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Abstract

One of the prime goals of statistical estimation theory is the develop-
ment of performance bounds when estimating parameters of interest
in a given model, as well as constructing estimators that achieve these
limits. When the parameters to be estimated are deterministic, a pop-
ular approach is to bound the mean-squared error (MSE) achievable
within the class of unbiased estimators. Although it is well-known that
lower MSE can be obtained by allowing for a bias, in applications it is
typically unclear how to choose an appropriate bias.

In this survey we introduce MSE bounds that are lower than the
unbiased Cramér–Rao bound (CRB) for all values of the unknowns.
We then present a general framework for constructing biased estima-
tors with smaller MSE than the standard maximum-likelihood (ML)
approach, regardless of the true unknown values. Specializing the
results to the linear Gaussian model, we derive a class of estimators
that dominate least-squares in terms of MSE. We also introduce meth-
ods for choosing regularization parameters in penalized ML estimators
that outperform standard techniques such as cross validation.
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1

Introduction

The problem of estimating a set of unknown deterministic parameters
is ubiquitous in a vast variety of areas in science and engineering includ-
ing, for example, communication, economics, signal processing, seismol-
ogy, and control. Many engineering systems rely on estimation theory to
extract required information by estimating values of unknown param-
eters. Statisticians use parameter estimation techniques to extract and
infer scientific, medical, and social conclusions from numerical data
which are subject to random uncertainties.

Parameter estimation has a rich history dating back to Gauss and
Legendre who used the least-squares (LS) method to predict movements
of planets [62, 63, 97]. Mathematically, in an estimation problem, we are
given a set of observations x which we assume depend on an unknown
parameter vector θ0. In this survey, we treat the setting in which θ0 is
an unknown deterministic vector, i.e., the classical estimation setting
as opposed to Bayesian inference. The problem then is to infer θ0 from
the data using an estimate θ̂ which is a function of x, and to gain insight
into the theoretical effects of the parameters on the system output.

One of the prime goals of statistical estimation theory is the devel-
opment of bounds on the best achievable performance in inferring

1
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2 Introduction

parameters of interest in a given model, as well as determining estima-
tors that achieve these limits. Such bounds provide benchmarks against
which we can compare the performance of any proposed estimator, and
insight into the fundamental limitations of the problem.

A classic performance benchmark is the Cramér–Rao bound (CRB)
[27, 28, 30, 60, 119, 120], which characterizes the smallest achievable
total variance of any unbiased estimator of θ0. Although other variance
bounds exist in the literature, the CRB is relatively easy to deter-
mine, and can often be achieved by the maximum likelihood (ML)
method [100, 120]. Despite its popularity, the CRB limits only the
variance of unbiased estimators. However, in some problems, restrict-
ing attention to unbiased approaches leads to unreasonable solutions,
that may, for example, be independent of the problem parameters
[71, 98]. More importantly, in many cases the variance can be made
smaller at the expense of increasing the bias, while ensuring that the
overall estimation error is reduced. Therefore, even though unbiased-
ness may be appealing intuitively, it does not necessarily lead to a
small estimation error θ̂ − θ0 [34]. Consequently, the design of esti-
mators is typically subject to a tradeoff between variance and bias
[50, 58, 81, 104, 107, 136].

In this survey, we discuss methods to improve the accuracy of unbi-
ased estimators used in many signal processing problems. At the heart
of the proposed methodology is the use of the mean-squared error
(MSE) as the performance criteria. The MSE is the average of the
squared-norm error ‖θ̂ − θ0‖2, and is equal to the sum of the variance
and the squared-norm of the bias. In an estimation context, where our
prime concern is inferring θ0, the MSE (or weighted MSE) provides a
direct measure of the relevant performance. Although herein we focus
on the MSE, the essential ideas can be easily generalized to include
weighted MSE criteria which measure the average weighted squared-
norm error [48].

The approach we present is based on introducing a bias as a means
of reducing the MSE. Biased estimation strategies are used exten-
sively in a variety of different signal processing applications, such
as image restoration [31, 108] where the bias corresponds to spatial
resolution, smoothing techniques in time series analysis [115, 137],
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3

spectrum estimation [131], wavelet denoising [33], and diagonal loading
in beamforming applications [21, 26, 56]. Despite the fact that biasing
as a method for improving performance is a mainstream approach,
very often the choice of bias is rather ad-hoc. In particular, although
the biased algorithms mentioned above will improve the performance
for certain choices of θ0, they can in fact deteriorate the MSE for other
parameter values. Thus, in general, conventional biasing methods are
not guaranteed to dominate ML, i.e., do not necessarily have lower MSE
for all choices of θ0. Furthermore, many of these techniques include
regularization parameters which are typically chosen by optimizing a
data-error measure, i.e., an objective that depends on the estimated
data x̂ obtained by replacing θ0 by θ̂ in the model equations. Here, we
focus on biasing in a way that is guaranteed to improve the MSE for all
parameter values. This is achieved by using objectives that are directly
related to the estimation error and are not data-error driven.

In their seminal work, Stein and James showed that for the indepen-
dent, identically-distributed (iid) linear Gaussian model, it is possible
to construct a nonlinear estimate of θ0 with lower MSE than that of
ML for all values of the unknowns [88, 128]. Such a strategy is said to
dominate ML. In general an estimator θ̂1 dominates a different estima-
tor θ̂2 if its MSE is no larger than that of θ̂2 for all feasible θ0, and is
strictly smaller for at least one choice of θ0; an estimator is admissible
if it is not dominated by any other approach. Stein’s landmark idea has
since been extended in many different directions and has inspired the
work on ML-dominating methods which is the focus of this survey.

Here we go beyond the iid Gaussian model, and address a broad
variety of estimation problems within an unified, systematic framework.
To characterize the best possible bias-variance tradeoff in a general
setting we would like to obtain a bound on the smallest achievable
MSE in a given estimation problem. However, since θ0 is deterministic,
the MSE will in general depend on θ0 itself. Therefore, the MSE cannot
be used as a design criterion for choosing an optimal bias. Indeed, the
point-wise minimum of the MSE is given by the trivial zero bound,
which can be achieved with θ̂ = θ0.

To overcome this obstacle, instead of attempting to minimize the
MSE over all possible estimators, which includes the trivial solution
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4 Introduction

θ̂ = θ0, we restrict attention to methods that lie in a suitable class;
the CRB is an example where we consider only methods with zero
bias. Allowing for a broader set of bias vectors will result in MSE
bounds that are lower than the CRB for all values of θ0. Furthermore,
as part of the proposed framework we introduce explicit methods that
achieve these lower bounds resulting in estimators with performance
superior to unbiased approaches. In cases where the ML is efficient,
namely it achieves the CRB, this methodology guarantees the existence
of estimators that have lower MSE than ML for all values of θ0.

The strategy we outlined is based on first developing MSE perfor-
mance bounds, and then designing estimators that achieve these limits,
thus ensuring MSE improvement over existing unbiased solutions. An
alternative technique to improve traditional estimates which is preva-
lent in the literature is the use of regularization, first systematically
studied by Tikhonov [135, 136] and later extended to general estima-
tion problems via the penalized ML (PML) approach [65, 66]. In gen-
eral, regularization methods measure both the fit to the observed data
and the physical plausibility of the estimate. Traditional applications of
PML and regularization techniques have relied on data-error measures
for selecting the regularization parameters [17, 61, 64, 72, 73, 89, 110].

As part of the proposed framework in this survey, we introduce
methods for choosing the required regularization parameters based on
measures of estimation error rather than data error. A popular design
strategy in this spirit is to minimize Stein’s unbiased risk estimate
(SURE) [32, 122, 129, 130], which is an unbiased estimate of the MSE.
This method is appealing as it allows to directly approximate the
MSE of an estimate from the data, without requiring knowledge of θ0.
Besides leading to significant performance improvement over standard
data-driven approaches in many practical problems, this technique can
often be shown to dominate ML. In fact, the celebrated James–Stein
estimate [88, 128], although originally derived based on different con-
siderations, can be obtained from the SURE principle, as can many
other ML-dominating approaches.

In most of the survey, we focus on problems in which the relation-
ship between the data x and the unknown parameters θ0 is given by
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1.1 Estimation Model 5

a statistical model. In the last section, we depart from this framework
and discuss methods for bounded error estimation in which the sta-
tistical model is replaced by the assumption that θ0 is restricted to
some deterministic set, defined by prior constraints. The link to the
rest of the survey is that in this context as well, we can replace tra-
ditional data-error strategies by methods that are inherently based on
the error between the estimate θ̂ and the true parameter θ0. Although
this approach is deterministic in nature, it can also be used in a sta-
tistical setting where the constraints are dictated by the underlying
statistical properties. For example, given measurements x = θ0 + w,
where w ∈ Rn is a zero-mean random vector with covariance σ2I, we
can assume that θ0 lies in the constraint set ‖x − θ0‖2 ≤ nσ2. Despite
the fact that this restriction is not always satisfied, using it in conjunc-
tion with the proposed estimation strategy leads to an estimate that
dominates the constrained ML solution. Therefore, this approach can
also be used to develop MSE-dominating techniques when a statistical
model exists.

Our focus here is on static models. In recent years, there has been
increasing interest in inference techniques and performance bounds for
dynamical systems [134]. We believe that the essential ideas introduced
can be extended to the dynamical setting as well.

1.1 Estimation Model

Throughout the survey, our goal is to estimate a deterministic param-
eter vector θ0 from measurements x. For concreteness, we assume that
θ0 is a real length-m vector, and x is a real length-n vector. How-
ever, all the results are valid for the complex case as well with obvious
modifications. The relationship between x and θ0 is described by the
probability density function (pdf) p(x;θ0) of x characterized by θ0.
We emphasize that θ0 is a deterministic unknown vector, so that no
Bayesian prior is assumed on θ0. Consequently, p(x;θ0) is not a joint
pdf, but rather a pdf of x in which θ0 figures as an unknown param-
eter. As we will see throughout the survey, this renders the problem
considerably more challenging, but at the same time more intriguing
than its Bayesian counterpart.
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6 Introduction

As an example, suppose we have a Bernoulli random variable xi

which takes on the value 1 with probability (w.p.) θ0 and 0 w.p. 1 − θ0.
Our goal is to estimate θ0 from n iid measurements. Denoting by x =
(x1, . . . ,xn)T the vector whose components are the measurements xi,
the pdf of x can be written as

p(x;θ0) = θ
Pn

i=1 xi

0 (1 − θ0)n−
Pn

i=1 xi . (1.1)

Another important class of examples, which we will study in detail
in Section 4, is the linear Gaussian model. In this case the unknown
vector θ0 ∈ Rm is related to x ∈ Rn through the linear model:

x = Hθ0 + w. (1.2)

Here H is a known n × m model matrix with full column-rank, and
w is a zero-mean Gaussian random vector with covariance matrix C,
which for simplicity is assumed to be positive definite. For the model
(1.2), the pdf of x is

p(x;θ0) =
1√

(2π)n|C|
exp

{
−1

2
(x −Hθ0)TC−1(x −Hθ0)

}
. (1.3)

Although we assume that H is known in the model (1.2), similar ideas
to those developed here can be used when H is subject to deterministic
or random uncertainty [8, 44, 51, 56, 144, 145].

A broader class of pdfs which includes (1.3) is the exponential family
of distributions which can expressed in the form:

f(x;θ0) = r(x)exp{θT
0 φ(x) − g(θ0)}, (1.4)

where r(x) and φ(x) are functions of the data only, and g(θ0) depends
on the unknown parameter θ0. Exponential pdfs play an important
role in statistics due to the Pitman–Koopman–Darmois theorem [29,
94, 117], which states that among distributions whose domain does
not vary with the parameter being estimated, a sufficient statistic with
bounded dimension as the sample size increases can be found only in
exponential families [100]. Furthermore, efficient estimators achieving
the CRB exist only when the underlying model is exponential. Many
known distributions are of the exponential form, such as Gaussian,
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1.2 Minimum Variance Unbiased Estimation 7

gamma, chi-square, beta, Dirichlet, Bernoulli, binomial, multinomial,
Poisson, and geometric distributions. Exponential families will play an
important role in Section 5 in the context of estimation based on the
SURE criterion.

1.2 Minimum Variance Unbiased Estimation

Given data x and a model p(x;θ0) a pervasive inference strategy in
signal processing applications is to seek a minimum variance unbiased
(MVU) estimate of θ0. This is typically accomplished by using the the-
ory of sufficient statistics or the attainment of the CRB [93]. Although
an MVU solution is not guaranteed to exist, in many problems of inter-
est such an estimate can be found, at least asymptotically. The con-
straint of unbiasedness is often a practical one, since in many cases
the variance, or the MSE, can be minimized over this class using func-
tions of the data that are truly estimators, i.e., the statistic does not
depend on the unknown parameter. However, there are several severe
limitations of unbiased methods.

First, unbiased estimators are not always guaranteed to exist.
An example is when inferring the odds ratio p = θ0/(1 − θ0) from n

Bernoulli trials. It can be shown that there is no unbiased estimate
for p [124, Sec. 7.12]. On the other hand, there exist many reasonable
approximations such as p = θ̂/(1 − θ̂), where θ̂ = (1/n)

∑n
i=1xi.

Second, the unbiasedness requirement can sometimes produce non-
sensical results. As an example, consider the problem of estimating the
probability of success θ0 in a set of Bernoulli trials, from the number
of experiments x until success [25]. The pdf of x is given by

p(x;θ0) = θ0(1 − θ0)x−1, x = 1,2, . . . . (1.5)

The only unbiased estimate for this problem, and hence the MVU solu-
tion, is

θ̂0 =
{

1, x = 1;
0, otherwise.

(1.6)

Clearly this is an unreasonable estimate of θ0. A more appealing choice
is θ̂ = 1/x.
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8 Introduction

As another example, suppose that x is a Poisson random variable
with mean θ0 > 0, and we would like to estimate p = exp{−2θ0}, which
is the probability that no events occur in two units of time. Clearly the
true value of p satisfies p ∈ (0,1). However, the only unbiased estimate
is given by

p̂ =
{

1, x even;
−1, x odd,

(1.7)

which always falls outside the range (0,1), and is extremely unrea-
sonable [99] [132, Exercise 17.26] [124, Sec. 7.16]. A somewhat more
complex example, in which the only unbiased estimator always ends
up considerably outside the problem bounds, can be found in [77].

Finally, the most important objection to the constraint of unbiased-
ness is that it produces estimators θ̂ whose optimality is based on the
error between θ̂ and the average value, not θ̂ and the true value as mea-
sured by the MSE. It is the latter that is actually of prime importance
in an estimation context as it is a direct measure of estimation error.
Specifically, the MSE is defined by

E
{
‖θ̂ − θ0‖2

}
=
∫
‖θ̂ − θ0‖2f(x;θ0)dx = ‖b(θ0)‖2 + v(θ0), (1.8)

where b(θ0) = E{θ̂} − θ0 is the bias of the estimate, and v(θ0) =
E{‖θ̂ − E{θ̂}‖2} is its variance. Note that the MSE depends explicitly
on θ0. An MVU method minimizes the MSE only over a constrained
class for which b(θ0) = 0 for all θ0. Thus, even in problems in which the
MVU approach leads to reasonable estimates, the MSE performance
may still be improved using a biased technique.

The difficulty in using the MSE as a design objective is that in
general it depends explicitly on θ0. This parameter dependency also
renders comparison between different estimators a difficult (and often
impossible) task. Indeed, one method may be better than another for
some values of θ0, and worse for others. For instance, the trivial esti-
mator θ̂ = 0 achieves optimal MSE when θ0 = 0, but its performance
is otherwise poor. Nonetheless, it is possible to impose a partial order
among inference techniques [100] using the concepts of domination and
admissibility. An estimator θ̂1 dominates an estimator θ̂2 on a given set
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1.3 Maximum Likelihood Estimation 9

U if

E
{
‖θ̂1 − θ‖2

}
≤ E

{
‖θ̂2 − θ‖2

}
, for all θ ∈ U ;

E
{
‖θ̂1 − θ‖2

}
< E

{
‖θ̂2 − θ‖2

}
, for some θ ∈ U .

(1.9)

The estimator θ̂1 strictly dominates θ̂2 on U if

E
{
‖θ̂1 − θ‖2

}
< E

{
‖θ̂2 − θ‖2

}
, for all θ ∈ U . (1.10)

If θ̂1 dominates θ̂2 then clearly it is better in terms of MSE. An esti-
mator θ̂ is admissible if it is not dominated by any other method. If
an estimator is inadmissible, then there exists another approach whose
MSE is no larger than the given method for all θ in U , and is strictly
smaller for some θ in U .

The study of admissibility is sometimes restricted to linear meth-
ods. A linear admissible estimator is one which is not dominated by
any other linear strategy. The class of linear admissible techniques can
be characterized by a simple rule [24, 43, 83, 121], and given any lin-
ear inadmissible estimator, it is possible to construct a linear admissible
alternative which dominates it by using convex analysis tools [43]. How-
ever, the problem of admissibility is considerably more intricate when
the linearity restriction is removed; generally, admissible estimators
are either trivial (e.g., θ̂ = 0) or exceedingly complex [105]. As a result,
much research has focused on finding simple nonlinear techniques that
dominate ML.

1.3 Maximum Likelihood Estimation

One of the most popular estimation strategies is the ML method
in which the estimate θ̂ is chosen to maximize the likelihood of the
observations:

θ̂ = argmax
θ

p(x;θ). (1.11)

This approach was pioneered by Fisher between 1912 and 1922 [1, 59]
and has widespread applications in various fields. The ML estima-
tor enjoys several appealing properties, including asymptotic efficiency
under suitable regularity conditions. Thus, asymptotically, and in many
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10 Introduction

non-asymptotic cases, the ML approach is MVU optimal. Nonetheless,
its MSE can be improved upon in the non-asymptotic regime in many
different settings.

As is evident from (1.11) the ML technique is data driven, meaning
the quality of the estimator is determined by how well it describes
the observations. However, the ML objective is not related to the MSE
which is a direct measure of estimation error. This distinction is clearly
seen when considering the linear Gaussian model (1.2). In this case the
ML criterion coincides with the weighted LS objective:

argmax
θ

p(x;θ) = argmin
θ

(x −Hθ)TC−1(x −Hθ). (1.12)

Evidently, the ML solution is designed to minimize the error between
the given data and the estimated data x̂ = Hθ̂. Assuming H has full
column-rank, the resulting LS estimate is given by

θ̂LS = (HTC−1H)−1HTC−1x. (1.13)

It is well known that θ̂LS is also MVU optimal for Gaussian noise [93].
To illustrate the fact that minimizing data error does not neces-

sarily imply a small estimation error, in Figure 1.1 we consider an
example of the model (1.2) in which θ0 represents the 2D signal in
Figure 1.1(a). Our goal is to recover this image from the observation
x of Figure 1.1(b) which is obtained after shifting and blurring with a
Gaussian kernel, and corruption by additive Gaussian noise. We assume
that the distortion and noise variance are known. Using the LS esti-
mate results in the image in Figure 1.1(c) in which the original signal

Fig. 1.1 Image recovery using least-squares (LS) and a biased minimax estimate. (a) original

2D signal. (b) Corrupted image. (c) Recovery using LS. (d) Recovery based on a minimax
strategy.
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1.3 Maximum Likelihood Estimation 11

is completely destroyed. On the other hand, using a minimax estimate,
which we will discuss in Section 4, we obtain a pretty good recovery
of the signal, as can be seen in Figure 1.1(d). Clearly the fact that the
data error is smaller in Figure 1.1(c) is not sufficient to guarantee good
signal recovery.

As another example, consider estimating a signal θ0(t) that is
observed through the heat integral equation and corrupted by addi-
tive noise. The true and observed signals are shown in Figures 1.2(a)
and 1.2(b), respectively. In Figure 1.2(c) we compare the estimated
signal using LS and a bounded-error approach (RCC) based on con-
trolling the minimax estimation error, which we present in Section 6.
Evidently, the latter strategy, referred to as the Chebyshev center, leads
to substantial performance improvement.

Fig. 1.2 Signal recovery using least-squares (CLS) and the Chebyshev estimate (RCC).

(a) True signal. (b) Observed signal. (c) Recovery using CLS and RCC.
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These examples illustrate that minimizing data error does not nec-
essarily imply a small estimation error. From a statistical perspective,
MVU methods do not guarantee satisfactory estimation performance,
even when they exist and lead to reasonable strategies.

1.4 Outline and Goals

Stein’s discovery of ML-dominating techniques in the linear Gaussian
model, half a century ago, shocked the statistics community. Since
then many other examples of ML improvement have been discov-
ered and analyzed. In this survey, we present a broad framework for
constructing ML-dominating solutions in a broad variety of estimation
problems. More specifically, we present general tools for reducing MSE
by introducing a bias. An important aspect of the proposed approach is
that the reduction in MSE is guaranteed for all choices of the unknown
parameter vector. The methods we outline for constructing estima-
tors are designed to explicitly optimize an objective based on estima-
tion error rather than data error. The performance advantage of the
algorithms we present is greatest in difficult problems, i.e., short data
records or lower signal-to-noise ratios (SNRs). Applications include the
design of estimation algorithms for sonar, radar, and communications,
as well as a myriad of other disciplines that rely heavily on precise
measurement of parameters.

It is our hope that this framework will provide additional support for
ML dominating methods, both by supplying an intuitive understanding
of this phenomenon, and by providing a wide class of powerful new
estimators.

1.4.1 Outline

In Section 2, we begin by reviewing the standard unbiased CRB and
then discuss extensions to biased estimation. In particular, we introduce
the uniform CRB which provides a benchmark on the variance of any
biased estimator with bias-gradient matrix whose norm is limited by a
constant. This bound is asymptotically achieved by the PML method
with a suitable regularization function. The uniform CRB is useful in
problems in which the bias gradient norm has a physical interpretation;
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this is the case in some imaging applications where the norm is related
to image resolution [80, 108]. Furthermore, it requires the specification
of only one parameter (the norm bound) rather than the entire bias
gradient matrix, as in the standard biased CRB [140].

In Section 3, we study MSE bounds which directly limit the estima-
tion error. These bounds depend on the unknown parameter vector θ0,
as well as on the bias of the estimate θ̂. In order to optimize the bound
we first consider the class of estimates with linear bias vectors, and seek
the member from this set that minimizes the bound. A nice aspect of
this approach is that once an optimal bias of this form is found, it
can be used to construct a linear modification of the ML estimate that
dominates ML whenever the latter is efficient. We demonstrate this
methodology through several examples which illustrate how scaling can
be used to reduce the MSE. As we show, it is often possible to improve
the MSE for all θ0 using a linear modification, without any prior knowl-
edge on the true parameter values. This linear scaling is chosen as a
solution to a minimax optimization problem.

Building on the linear results, in Section 4, we present the blind
minimax technique which leads to nonlinear modifications of the ML
solution. The approach is illustrated in the context of the linear Gaus-
sian model and makes use of a two-stage process: first, a set is esti-
mated from the measurements; next, a linear minimax method for this
set is used to estimate the parameter itself. Surprisingly, the resulting
estimate can be shown to dominate the ML solution even though no
prior information is assumed. The blind minimax technique provides a
framework whereby many different estimators can be generated, and
provides insight into the mechanism by which these techniques out-
perform ML. In particular, we show how the celebrated James–Stein
estimate can be derived within this framework.

An alternative approach for deriving ML-dominating methods is to
use the SURE principle. In Section 5, we introduce the SURE objective
and illustrate how it can be applied to construct methods that have
lower MSE than ML. The essential idea is to choose a class of estimates,
and then select the member that minimizes the MSE estimate. We
demonstrate, in particular, the use of the SURE design method for
selecting regularization parameters in PML estimation.
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Finally, in Section 6, we extend the estimation-error methodology to
a deterministic setting. We treat estimation problems in which there are
prior constraints on θ0, such as weighted norm restrictions or interval
constraints on the individual components of θ0. The standard approach
in such settings is constrained ML in which the likelihood is maximized
subject to the given restrictions. Instead, we introduce the Chebyshev
center estimator which is based on minimizing the worst-case estima-
tion error ‖θ̂ − θ0‖2 over all feasible solutions. As we show, this strat-
egy can reduce the estimation error dramatically with respect to the
constrained ML method. This design technique can also be used in a
statistical setting by replacing the statistical model with an appropri-
ate constraint on θ0. Even though this later restriction is not always
satisfied in practice, the resulting estimate can be shown in some cases
to dominate the constrained ML for the same problem setting.

The procedures we develop throughout the survey are based on
convex optimization tools and minimax formulations. In the Appendix,
we provide a brief overview of the basics of convex analysis, emphasizing
the results needed in our presentation.
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cometes. 1806.

[98] E. L. Lehmann, “A general concept of unbiasedness,” Annals of Mathematical
Statistics, vol. 22, pp. 587–592, December 1951.

[99] E. L. Lehmann, “Estimation with inadequate information,” vol. 78, no. 383,
pp. 624–627, September 1983.

[100] E. L. Lehmann and G. Casella, Theory of Point Estimation. New York, NY:
Springer-Verlag, Inc., Second Edition, 1998.

[101] E. H. Lieb and M. Loss, Analysis. American Mathematical Society, Second
Edition, 2001.

Full text available at: http://dx.doi.org/10.1561/2000000008



References 145

[102] F. Luisier, T. Blu, and M. Unser, “A new SURE approach to image denoising:
Interscale orthonormal wavelet thresholding,” IEEE Transactions on Image
Processing, vol. 16, no. 3, pp. 593–606, 2007.

[103] J. H. Manton, V. Krishnamurthy, and H. V. Poor, “James-Stein state filtering
algorithms,” IEEE Transactions on Signal Processing, vol. 46, pp. 2431–2447,
September 1998.

[104] D. W. Marquardt, “Generalized inverses, ridge regression, biased linear esti-
mation, and nonlinear estimation,” Technometrics, vol. 12, no. 3, pp. 592–612,
August 1970.

[105] Y. Maruyama, “A unified and broadened class of admissible minimax estima-
tors of a multivariate normal mean,” Journal of Multivariate Analysis, vol. 64,
pp. 196–205, 1998.

[106] T. L. Marzetta, “A simple derivation of the constrained multiple parame-
ter Cramér-Rao bound,” IEEE Transactions on Signal Processing, vol. 41,
pp. 2247–2249, June 1993.

[107] L. S. Mayer and T. A. Willke, “On biased estimation in linear models,” Tech-
nometrics, vol. 15, pp. 497–508, August 1973.

[108] L. J. Meng and N. H. Clinthorne, “A modified uniform Cramer-Rao bound
for multiple pinhole aperture design,” IEEE Transactions on Medical Imaging,
vol. 23, no. 7, pp. 896–902, July 2004.

[109] M. Milanese and G. Belforte, “Estimation theory and uncertainty intervals
evaluation in presence of unknown but bounded errors: Linear families of
models and estimators,” IEEE Transactions on Automatic Control, vol. 27,
no. 2, pp. 408–414, 1982.

[110] R. Molina, A. K. Katsaggelos, and J. Mateos, “Bayesian and regularization
methods for hyperparameter estimation in image restoration,” IEEE Trans-
actions on Image Processing, vol. 8, no. 2, pp. 231–246, 1999.

[111] V. A. Morozov, Methods for Solving Incorrectly Posed Problems. New York,
NY: Springer-Verlag, 1984.

[112] A. Nemirovski, “Prox-method with rate of convergence o(1/t) for varia-
tional inequalities with Lipschitz continuous monotone operators and smooth
convex-concave saddle point problems,” SIAM Journal of Optimization,
vol. 15, pp. 229–251, 2004.

[113] Y. Nesterov and A. Nemirovski, Interior-Point Polynomial Algorithms in Con-
vex Programming. Philadelphia, PE: SIAM, 1994.

[114] J. P. Norton, “Identification and application of bounded parameter models,”
Automatica, vol. 23, pp. 497–507, 1987.

[115] F. O’Sullivan, “A statistical perspective on ill-posed inverse problems,” Sta-
tistical Science, vol. 1, no. 4, pp. 502–527, 1986.

[116] M. S. Pinsker, “Optimal filtering of square-integrable signals in Gaussian
noise,” Problems Information on Transactions, vol. 16, pp. 120–133, 1980.

[117] E. Pitman, “Sufficient statistics and intrinsic accuracy,” Proceedings of Cam-
bridge Philosophical Society, vol. 32, pp. 567–579, 1936.

[118] S. Ramani, T. Blu, and M. Unser, “Blind optimization of algorithm param-
eters for signal denoising by Monte-Carlo SURE,” in Proceedings of Inter-
national Conference on Acoustics, Speech, Signal Processing (ICASSP-2008),
(Las-Vegas, NV), April 2008.

Full text available at: http://dx.doi.org/10.1561/2000000008



146 References

[119] C. R. Rao, “Minimum variance and the estimation of several parameters,” in
Proceedings of Cambridge Philosophical Society, pp. 280–283, 1946.

[120] C. R. Rao, Linear Statistical Inference and Its Applications. New York, NY:
John Wiley & Sons, Inc., Second Edition, 1973.

[121] C. R. Rao, “Estimation of a parameter in linear models,” Annals of Statistics,
vol. 4, pp. 1023–1037, 1976.

[122] J. Rice, “Choice of smoothing parameter in deconvolution problems,” Con-
temporary Mathematics, vol. 59, pp. 137–151, 1986.

[123] R. T. Rockafellar, Convex Analysis. Princeton NJ: Princeton Univ. Press,
1970.

[124] J. P. Romano and A. F. Siegel, Counterexamples in Probability and Statistics.
Monterey, CA: Wadsworth & Brooks, 1985.

[125] Y. Rong, Y. C. Eldar, and A. B. Gershman, “Performance tradeoffs among
adaptive beamforming criteria,” IEEE Journal of Selected Topics in Signal
Processing, vol. 1, no. 4, pp. 651–659, December 2007.

[126] D. L. Snyder and M. I. Miller, Random Point Processes in Time and Space.
New York: Springer-Verlag, 1991.

[127] P. Speckman, “Spline smoothing and optimal rates of convergence in non-
parametric regression models,” Annals of Statistics, vol. 13, no. 3, pp. 970–983,
1985.

[128] C. Stein, “Inadmissibility of the usual estimator for the mean of a multivariate
normal distribution,” in Proceedings on Third Berkeley Symposium on Math-
ematical Statistical Probability, vol. 1, pp. 197–206, Berkeley: University of
California Press, 1956.

[129] C. M. Stein, “Estimation of the mean of a multivariate distribution,” Proceed-
ings of Prague Symposium on Asymptotic Statistics, pp. 345–381, 1973.

[130] C. M. Stein, “Estimation of the mean of a multivariate normal distribution,”
Annals of Statistics, vol. 9, no. 6, pp. 1135–1151, November 1981.

[131] P. Stoica and R. L. Moses, Introduction to Spectral Analysis. Upper Saddle
River, NJ: Prentice Hall Inc., 1997.

[132] A. Stuart and J. K. Ord, Kendall’s Advanced Theory of Statistics. Vol. 2,
London: Edward Arnold, Fifth Edition, 1991.

[133] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones,” Optimization Methods and Software, vol. 11–12, pp. 625–
653, 1999.

[134] P. Tichavsky, C. H. Muravchik, and A. Nehorai, “Posterior Cramer-Rao
bounds for discrete-time nonlinear filtering,” IEEE Transactions on Signal
Processing, vol. 46, no. 5, pp. 1386–1396, May 1998.

[135] A. N. Tikhonov, “Solution of incorrectly formulated problems and the regu-
larization method,” Soviet Mathematique Dokldy, vol. 5, pp. 1035–1038, 1963.

[136] A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems. Washing-
ton, DC: V.H. Winston, 1977.

[137] D. M. Titterington, “Common structure of smoothing techniques in statistics,”
International Statistics Review, vol. 53, pp. 141–170, 1985.

[138] K. C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3 — a MATLAB software
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