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Abstract

Thanks to the explosive growth of sensing devices and capabilities,

multidimensional (MD) signals — such as images, videos, multispectral

images, light fields, and biomedical data volumes — have become ubiq-

uitous. Multidimensional filter banks and the associated constructions

provide a unified framework and an efficient computational tool in the

formation, representation, and processing of these multidimensional

data sets. In this survey we aim to provide a systematic development

of the theory and constructions of multidimensional filter banks.

We thoroughly review several tools that have been shown to be

particularly effective in the design and analysis of multidimensional

filter banks, including sampling lattices, multidimensional bases and

frames, polyphase representations, Gröbner bases, mapping methods,

frequency domain constructions, ladder structures and lifting schemes.

We then focus on the construction of filter banks and signal represen-

tations that can capture directional and geometric features, which are

unique and key properties of many multidimensional signals. Next,
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we study the connection between iterated multidimensional filter

banks in the discrete domain and the associated multiscale signal

representations in the continuous domain through a directional mul-

tiresolution analysis framework. Finally, we show several examples to

demonstrate the power of multidimensional filter banks and geometric

signal representations in applications.
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5.2 The Mapping-Based Design for MD Filter Banks 48

5.3 Designing Filter Banks in the Frequency Domain 57

6 Iterated and Directional Filter Banks 61

6.1 Directional Filter Banks 61

6.2 Directional Filter Banks in Higher Dimensions 65

7 Multiscale Geometric Representations 73

7.1 The Contourlet and Surfacelet Transforms 73

7.2 Multiresolution Directional Analysis 79

7.3 Other Multiscale Geometric Representations 83

8 Example Applications 89

8.1 Signal Decomposition and Nonlinear Approximation 89

8.2 Image and Video Denoising 92

8.3 Edge-Preserving Image Interpolation 96

8.4 Compressed Sensing 99

Conclusions 103

Acknowledgments 105

References 107

Full text available at: http://dx.doi.org/10.1561/2000000012



1

Introduction

Multidimensional (MD) signals are information-carrying physical quan-

tities that depend on several variables, each representing a unique

dimension. For example, a video is a three-dimensional (3D) signal

with two spatial dimensions (horizontal and vertical) and one temporal

dimension. A particularly important and common class of MD signals

contains visual information, ranging from general images and videos

on the Web to special medical images (such as MRI and CT scans)

for diagnostics, and from very small scales (molecular images) to very

large scales (astronomical images).

Efficient representation of visual information lies at the heart of

many image processing tasks such as reconstruction, denoising, com-

pression, and feature extraction. For example, a 512 by 512 color image

can be considered as a vector in a 512 × 512 × 3 dimensional space

(each pixel is represented by a triplet of color components). However,

as we can see in Figure 1.1, a randomly sampled image from this space is

far from being a natural image. In other words, natural images occupy

a very small faction of the huge space of all possible images. Effec-

tively exploring this fact allows us to efficiently compress an image or

to separate a clean image from noise.

1
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2 Introduction

Fig. 1.1 Example of a natural image (a) compared with an arbitrary image (b) that is

sampled from the same image space.

As can be seen from Figure 1.1, a key distinguishing feature of

natural images is that they have intrinsic geometric structures. In par-

ticular, visual information is mainly contained in the geometry of

object boundaries or edges. For this reason, wavelets and filter banks

[21, 65, 89, 95, 99] — a breakthrough resulting from the convergence

of ideas from several fields — have been found to be particularly well-

suited for representing images. In particular, wavelets are good at iso-

lating the discontinuities at edge points. However, as a result of their

construction by separable extension from 1D bases, wavelets in 2D can-

not “see” the smoothness along the contours. In addition, separable

wavelets can capture only limited directional information, which is an

important and unique feature of MD signals.

To see how one can improve the 2D separable wavelet transform

in representing images with smooth contours, consider the following

scenario. Imagine that there are two painters, one with a wavelet-style

and the other with a new style, both wishing to paint a natural scene.

Both painters apply a refinement technique to increase the resolution

from coarse to fine. We consider efficiency as measured by how quickly,

that is with how few brush strokes, each painter can faithfully reproduce

the scene. In other words, an efficient painting style is associated with

a sparse image representation scheme.

Full text available at: http://dx.doi.org/10.1561/2000000012



3

Fig. 1.2 Wavelet versus the new scheme: illustrations of different successive refinement styles

by the two systems near a smooth contour, which is shown as a thick curve separating two
smooth regions.

Consider the situation when a smooth contour is being painted, as

shown in Figure 1.2. Because 2D wavelets are constructed from tensor

products of 1D wavelets, the wavelet-style painter is limited to using

square-shaped brush strokes along the contour, using different sizes cor-

responding to the multiresolution structure of wavelets. As the resolu-

tion becomes finer, we can clearly see the limitation of the wavelet-style

painter who needs to use many fine “dots” to capture the contour.1 The

new style painter, on the other hand, effectively exploits the smoothness

of the contour by making brush strokes with different elongated shapes

and in a variety of directions following the contour. This intuition was

first formalized by Candès and Donoho in the curvelet construction

[7, 9]. We will also see later an actual realization of the new scheme

with the contourlet transform in Figure 8.2.

For the human visual system, it is well-known [44] that the receptive

fields in the visual cortex are characterized as being localized, oriented,

and bandpass. Furthermore, computational experiments in searching for

the sparse components of (both still and time-varying) natural images

produced basis images that closely resemble the aforementioned charac-

teristics of the visual cortex [72, 73]. These results support the hypoth-

esis that the human visual system has been tuned so as to capture the

1 Or we could consider the wavelet-style painter as a pointillist !
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4 Introduction

essential information of a natural scene using a least number of active

visual cells. More importantly, the results suggest that, for a compu-

tational image representation to be efficient, it should be based on a

local, directional, and multiresolution expansion.

Over the past decade, a number of concurrent studies in applied

mathematics, computer vision, and statistical learning theory have

independently developed theories and tools to explore and make use of

the geometric structures in multidimensional data. In signal process-

ing, the challenges as well as great research opportunities come from

the discrete nature of the data, together with the issues of robustness,

efficiency, and speed. For example, directions other than horizontal and

vertical can look very different on a rectangular grid typically used to

sample images. Because of pixelation, the notion of smooth contours

on sampled images is not obvious. Moreover, for practical applications,

efficient representation has to be obtained by structured transforms

and fast algorithms.

Thus, we are particularly interested in a discrete-space framework

for the construction of multiscale geometric transforms that can be

applied to sampled images and MD signals. Following the success of

wavelets and filter banks in 1D, we will focus on the constructions

using multidimensional filter banks. However, as mentioned above, the

commonly used wavelets and filter banks in MD are simply constructed

from separable extensions of their 1D counterparts. Here, we want to

exploit the full flexibility of true (non-separable) MD constructions

in order to achieve the desired multiscale directional and geometric

transforms and representations.

Toward this goal, we first provide a thorough review of the theory

and design of multidimensional filter banks in this survey. While there

are already several excellent papers and reviews on MD filter banks (see,

for example, [14, 49, 57, 100]), our review emphasizes MD filter banks

as basis and frame expansions for signal representations, in addition to

the traditional view of achieving good frequency partitions. Moreover,

we will highlight some modern and effective tools for designing MD fil-

ter banks such as Gröbner bases, mapping methods, frequency domain

constructions, and ladder structures and lifting schemes. We believe

that this MD filter bank review will be useful in its own right. Building

Full text available at: http://dx.doi.org/10.1561/2000000012
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upon this background, we then present constructions of iterated and

directional filter banks leading to multiscale geometric representations

for MD signals, both in discrete and continuous domains. The effective-

ness of these constructions will be demonstrated through applications

and numerical results.

The outline of this survey is as follows. In Section 2, we define our

notation and study the first building block of multidimensional filter

bank, namely, MD filtering. In Section 3, we study the other build-

ing block: MD sampling. The generalization of sampling from 1D to

MD using lattices provides a rich set of new possibilities that will be

exploited in later constructions of directional and geometric represen-

tations. Section 4 combines these two building blocks into a system-

atic study of MD filter banks. In particular, we focus on those filter

banks that satisfy the perfect reconstruction condition, which lead to

bases or frames for MD signal representations. Section 5 presents some

of the most effective tools for characterizing and designing MD fil-

ter banks. In Section 6, we study the iterated and directional filter

banks that are obtained by well-designed combinations of the build-

ing blocks for MD filter banks. Based on this directional construction,

we present multiscale geometric transforms in Section 7. Moreover, we

establish a precise connection between iterated MD filter banks in the

discrete domain and the associated multiscale signal representations in

the continuous domain through a directional multiresolution analysis

framework. Finally, Section 8 illustrates some applications in image and

MD signal processing, demonstrating the power of the constructed MD

filter banks and signal representations.
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