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ABSTRACT
The notion of Zero Trust Architecture (ZTA) has been in-
troduced as a fine-grained defense approach. It assumes
that no entities outside and inside the protected system
can be trusted and, therefore, requires articulated and high-
coverage deployment of security controls. However, ZTA is
a complex notion that does not have a single design solu-
tion; rather, it consists of numerous interconnected concepts
and processes that need to be assessed prior to deciding
on a solution. In this monograph, we cover the principles
and architectural foundations of ZTA, basically following
the guidelines by NIST, and provide a detailed analysis of
ZT architectures proposed by research and industry. The
monograph also describes an approach for the automatic
generation of ZT policies based on application communi-
cation requirements, network topology, and organizational
information. This approach was designed to meet a critical
need of ZTA, that is, the generation and implementation of
a large number of fine-grained policies. Finally, the mono-
graph discusses several research directions, including the
incorporation of threat intelligence into ZT networks and
the use of large language models (LLMs).

Charalampos Katsis and Elisa Bertino (2025), “The Zero-trust Paradigm: Concepts,
Architectures and Applications”, Foundations and Trends® in Privacy and Security:
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1
Introduction

Existing measures aimed at securing network perimeters have demon-
strated insufficiency in preventing breaches within an organization’s
infrastructure (Mirsky et al., 2018; Navarro et al., 2018; Bertino et al.,
2023). This inadequacy stems from the escalating resource capabilities
of adversaries and the increasing sophistication of multi-step attack
strategies, rendering breaches feasible. In addition, additional challenges
have arisen due to the absence of a tangible physical network perimeter
in many scenarios. For example, the widespread adoption of remote
work settings and the utilization of cloud services have resulted in the
dispersion of organizational resources beyond traditional network bound-
aries. Furthermore, the contemporary landscape of network architecture
has witnessed a significant expansion in its attack surface, attributable
to the intricate interconnectivity of diverse networks, encompassing IoT
devices, autonomous vehicles, and operational technology, among others.
Due to those reasons, it is no longer tenable to presume the internal
network’s safety solely based on perimeter defenses. Consequently, there
is an imperative need to adopt more realistic network threat models
that acknowledge the possibility that adversaries have already breached
conventional defenses and infiltrated the network’s core.

2
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3

Zero-trust architecture (ZTA), also known as perimeter-less security,
is a recent paradigm that challenges the conventional notion of network
security by considering both internal and external networks as poten-
tially compromised and that threats exist at all times in the network.
Unlike traditional defense approaches, which often rely on perimeter
defenses, ZTA advocates the deployment of defense mechanisms within
the internal network and at its periphery. Such an approach entails a
fundamental shift in trust dynamics, where all entities, devices, users,
applications, and network flows within the internal network are no
longer inherently trusted and thus cannot arbitrarily communicate with
other entities. Consequently, strict access control policies are imperative
to regulate communication flows. These policies are designed to permit
only the essential communication flows necessary for the successful
completion of each entity’s mission or objectives. By strictly limiting
authorized communications to those aligned with the endpoint’s mission,
ZTA aims to minimize the potential attack surface by reducing the
attacker’s abilities to move within the network.

In some way, the notion of ZTA can be considered as an application
of the well-known security principles by Saltzer and Schroeder (1975),
including closed system, least privilege, complete mediation, defense-in-
depth, and layered defenses, to which two principles are added:

• no entity in the system can be trusted without proper comprehen-
sive checks;

• access control should be resource-centric and context-aware.

A consequence is that ZTA frameworks should provide functions
for (i) authenticating and authorizing, according to the least privilege
policy, all entities trying to access the protected resources based on
context and a trust assessment of these entities and (ii) continuously
monitoring the security of the protected resources.

So, even though ZTA may not be considered novel in all its aspects,
the current emphasis on ZTA is important, as it pushes systematic
approaches to security. Recent and past attacks clearly show that the
security of networks and systems requires systematic, pervasive, fine-
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4 Introduction

grained, and continuous deployment of layered security controls based
on those principles.

1.1 Existing Efforts and Application Domains

Because of its relevance, ZTA guidelines and industry-designed frame-
works have been developed, and researchers have developed approaches
that focus on the application of ZTA to different types of networks and
systems.

1.1.1 Guidelines

The US National Institute of Standards and Technology (NIST) has
introduced initial guidelines for the adoption of ZTA aimed at federal
agencies and the private sector (Stafford, 2020). These guidelines propose
an architectural framework where communications are managed through
one or more policy enforcement points (PEP). The PEP serves as an
intermediary, directing communication requests to a centralized software-
defined controller, which then evaluates requests based on factors such as
access control models and external threat intelligence to make decisions.

The US Department of Defense (DoD, 2022) has released a long-
term strategy for adopting ZTA in their military networks. The DoD
presents a strong use case as they manage large-scale networks with
different architectures and requirements, such as air, ground, space, and
sea networks. A key requirement, according to the released document,
is that data and communications must be protected and secured and
only accessed by the entities who need it, when they need it, using the
least privilege policy.

It is crucial to understand that these documents offer guidelines
rather than concrete technical instructions on how to implement ZTA.
They outline requirements and overarching visions for future adoption
without delving into specific implementation details.

1.1.2 Industrial Approaches

Prominent industry stakeholders are demonstrating considerable inter-
est in the concept of ZTA. BeyondCorp is an architecture developed
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1.1. Existing Efforts and Application Domains 5

by Google (Ward and Beyer, 2014), which proposes an approach to
enforce access control to enterprise resources from enterprise-controlled
(that is, managed) user devices. This model entails directing all requests
to an internet-facing access proxy service, necessitating that resources
be publicly discoverable through the domain name system (DNS) for
access. The service authenticates the user’s or device’s credentials and
the access control model to make a decision. The access proxy service
has to be configured for every service/application in the network. Since
BeyondCorp operates on the principle of making all applications ac-
cessible on the public Internet, some organizations may have concerns
about the increased visibility and potential attack surface. Furthermore,
BeyondCorp is designed with a cloud-first model in mind. Organiza-
tions that still rely heavily on on-premises infrastructure may find it
challenging to fully adopt BeyondCorp.

Microsoft (2024) has introduced a framework for ZTA implemen-
tation, which encompasses the various components necessary for an
integrated solution. These components span from identity management
and endpoint protection to network-based policy enforcement. Palo
Alto Networks (2022) offers a suite of tools and technologies, such as
an identity-based access control engine that allows the definition of
security policies and monitoring of various network services.

1.1.3 Application Domains

Most ZTA approaches have been proposed for network systems character-
ized by open, flexible architectures in which (i) data can be continuously
collected; (ii) collected data can be analyzed using data analytic tech-
niques, such as those based on machine learning (ML) (Katsis and
Bertino, 2025; Polese et al., 2023; Abu Jabal et al., 2020); (iii) results
from these analyses can be used to assess the “trust” of the entities in
the system (Bradatsch et al., 2023b); and (i) policies for authentication
and authorization can be dynamically generated, modified, and deployed
in the system.

Software-defined networks (SDN) represent an interesting environ-
ment in which ZTA can be deployed. By properly extending the control
plane and the data plane, one would be able to support fine-grained
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6 Introduction

and dynamic access control to network segments, possibly based on
communication requirements per application, thus enforcing the least
privilege principle (Katsis and Bertino, 2025).

In addition, it has been advocated that ZTA should be extended
to secure autonomous systems. Good use case examples are drones,
IoT-based manufacturing equipment, operational systems, and even
smart cities (Hassija et al., 2019).

1.2 Challenges in the Application of ZTA

The adoption of ZTA necessitates the generation and deployment of
fine-grained security policies. Given ZTA’s emphasis on strict access
control, organizations must define and implement a vast number of
policies, a process fraught with several challenges.

First, the communication requirements of various network compo-
nents—including IoT devices, services, virtual machines, and users—are
often unclear. As a result, administrators may resort to overly permis-
sive access control policies to prevent disruptions in communication,
inadvertently weakening security.

Second, existing policy frameworks lack mechanisms to precisely
define and enforce granular network access controls. This shortcoming
forces organizations to manually specify network perimeter policies, a
labor-intensive process that is error-prone and time-consuming (Cuppens
et al., 2019; Casado et al., 2007; Mai et al., 2011; Cuppens et al., 2004;
Bodei et al., 2018; Nelson et al., 2010).

Additionally, the absence of comprehensive visibility into normal
network behavior complicates the identification of unauthorized activ-
ities. This limitation is particularly problematic for detecting subtle
anomalies that mimic legitimate traffic but originate from unknown do-
mains. For instance, while flooding attacks exhibit distinctive patterns,
other forms of misuse may blend seamlessly with benign flows, making
them difficult to discern.

Another major challenge is translating high-level security policies
into enforceable rules across diverse enforcement points. Policies that
are intuitive to administrators must be converted into configurations
for firewalls and network switches, whether deployed on-premises or
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1.3. Scope of the Monograph 7

in distributed cloud environments. This translation process is complex
due to variations in vendor-specific configurations, interface differences,
and enforcement capabilities. Moreover, policies must account for the
dynamic locations of end systems to ensure proper enforcement without
unintended disruptions.

1.3 Scope of the Monograph

This monograph sets out to provide a rigorous and comprehensive
examination of Zero-Trust principles, with the goal of clarifying what
constitutes a ZTA and what technical requirements are essential to
its realization. We begin by defining Zero-Trust in precise terms and
identifying the critical security controls it entails, including identity
management and access control mechanisms tailored to distinct domains
such as end systems and networks. The monograph explores how these
controls are leveraged by existing guidelines to shape the design and
implementation of ZTA.

A core contribution of this work is a systematic analysis of the
current state-of-the-art Zero-Trust architectures, drawing from both
academic research and industrial practice. We examine how foundational
ZTA requirements are translated into concrete architectural frameworks,
highlighting the specific problems each approach addresses, the archi-
tectural components involved, and the underlying trust assumptions.

In addition to discussing existing efforts, the monograph identifies
key gaps and challenges that remain unresolved. We conclude by outlin-
ing promising research directions aimed at advancing the development
and deployment of robust, scalable, and adaptable Zero-Trust systems.

1.4 Organization of the Monograph

The rest of this monograph is organized as follows. Section 2 introduces
basic security controls, including authentication and access control;
the pervasive and fine-grained deployment of these controls is the goal
of the ZT paradigm. Section 2 also covers ZT guidelines provided by
governmental organizations, namely the US NIST and the US DoD. Sec-
tion 3 is the core section of the monograph; it provides a comprehensive
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8 Introduction

taxonomy of the various architectural approaches that can be used to
deploy the functional components of the ZT paradigm. Section 3 also
describes in detail the ZT architectures proposed for different types of
networks. Section 4 presents an overview of an end-to-end pipeline for
the specification, analysis, and deployment of ZT policies. This pipeline
addresses the problem of automatically generating ZT policies start-
ing from application communication requirements, network topology
and organizational information. Section 5 complements the discussion
in Section 3 by providing an overview of industrial ZT architectures.
Section 6 outlines concluding remarks and discusses research directions.
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