Image Wavelet Coding Systems: Part II of Set Partition Coding and Image Wavelet Coding Systems
Image Wavelet Coding Systems:
Part II of Set Partition Coding and Image Wavelet Coding Systems

William A. Pearlman
Rensselaer Polytechnic Institute
Troy, NY 12180-3590
USA
pearlw@ecse.rpi.edu

Amir Said
Hewlett-Packard Laboratories
Palo Alto, CA 94304
USA
Said@hpl.hp.com

now
the essence of knowledge
Boston – Delft
Editorial Scope

Foundations and Trends® in Signal Processing will publish survey and tutorial articles on the foundations, algorithms, methods, and applications of signal processing including the following topics:

- Adaptive signal processing
- Audio signal processing
- Biological and biomedical signal processing
- Complexity in signal processing
- Digital and multirate signal processing
- Distributed and network signal processing
- Image and video processing
- Linear and nonlinear filtering
- Multidimensional signal processing
- Multimodal signal processing
- Multiresolution signal processing
- Nonlinear signal processing
- Randomized algorithms in signal processing
- Sensor and multiple source signal processing, source separation
- Signal decompositions, subband and transform methods, sparse representations
- Signal processing for communications
- Signal processing for security and forensic analysis, biometric signal processing
- Signal quantization, sampling, analog-to-digital conversion, coding and compression
- Signal reconstruction, digital-to-analog conversion, enhancement, decoding and inverse problems
- Speech/audio/image/video compression
- Speech and spoken language processing
- Statistical/machine learning
- Statistical signal processing
- Classification and detection
- Estimation and regression
- Tree-structured methods

Information for Librarians
Foundations and Trends® in Signal Processing, 2008, Volume 2, 4 issues. ISSN paper version 1932-8346. ISSN online version 1932-8354. Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2000000014
Image Wavelet Coding Systems: Part II of
Set Partition Coding and Image Wavelet
Coding Systems

William A. Pearlman¹ and Amir Said²

¹ Department of Electrical, Computer and System Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA, pearlw@ecse.rpi.edu
² Hewlett-Packard Laboratories, 1501 Page Mill Road, MS 1203, Palo Alto, CA 94304, USA, Said@hpl.hp.com

Abstract

This monograph describes current-day wavelet transform image coding systems. As in the first part, steps of the algorithms are explained thoroughly and set apart. An image coding system consists of several stages: transformation, quantization, set partition or adaptive entropy coding or both, decoding including rate control, inverse transformation, de-quantization, and optional processing (see Figure 1.6). Wavelet transform systems can provide many desirable properties besides high efficiency, such as scalability in quality, scalability in resolution, and region-of-interest access to the coded bitstream. These properties are
built into the JPEG2000 standard, so its coding will be fully described. Since JPEG2000 codes subblocks of subbands, other methods, such as SBHP (Subband Block Hierarchical Partitioning) [3] and EZBC (Embedded Zero Block Coder) [8], that code subbands or its subblocks independently are also described. The emphasis in this part is the use of the basic algorithms presented in the previous part in ways that achieve these desirable bitstream properties. In this vein, we describe a modification of the tree-based coding in SPIHT (Set Partitioning In Hierarchical Trees) [15], whose output bitstream can be decoded partially corresponding to a designated region of interest and is simultaneously quality and resolution scalable.

Contents

1 Subband/Wavelet Coding Systems 1

1.1 Introduction 1
1.2 Wavelet Transform Coding Systems 2
1.3 Generic Wavelet-based Coding Systems 6
1.4 Compression Methods in Wavelet-based Systems 8
1.5 Block-based Wavelet Transform Set Partition Coding 10
1.6 Tree-Based Wavelet Transform Coding Systems 47
1.7 Rate Control for Embedded Block Coders 58
1.8 Conclusion 61

References 63
1

Subband/Wavelet Coding Systems

1.1 Introduction

This monograph describes coding systems, primarily for images, that use the principles and algorithms explained in the first part. A complete coding system uses a conjunction of compression algorithms, entropy coding methods, source transformations, statistical estimation, and ingenuity to achieve the best result for the stated objective. The obvious objective is compression efficiency, stated as the smallest rate, in bits per sample, for a given distortion in lossy coding or smallest rate or compressed file size in lossless coding. However, other attributes may be even more important for a particular scenario. For example, in medical diagnosis, decoding time may be the primary concern. For mobile devices, small memory and low power consumption are essential. For broadcasting over packet networks, scalability in bit rate and/or resolution may take precedence. Usually to obtain other attributes, some compression efficiency may need to be sacrificed. Of course, one tries to obtain as much efficiency as possible for the given set of attributes wanted for the system. Therefore, in our description of systems, we shall also explain how to achieve other attributes besides compression efficiency.
References


References


