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Abstract

Computer vision systems attempt to understand a scene and its com-
ponents from mostly visual information. The geometry exhibited by
the real world, the influence of material properties on scattering of
incident light, and the process of imaging introduce constraints and
properties that are key to interpreting scenes and recognizing objects,
their structure and kinematics. In the presence of noisy observations
and other uncertainties, computer vision algorithms make use of sta-
tistical methods for robust inference. In this monograph, we highlight
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the role of geometric constraints in statistical estimation methods, and
how the interplay between geometry and statistics leads to the choice
and design of algorithms for video-based tracking, modeling and recog-
nition of objects. In particular, we illustrate the role of imaging, illu-
mination, and motion constraints in classical vision problems such as
tracking, structure from motion, metrology, activity analysis and recog-
nition, and present appropriate statistical methods used in each of these
problems.
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1

Introduction

The goal of computer vision is to enable machines to see and interpret
the world. Computer vision algorithms use input from one or more still
images or video sequences that are related in a specific manner. The
distribution of intensities and their spatial and temporal arrangements
in an image or a video sequence contain information about the identity
of objects, their reflectance properties, scene structure, and objects in
the scene. However, this information is buried in images and video and
that makes it a challenging task. One of the fundamental reasons for
this difficulty occurs because mapping from the 3D scene to 2D images
is generally non-invertible. Most traditional computer vision algorithms
make appropriate assumptions about the nature of the 3D world and
acquisition of images and videos, so that the problem of inferring scene
properties of interest from sensed data becomes recoverable and ana-
lytically tractable.

Within this context, reasonably accurate, yet simple geometric
models of scene structure (planar scene, etc.), scene illumination
(point source), surface properties (Lambertian, Phong, etc.), imag-
ing structure (camera models) serve critical roles in the design of
inference algorithms. Moreover, images and video sequences obtained
using imaging devices are invariably corrupted by noise. Common noise

1
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2 Introduction

sources in the imaging system are due to shot noise, thermal noise, etc.
Inference in this noisy environment is further complicated by the inher-
ent errors in physical modeling. Real surfaces are never truly Lamber-
tian, real cameras are never truly perspective, illumination in a scene
is never a point light source, nevertheless inference algorithms make
these assumptions in order to make the problem tractable. In addition,
motion of objects in a scene could complicate the recovery of scene
and object properties due to blur, occlusion, etc. Therefore, it becomes
important that the developed inference algorithms can cope with vary-
ing sources of error.

To illustrate these sources of error, let us consider the following
simple illustration. Suppose we are interested in designing a robot that
can localize and identify the entrances to buildings (see Figure 1.1(a)).
To begin, we first define a ‘model’ of an entrance. For computational
tractability, we assume the edges of the entrance form a rectangle. Now,
given an image containing the entrance, we might choose to use an edge
detector or a corner detector to extract features. Due to image-noise,
occlusions, and shadows, the features may not exactly correspond to
edge locations. With these noisy feature locations, we proceed to fit two
sets of parallel lines, where the lines from different sets are perpendic-
ular to each other. Consider the edge figure in Figure 1.1(b). Finding
the set of points corresponding to the entrance and grouping them into
a rectangle comprises a combinatorial optimization problem. Suppose

Fig. 1.1 Fitting a rectangle to an entrance. Various sources of error arise here – feature

points are noisy, grouping of the points into a rectangle is a challenge, and a rectangle is
not an accurate model for the entrance.
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3

we obtain a solution to this optimization problem, perhaps by using
the Hough transform. The final error in fit would have occurred due to
noisy measurements, the difficulty in solving the constrained optimiza-
tion problem, and the error in modeling itself, since the entrance does
not appear as a rectangle due to perspective effects. The error would
become even worse when the viewing angle moves further from frontal,
or if shadows are present or the entrance is partially occluded, etc.

As this example illustrates, computer vision algorithms involve the
interplay between geometric constraints that arise from models of the
scene. Inference makes assumptions about the imaging devices and
about appropriate statistical estimation techniques that can contend
with varying sources of error. This tutorial attempts to re-examine
and present several computer vision techniques accordingly.

The acceptance of statistical methods in computer vision has been
slow and steady. In the early days of the field, the understanding of the
geometrical aspects of the problem was given much attention. When
uncertainties due to noise and other errors had to be taken into account,
and when prior information and massive sensor data became available,
the infusion of statistical methods was inevitable. Statistical models
and methods entered into computer vision through image models. Non-
causal models were first introduced in the analysis of spatial data by
Whittle [222]. Subsequently, in the 1960s and 1970s, Markov random
fields (MRFs) were discussed in statistical [16, 169] and signal process-
ing literature [223]. In the 1980s, statistical methods were introduced
primarily for image representation; thus MRFs [36, 47, 110] and other
non-causal representations [37, 110, 111] were suggested for images.
This enabled the formulation of problems such as image estimation
and restoration [75], and texture analysis (synthesis, classification, and
recognition) [43, 50] as maximum a posteriori estimation problems.
Appropriate likelihood expressions and prior probability density func-
tions were used to derive the required posterior probability density.
Nevertheless, the maximum of the posterior probability density func-
tions did not always yield a closed form expression, requiring techniques
such as simulated annealing [75, 118].

The introduction of simulated annealing techniques could be con-
sidered a seminal moment as it opened a whole new class of sampling
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4 Introduction

approaches for synthesis and segmentation of textured images [137]
and other early vision problems. Simulated annealing techniques were
followed by techniques such as mean field annealing [19], iterated condi-
tional mode [18], and maximum posterior marginal [138]. These tech-
niques are now part and parcel of computer vision algorithms. It is
worth noting that MRFs and conditional random fields are making a
strong resurgence in graphics and machine learning literature.

Applications of Monte Carlo Markov chain techniques for non-linear
tracking problems have also been studied [79]. Since the introduction
of the CONDENSATION algorithm in 1996 [95], numerous papers
have discussed appearance, shape, and behavior-encoded particle filter
trackers. Robust estimation methods offer another statistical area that
has received attention in the computer vision literature. Many problems
such as fitting lines, curves, and motion models relied on least square
fitting techniques which are quite sensitive to the presence of outliers.
Since the early 1980s, the use of RANSAC [67, 139], M-estimators [93],
and least median square estimators [170] has become valuable in all
model fitting problems, including fitting moving surfaces and objects
to the optical flow generated by them. Discussions of robust estimation
with applications in computer vision can be found in Meer et al. [139].

One of the recurring issues in the development of computer vision
algorithms is the need to quantify the quality of the estimates. Haralick
and his co-workers [108] pioneered this area. In the classical problem
of estimating the 3D structure of a scene from motion cues, which is
termed as the ‘structure from motion’ (SfM) problem, one would like to
compute the lower bounds on the variances of the motion and structure
estimates. Similar needs arise in camera calibration, pose estimation,
image alignment, tracking, and recognition problems. A time-tested
approach in statistics — the computation of Cramer–Rao bounds [166]
and their generalizations — has been adopted for some computer vision
problems.

The exploitation of statistical shape theory for object recognition
in still images and video sequences has also been studied intensively
since the 1980s. In particular, Cooper and collaborators [27, 26] have
developed several algorithms based on Bayesian inference techniques
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1.1 Goals 5

for the object recognition problem. Introduction of statistical infer-
ence techniques on manifolds which host various representations used
in shape, identity, and activity recognition problems is garnering a lot
of interest [195].

Kanatani pioneered statistical optimization under the constraints
unique to vision problems. His books explore the use of group theoret-
ical methods [106] and statistical optimization [107] in image under-
standing and computer vision. In particular, Kanatani [107] explores
parametric fitting under relationships such as coplanarity, collinearity,
and epipolar geometry, with focus on the bounds on the estimate’s
accuracy. Kanatani also explored the idea of geometric correction of
data to make them satisfy geometric constraints.

Finally, we will be grossly remiss, if we do not acknowledge Prof.
Ulf Grenander, who created the area of probabilistic and statistical
approaches to pattern analysis and computer vision problems. His series
of books [81, 82, 84], and the recent book with Prof. Mike Miller [83],
have laid the foundations for much of what has been accomplished in
statistical inference approaches to computer vision. Prof. Julian Besag’s
contributions to the development of spatial interaction models [16, 18]
and Monte Carlo Markov chain techniques [17] are seminal. Many
researchers have developed statistical approaches to object detection
and recognition in still images. In particular, Professors David Mum-
ford, Don Geman, Stu Geman, Yali Amit, Alan Yuille, Mike Miller,
Anuj Srivastava, Song-Chun Zhu and many others have made signifi-
cant contributions to statistical approaches to still image-based vision
problems. As we are focusing on video-based methods and have page
constraints, we are unable to provide detailed summaries of outstanding
efforts by the distinguished researchers mentioned above.

1.1 Goals

In this monograph, we will examine several interesting video-based
detection, modeling, and recognition problems such as object detection
and tracking, structure from motion, shape recovery, face recognition,
gait-based person identification, and video-based activity recognition.
We will explore the fundamental connections between these different
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6 Introduction

problems in terms of the necessary geometric modeling assumptions
used to solve them, and we will study statistical techniques that will
enable robust solutions to these problems. Of course, a host of other
image processing applications exist where statistical estimation tech-
niques have found great use. The goal of some of these applications,
such as image denoising, image deblurring, and super-resolution, is to
recover an image, not ‘understand’ the scene captured in the image.
We therefore will not delve in detail about these applications in this
tutorial. An in-depth discussion of some statistical techniques applied
to image processing may be found in [77, 97].

Writing this tutorial presented a great challenge. Due to page limi-
tations, we could not include all that we wished. We simply must beg
the forgiveness of many of our fellow researchers who have made sig-
nificant contributions to the problems covered here and whose works
could not be discussed.

1.2 Outline

We begin the monograph with an in-depth coverage of the various geo-
metric models that are used in imaging in Section 2. Light from illumi-
nation sources interacts with materials, reflects off them, and reaches
the imaging system. Therefore, it is important to study the reflectance
properties of materials. We describe popular models of reflectance, such
as the Lambertian and Phong models, and indicate vision applica-
tions where such reflectance models find use. Next, we describe popular
models for the imaging sensor — the camera. In particular, we provide
a brief description of the perspective projection model and some of
its variants. Image sequences obtained from video cameras are related
through scene structure, camera motion, and object motion. We also
present models for both image motion (optical flow) and object/camera
motion and describe how scene structure, motion, and illumination are
coupled in a video.

In Section 3, we describe commonly used statistical estimation tech-
niques such as maximum likelihood and maximum a posteriori, estima-
tors. We also describe robust estimators such as M-estimators. We state
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1.2 Outline 7

the problem of Bayesian inference in dynamical systems and describe
two algorithms — the Kalman filter and particle filters — that can
perform Bayesian inference with applications to object tracking and
recognition in video sequences.

In Section 4, we develop models for detection, tracking, and recogni-
tion in surveillance applications, highlighting the use of appearance and
behavioral models for tracking. Section 5 describes an important fun-
damental problem in computer vision — structure from motion (SfM).
SfM techniques study the relationship between the structure of a scene
and its observability given motion. In the section, we highlight various
approaches to explore this relationship, then use them to estimate both
the structure of the scene and the motion. We also discuss Cramer–Rao
bounds for SfM methods based on discrete features and optical flow
fields.

Section 6 discusses some applications in vision where the parameters
of interest lie on a manifold. In particular, we study three manifolds,
the Grassmann manifold, Stiefel manifold, and the shape manifold, and
show how several vision applications involve estimating parameters that
live on these manifolds. We also describe algorithms to perform statis-
tical inference on these manifolds with applications in shape, identity,
and activity recognition. Finally, in Section 7, we conclude the mono-
graph with a discussion on future trends.
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