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Abstract

Digital media technologies have become an integral part of the way we
create, communicate, and consume information. At the core of these
technologies are source coding methods that are described in this mono-
graph. Based on the fundamentals of information and rate distortion
theory, the most relevant techniques used in source coding algorithms
are described: entropy coding, quantization as well as predictive and
transform coding. The emphasis is put onto algorithms that are also
used in video coding, which will be explained in the other part of this
two-part monograph.
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1

Introduction

The advances in source coding technology along with the rapid
developments and improvements of network infrastructures, storage
capacity, and computing power are enabling an increasing number of
multimedia applications. In this monograph, we will describe and ana-
lyze fundamental source coding techniques that are found in a variety
of multimedia applications, with the emphasis on algorithms that are
used in video coding applications. The present first part of the mono-
graph concentrates on the description of fundamental source coding
techniques, while the second part describes their application in mod-
ern video coding.

The block structure for a typical transmission scenario is illustrated
in Figure 1.1. The source generates a signal s. The source encoder maps
the signal s into the bitstream b. The bitstream is transmitted over the
error control channel and the received bitstream b′ is processed by the
source decoder that reconstructs the decoded signal s′ and delivers it to
the sink which is typically a human observer. This monograph focuses
on the source encoder and decoder parts, which is together called a
source codec.

The error characteristic of the digital channel can be controlled by
the channel encoder, which adds redundancy to the bits at the source

1
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2 Introduction

Fig. 1.1 Typical structure of a transmission system.

encoder output b. The modulator maps the channel encoder output
to an analog signal, which is suitable for transmission over a physi-
cal channel. The demodulator interprets the received analog signal as
a digital signal, which is fed into the channel decoder. The channel
decoder processes the digital signal and produces the received bit-
stream b′, which may be identical to b even in the presence of channel
noise. The sequence of the five components, channel encoder, modula-
tor, channel, demodulator, and channel decoder, are lumped into one
box, which is called the error control channel. According to Shannon’s
basic work [63, 64] that also laid the ground to the subject of this text,
by introducing redundancy at the channel encoder and by introducing
delay, the amount of transmission errors can be controlled.

1.1 The Communication Problem

The basic communication problem may be posed as conveying source
data with the highest fidelity possible without exceeding an available bit
rate, or it may be posed as conveying the source data using the lowest
bit rate possible while maintaining a specified reproduction fidelity [63].
In either case, a fundamental trade-off is made between bit rate and
signal fidelity. The ability of a source coding system to suitably choose
this trade-off is referred to as its coding efficiency or rate distortion
performance. Source codecs are thus primarily characterized in terms of:

• throughput of the channel: a characteristic influenced by the
transmission channel bit rate and the amount of protocol
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1.2 Scope and Overview of the Text 3

and error-correction coding overhead incurred by the trans-
mission system; and
• distortion of the decoded signal: primarily induced by the

source codec and by channel errors introduced in the path to
the source decoder.

However, in practical transmission systems, the following additional
issues must be considered:

• delay: a characteristic specifying the start-up latency and
end-to-end delay. The delay is influenced by many parame-
ters, including the processing and buffering delay, structural
delays of source and channel codecs, and the speed at which
data are conveyed through the transmission channel;
• complexity: a characteristic specifying the computational

complexity, the memory capacity, and memory access
requirements. It includes the complexity of the source codec,
protocol stacks, and network.

The practical source coding design problem can be stated as follows:

Given a maximum allowed delay and a maximum
allowed complexity, achieve an optimal trade-off between
bit rate and distortion for the range of network environ-
ments envisioned in the scope of the applications.

1.2 Scope and Overview of the Text

This monograph provides a description of the fundamentals of source
and video coding. It is aimed at aiding students and engineers to inves-
tigate the subject. When we felt that a result is of fundamental impor-
tance to the video codec design problem, we chose to deal with it in
greater depth. However, we make no attempt to exhaustive coverage of
the subject, since it is too broad and too deep to fit the compact presen-
tation format that is chosen here (and our time limit to write this text).
We will also not be able to cover all the possible applications of video
coding. Instead our focus is on the source coding fundamentals of video
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4 Introduction

coding. This means that we will leave out a number of areas including
implementation aspects of video coding and the whole subject of video
transmission and error-robust coding.

The monograph is divided into two parts. In the first part, the
fundamentals of source coding are introduced, while the second part
explains their application to modern video coding.

Source Coding Fundamentals. In the present first part, we
describe basic source coding techniques that are also found in video
codecs. In order to keep the presentation simple, we focus on the
description for one-dimensional discrete-time signals. The extension of
source coding techniques to two-dimensional signals, such as video pic-
tures, will be highlighted in the second part of the text in the context
of video coding. Section 2 gives a brief overview of the concepts of
probability, random variables, and random processes, which build the
basis for the descriptions in the following sections. In Section 3, we
explain the fundamentals of lossless source coding and present loss-
less techniques that are found in the video coding area in some detail.
The following sections deal with the topic of lossy compression. Sec-
tion 4 summarizes important results of rate distortion theory, which
builds the mathematical basis for analyzing the performance of lossy
coding techniques. Section 5 treats the important subject of quantiza-
tion, which can be considered as the basic tool for choosing a trade-off
between transmission bit rate and signal fidelity. Due to its importance
in video coding, we will mainly concentrate on the description of scalar
quantization. But we also briefly introduce vector quantization in order
to show the structural limitations of scalar quantization and motivate
the later discussed techniques of predictive coding and transform cod-
ing. Section 6 covers the subject of prediction and predictive coding.
These concepts are found in several components of video codecs. Well-
known examples are the motion-compensated prediction using previ-
ously coded pictures, the intra prediction using already coded samples
inside a picture, and the prediction of motion parameters. In Section 7,
we explain the technique of transform coding, which is used in most
video codecs for efficiently representing prediction error signals.
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1.3 The Source Coding Principle 5

Application to Video Coding. The second part of the monograph
will describe the application of the fundamental source coding tech-
niques to video coding. We will discuss the basic structure and the
basic concepts that are used in video coding and highlight their appli-
cation in modern video coding standards. Additionally, we will consider
advanced encoder optimization techniques that are relevant for achiev-
ing a high coding efficiency. The effectiveness of various design aspects
will be demonstrated based on experimental results.

1.3 The Source Coding Principle

The present first part of the monograph describes the fundamental
concepts of source coding. We explain various known source coding
principles and demonstrate their efficiency based on one-dimensional
model sources. For additional information on information theoretical
aspects of source coding the reader is referred to the excellent mono-
graphs in [4, 11, 22]. For the overall subject of source coding including
algorithmic design questions, we recommend the two fundamental texts
by Gersho and Gray [16] and Jayant and Noll [40].

The primary task of a source codec is to represent a signal with the
minimum number of (binary) symbols without exceeding an “accept-
able level of distortion”, which is determined by the application. Two
types of source coding techniques are typically named:

• Lossless coding: describes coding algorithms that allow the
exact reconstruction of the original source data from the com-
pressed data. Lossless coding can provide a reduction in bit
rate compared to the original data, when the original sig-
nal contains dependencies or statistical properties that can
be exploited for data compaction. It is also referred to as
noiseless coding or entropy coding. Lossless coding can only
be employed for discrete-amplitude and discrete-time signals.
A well-known use for this type of compression for picture and
video signals is JPEG-LS [35].
• Lossy coding: describes coding algorithms that are character-

ized by an irreversible loss of information. Only an approxi-
mation of the original source data can be reconstructed from
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6 Introduction

the compressed data. Lossy coding is the primary coding
type for the compression of speech, audio, picture, and video
signals, where an exact reconstruction of the source data is
not required. The practically relevant bit rate reduction that
can be achieved with lossy source coding techniques is typi-
cally more than an order of magnitude larger than that for
lossless source coding techniques. Well known examples for
the application of lossy coding techniques are JPEG [33]
for still picture coding, and H.262/MPEG-2 Video [34] and
H.264/AVC [38] for video coding.

Section 2 briefly reviews the concepts of probability, random vari-
ables, and random processes. Lossless source coding will be described
in Section 3. Sections 5–7 give an introduction to the lossy coding tech-
niques that are found in modern video coding applications. In Section 4,
we provide some important results of rate distortion theory, which
will be used for discussing the efficiency of the presented lossy cod-
ing techniques.
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