’s white paper, “Bitcoin: A Peer-to-Peer
Electronic Cash System” (Nakamoto, 2008), was released to the public,
proposing a solution enabled by peer-to-peer network for electronic cash
payments without needing a trusted third party. This was the first time
the concept of blockchain and the technology underlying Bitcoin (the
first decentralized cryptocurrency) came to our attention.

Since the advent of Bitcoin, blockchain technology has evolved sig-
nificantly. Ethereum, introduced by Vitalik Buterin in 2013 (Buterin
et al., 2013), expanded the capabilities of blockchain by enabling smart
contracts, which are self-executing programs with agreement terms writ-
ten into code. This development opened up unprecedented possibilities
for decentralized applications across various sectors.

1.1.2 Blockchain Technology

Overview: At its core, blockchain is a distributed database that main-
tains a continuously growing list of records, called blocks, which are

3
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4 Introduction

securely linked using cryptographic techniques. Each block contains a
cryptographic hash of the previous block, a timestamp, and transaction
data, making it virtually tamper-proof and resistant to modification.
This structure ensures that once a block is added to the chain, the infor-
mation it contains is immutable and can be trusted by all participants
in the network.

Most blockchains today are supported by networks following a peer-
to-peer (P2P) model (Buford et al., 2009), where each node acts as
a peer and can perform operations independently of central servers
or authorities. Data on blockchains, especially the transactions, are
distributed across nodes, ensuring each node can access the entire of it.
Block Operations: The creation of blocks depends on the block-
chain’s consensus mechanism (Lashkari and Musilek, 2021). Blockchain
consensus mechanisms are foundational protocols that allow network
participants to agree on the current state of a distributed ledger, en-
suring all transactions are accurate and preventing potential fraud. For
illustrations, we introduce the two most popular consensus mechanisms
and how blocks are created under them.

• Proof of Work (PoW, Nakamoto, 2008): In PoW blockchains
like Bitcoin, a subset of nodes called miners compete to solve
complex cryptographic puzzles (known as mining), and the first
miner to solve the puzzle gets the right to add a new block
consisting of transactions to the blockchain. Full nodes, a super-
set of miners, validate the new block and its transactions. If the
block violates the rules of the blockchain network, it is rejected
to prevent invalid transactions or fraudulent blocks from being
added to the blockchain.

• Proof of Stake (PoS, Smith, 2024): In PoS blockchains like
Tendermint-based Ethereum (Buchman, 2016), creating and vali-
dating blocks are handled by nodes called validators, which are
required to stake a certain amount of their assets as collateral.
Validators are selected to create a new block based on various
factors, such as the size of their stake, random selection processes,
and the length of time they have held the stake. Once chosen,

Full text available at: http://dx.doi.org/10.1561/3300000044



1.1. Blockchain and its Applications 5

the validator can create a block with transactions and broadcast
it to other nodes. If accepted by other validators, the block is
added to the blockchain. To discourage validators from acting
maliciously or negligently, PoS blockchains can penalize them by
slashing a portion of their staked tokens if they attempt to approve
fraudulent transactions or fail to remain online and functional.

User Interactions: Users in the wild can interact with blockchains
through transactions (precisely, units of exchange on blockchain net-
works to enable the transfer of value and information between partic-
ipants). To issue transactions, users usually need a wallet—a digital
identity that allows users to manage their cryptocurrency or digital
assets. With a wallet ready, a user can create a transaction by specifying
the necessary information (e.g., transaction type, recipient’s address,
transfer amount, etc.) and sign it with the private key associated with
their wallet. A signed transaction is first submitted to a blockchain node
and propagated across the peer-to-peer network. Miners or validators
then select pending transactions from the network for execution and
inclusion in a new block. Once a block is created, it is broadcast to
the network for validation. If a majority of nodes accept the block as
valid according to the consensus protocol, the block is appended to the
blockchain. At this point, the transaction is considered finalized and
immutable. An overview of the transaction life cycle is presented in
Figure 1.1.

Figure 1.1: Transaction life cycle.
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6 Introduction

To incentivize the miners or validators to include a transaction,
the users need to offer a transaction fee. Usually, higher fees can lead
to faster processing, especially on congested networks. With different
blockchains, transaction fees are collected using different mechanisms.
On Bitcoin, transaction fees are calculated based on the transaction
size in bytes, and users pay the fees implicitly with Bitcoins from their
inputs to the transaction. On Ethereum, transaction fees are measured
by the gas needed for completing the transaction. Specifically, each
operation, from sending the transaction to executing the transaction,
requires a predetermined amount of gas. The total gas, after completion
of the transaction, will be paid from the user’s wallet with Ether.

1.1.3 Blockchain Applications

Blockchain technology has enabled a wide range of applications across
various industries. However, the diversity of applications escalated
dramatically after smart contracts were invented.
Before Smart Contracts: Before the advent of smart contracts,
blockchain technology was primarily known for its application as a
decentralized ledger for cryptocurrencies, with Bitcoin being the pioneer.
The most fundamental use of cryptocurrencies is to enable transfers
between two user wallets without needing a trusted intermediary like a
bank. A side use is to earn rewards for participating in the blockchain
operations. For instance, Bitcoin miners receive rewards for each block
mined, including a combination of newly minted bitcoins and transaction
fees from all transactions included in the block.

Besides peer-to-peer transfers, early blockchains have enabled a few
applications in other domains, including but not limited to:

— proof of ownership of digital art and virtual properties;

— timestamping of documents to prove existence at a particular time;

— tracking the origin and journey of products in industries;

— voting systems with reduced fraud and enhanced transparency.

Clarification: Some early applications, such as proof of ownership and
product tracking, resemble later use cases like NFTs and supply chain
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1.1. Blockchain and its Applications 7

automation. However, smart contracts significantly enhanced these do-
mains by enabling programmability and automation. For example, NFTs
formalized ownership through standardized token interfaces, and supply
chain systems now benefit from automatic updates and conditional
payments via smart contracts. Thus, while the core ideas existed before,
smart contracts expanded their scope, functionality, and adoption.
After Smart Contracts: Smart contracts, introduced by Ethereum,
are self-executing programs with the terms of the agreement between
participants being directly written into lines of code. These contracts au-
tomatically enforce and execute themselves when predefined conditions
are met, providing a secure, transparent, and efficient way to facilitate
and verify transactions without intermediaries.

Smart contracts are typically written in high-level programming
languages crafted for blockchains, such as Solidity for Ethereum. Once
finalized, a smart contract is usually compiled into bytecode, a low-level
representation runnable in the blockchains’ virtual machine (VM). A
special transaction can be created to deploy the bytecode to a block. To
execute a function defined in the smart contract, users send transactions
directly to the smart contract’s address with details such as function
identifier and any parameters required by the function.

The programmability and automation provided by smart contracts
have spurred a wide range of applications across various domains. Some
representative categories include:

• Decentralized Finance (DeFi): Smart contracts have been
used to create protocols that replicate existing financial services,
enabling the DeFi ecosystem. In this ecosystem, we have witnessed
lending and borrowing platforms where users loan cryptocurrencies
and pay interest automatically, stablecoins where smart contracts
maintain a peg to other assets like USD, yield farming and liquidity
mining where users stake liquidity and earn rewards in the form
of transaction fees or governance tokens.

• Decentralized Exchanges (DEXs): Smart contracts have en-
abled Automated Market Makers (AMMs) like Uniswap and
SushiSwap to create liquidity pools that automatically execute

Full text available at: http://dx.doi.org/10.1561/3300000044



8 Introduction

trades based on algorithms. Smart contracts have also created
space where users can exchange tokens directly from their wallets,
bypassing the need for centralized exchanges.

• Non-Fungible Tokens (NFTs): Smart contracts have been
adopted to verify the authenticity and ownership of digital assets,
allowing artists and creators to sell unique digital art pieces
directly to consumers. Similarly, in games, smart contracts can
manage in-game assets that players can own, trade, or use across
different gaming platforms.

• Supply Chain Management: Smart contracts can record the
journey of a product through its supply chain, automatically
updating at each stage when conditions are met to ensure trans-
parency and authenticity. With smart contracts, payments can be
automatically triggered when goods are delivered or milestones are
met, reducing delays and removing the need for manual processing.

1.2 The Need for Verification

Compared to conventional computation platforms, blockchains offer the
following set of unique properties, leading to their rapid development
and tremendous deployment.

• Decentralization: A blockchain is maintained by a network of
nodes, each holding a copy of the entire ledger. This decentraliza-
tion enhances security and reduces the risk of data manipulation.

• Transparency: Transactions on a blockchain are visible to all
participants in the network, providing a high level of transparency.
This feature is particularly valuable in applications requiring
accountability and auditability.

• Immutability: Once recorded on a blockchain, data cannot be
altered or deleted. This immutability ensures the integrity and
reliability of the data, making blockchain an ideal solution for
record-keeping and verification purposes.

• Security: Blockchain employs advanced cryptographic techniques
to secure transactions and control the creation of new units. The
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1.3. Outline 9

consensus mechanisms used in blockchain networks further en-
hance security by making it computationally infeasible for mali-
cious actors to alter the blockchain.

However, the properties shall never be taken for granted. The designs
and implementations of blockchains and their applications can involve
high complexities and subtleness. If not properly handled, they can
introduce various flaws compromising those properties. As we will
systematize in Section 2, we have witnessed numerous flaws in real-world
blockchains and applications, spanning all aspects and components.

When the flaws are triggered, especially when exploited by adver-
saries, the four properties above can break, and assumptions about the
safety of assets no longer hold. This often leads to financial damage at an
astonishing level. In 2023 alone, the top ten attacks against blockchain
flaws have led to asset losses totaling around $1,146 million. These
notorious attacks have shaken society’s confidence in blockchains. For
instance, the DAO hack against Ethereum in 2016 (Chen, 2019) not only
incurred a $60 million theft but, more importantly, led to a hard fork of
the blockchain. This sparked a significant debate over the immutability
of blockchains, threatening the foundations of blockchain technology.
Thus, verification of the core properties of blockchains and
their applications is a must to ensure the development and
sustainability of the entire ecosystem.

1.3 Outline

In this monograph, we aim to present a review of the existing efforts on
verification for mitigating flaws in blockchains and their applications. We
differentiate these efforts into two big categories of formal verification
and security analysis and discuss them separately. Unlike previous
attempts that organize the literature based on how the methods work
(modeling, specification, techniques, etc.), we take a problem-driven
strategy: we organize the existing methods based on the flaws they focus
on. Specifically, we elaborate on each family of major flaws, and under
each flaw, we discuss the applicable formal verification and security
analysis methods. This way, we deliver a clear understanding of what
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10 Introduction

problems have been addressed and what have not.
The follow-up sections of this review are organized as follows. In Sec-

tion 2, we categorize and summarize the common flaws we have observed
in the real world. In Section 3 and Section 4, we systematize the formal
verification and security analysis methods to address those flaws. In Sec-
tion 5, we discuss the remaining challenge faced by formal verification
and security analysis, followed by sharing our opinions about the future
in Section 6.
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