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Abstract

Motion compensation exploits temporal correlation in a video sequence
to yield high compression efficiency. Multiple reference frame motion
compensation is an extension of motion compensation that exploits
temporal correlation over a longer time scale. Devised mainly for
increasing compression efficiency, it exhibits useful properties such
as enhanced error resilience and error concealment. In this survey,
we explore different aspects of multiple reference frame motion com-
pensation, including multihypothesis prediction, global motion predic-
tion, improved error resilience and concealment for multiple references,
and algorithms for fast motion estimation in the context of multiple
reference frame video encoders.
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1

Introduction

Digital video compression has matured greatly over the past two
decades. Initially reserved for niche applications such as video-
conferencing, it began to spread into everyday life with the introduc-
tion of the Video CD and its accompanying Motion Pictures Experts
Group MPEG-1 digital video compression standard in 1993 [51]. Home
use became widespread in 1996, when the digital video/versatile disk
(DVD) with MPEG-2 compression technology was introduced [48, 52].
Digital video compression also facilitated cable and IP-based digital TV
broadcast. At the same time, the increase in Internet bandwidth fueled
an unprecedented growth in Internet video streaming, while advances
in wireless transmission made mobile video streaming possible.

An example video sequence consisting of two frames is shown in
Figure 1.1. A frame contains an array of luma samples in monochrome
format or an array of luma samples and two corresponding arrays of
chroma samples in some pre-determined color sub-sampling format.
These samples correspond to pixel locations in the frame. To compress
these two frames, one can encode them independently using a still image
coder such as the Joint Photographic Experts Group (JPEG) [50] stan-
dard. The two frames are similar (temporally correlated), hence more

1
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2 Introduction

Fig. 1.1 The previous (a) and the current (b) frame of the video sequence.

compression can be obtained if we use the previous frame to help us
compress the current frame. One way to do this is to use the previous
frame to predict the current frame, and then to encode the difference
between the actual current frame and its prediction. The simplest ver-
sion of this process is to encode the difference between the two frames
(i.e., subtract the previous frame from the current frame and encode
that difference). In this case, the entire previous frame becomes the pre-
diction of the current frame. Let i and j denote the spatial horizontal
and vertical coordinates of a pixel in a rectangularly sampled grid in a
raster-scan order. Let fn(i, j) denote the pixel with coordinates (i, j) in
frame n. Let f̂n(i, j) denote the predicted value of this pixel. The pre-
diction value is mathematically expressed as f̂n(i, j) = fn−1(i, j). This
technique is shown in the first row of Figure 1.2. For sequences with
little motion such a technique ought to perform well; the difference
between two similar frames is very small and is highly compressible.
In Figure 1.1(b) for example, most of the bottom part of the tennis
court will be highly compressed since the difference for these areas will
be close to zero. However, there is considerable motion in terms of the
player and camera pan from one frame to the next and the difference
will be non-zero. This is likely to require many bits to represent.

1.1 Motion-Compensated Prediction

The key to achieving further compression is to compensate for this
motion, by forming a better prediction of the current frame from some

Full text available at: http://dx.doi.org/10.1561/2000000019



1.1 Motion-Compensated Prediction 3

Fig. 1.2 Motion compensated prediction. The top row shows the prediction which is the

unaltered previous frame (a) and the resulting difference image (b) that has to be coded.
The bottom row shows the equivalent prediction (c) and difference image (d) for motion

compensated prediction. The reduction of the error is apparent.

reference frame. A frame is designated as a reference frame when it can
be used for motion-compensated prediction. This prediction of the cur-
rent frame, and subsequent compression of the difference between the
actual and predicted frames, is often called hybrid coding. Hybrid cod-
ing forms the core of video coding schemes from the early compression
standards such as ITU-T H.261 [103] and ISO MPEG-1 to the most
recent ISO MPEG-4 Part 2 [53], SMPTE VC-1 [82], China’s Audio
Video Standard (AVS) [29], ITU-T H.263 [104], and ITU-T H.264/ISO
MPEG-4 Part 10 AVC coding standards [1, 84].

When a camera pans or zooms, this causes global motion, meaning
that all or most of the pixels in the frame are apparently in motion in
some related way, differing from the values they had in the previous
frame. When the camera is stationary but objects in the scene move,
this is called local motion. To compensate for local motion, a frame is

Full text available at: http://dx.doi.org/10.1561/2000000019



4 Introduction

typically subdivided into smaller rectangular blocks of pixels, in which
motion is assumed to consist of uniform translation. The translational
motion model assumes that motion within some image region can be
represented with a vector of horizontal and vertical spatial displace-
ments. In block-based motion-compensated prediction (MCP), for each
block b in the current frame, a motion vector (MV) can be transmitted
to the decoder to indicate which block in a previously coded frame is
the best match for the given block in the current frame, and therefore
forms the prediction of block b. Let us assume a block size of 8 × 8
pixels. The MV points from the center of the current block to the cen-
ter of its best match block in the previously coded frame. MVs are
essentially addresses of the best match blocks in the reference frame, in
this case the previous frame. Let v = (vx,vy) denote the MV for a block
in frame n. For the pixels in that block, the motion-compensated pre-
diction from frame n − 1 is written as f̂n(i, j) = fn−1(i + vx, j + vy). If
the MV is v = (0,0), then the best match block is the co-located block
in the reference frame. As Figure 1.1 shows, parts of the tennis court at
the bottom part of the frame appear static, so the best match is found
with the (0,0) MV. However, there is substantial motion in the rest of
the frame that can only be modeled with non-zero MVs.

MVs or, in general, motion parameters are determined by doing
a motion search, a process known as motion estimation (ME), in a
reference frame. Assuming a search range of [−16,+16] pixels for each
spatial (horizontal and vertical) component, 33 × 33 = 1089 potential
best match blocks can be referenced and have to be evaluated. The
MV v that minimizes either the sum of absolute differences (SAD) or
the sum of squared differences (SSD) between the block of pixels f in
the current frame n and the block in the previous frame n − l that
is referenced by v = (vx,vy) may be selected and transmitted. Let b
denote a set that contains the coordinates of all pixels in the block.
The SAD and SSD are written as:

SAD =
∑

(i,j)∈b

|fn(i, j) − fn−l(i + vx, j + vy)| (1.1)

SSD =
∑

(i,j)∈b

(fn(i, j) − fn−l(i + vx, j + vy))
2 (1.2)
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1.1 Motion-Compensated Prediction 5

To form the MCP of the current frame, the blocks that are addressed
through the MVs are copied from their original spatial location, pos-
sibly undergoing some type of spatial filtering (more on that in Sec-
tion 3.5), to the location of the blocks in the current frame, as shown
in Figure 1.2(c). This prediction frame is subsequently subtracted from
the current frame to yield the motion-compensated difference frame or,
in more general terms, the prediction residual in Figure 1.2(d). Obvi-
ously, if the MCP frame is very similar to the current frame, then
the prediction residual will have most of its values close to zero, and
hence require fewer bits to compress, compared to coding each frame
with JPEG or subtracting the previous frame from the current one and
coding the difference. One trade-off is an increase in complexity since
ME is costly. The prediction residual is typically transmitted to the
decoder by transforming it using a discrete cosine transform (DCT),
rounding off the coefficients to some desired level of precision (a pro-
cess called quantization) and sending unique variable-length codewords
to represent these rounded-off coefficients. Along with this difference
information, the MVs are transmitted to the decoder, requiring some
additional bit rate of their own. For content with sufficient temporal
correlation, the overall bit rate requirements are much less than without
the use of MCP.

A diagram of a hybrid codec is illustrated in Figure 1.3. The decoder
uses the MVs to obtain the motion compensated prediction blocks from
some previously decoded reference frame. Then, the decoded prediction

Fig. 1.3 Hybrid video (a) encoder and (b) decoder.

Full text available at: http://dx.doi.org/10.1561/2000000019



6 Introduction

residual block is added to the MCP block to yield the current decoded
block. This is repeated until the entire frame has been reconstructed.
The reconstructed frame at the decoder may not be identical with
the original one, because of the quantization used on the residual
blocks.

Note that MCP for a block is also known as inter prediction since
inter-frame redundancy is used to achieve compression. When com-
bined with coding of the prediction residual it is called inter-frame
coding. When a block is encoded independently of any other frame, this
is known as intra-frame coding. Usually, intra-frame coding involves
some kind of intra-frame prediction or intra prediction, which is pre-
dicting a block using spatial neighbors. This might involve using the
DC coefficient of a transform block as a prediction of the DC coefficient
of the next transform block in raster-scan order (as in JPEG). Or it
might involve prediction of each pixel in a block from spatial neighbors
using one of several possible directional extrapolations (as in H.264).
In general, inter-frame coding enables higher compression ratios but
is not as error resilient as intra-frame coding, since, for inter-frame
coding, decoding the current frame depends on the availability of the
reference frame. Video frames (or equivalently pictures) that use intra-
frame coding exclusively to encode all blocks are called intra-coded or
I-coded frames, while frames that allow the use of either intra-frame
or inter-frame coding from some reference frame are known as P-coded
frames. P-coded frames have been traditionally constrained to refer-
ence past frames in display order (as in the early standards H.261,
H.263, MPEG-1, MPEG-2, and MPEG-4 Part 2). Finally, B-coded
frames allow bi-directional prediction from one past and one future
frame in display order in addition to intra-frame or inter-frame coding.
Note that referencing future frames in display order generally involves
transmitting frames out of order. For example, frame 3 can be encoded
after frame 1 and then frame 2 can be encoded making reference to both
frames 1 and 3. A simple illustration is shown in Figure 1.4. Note that
B-coded frames were further extended in H.264/MPEG-4 AVC [1] to
provide for a more generic form of bi-prediction without any restrictions
in direction. Detailed information on bi-predictive coding is found in
Section 4.1.

Full text available at: http://dx.doi.org/10.1561/2000000019



1.2 Outline 7

Fig. 1.4 An example of different prediction schemes.

1.2 Outline

Block-based MCP traditionally made use of a single previous frame as a
reference frame for motion-compensated prediction, while for B-coded
frames a single future frame was used jointly with the previous frame in
display order to produce the best prediction for the current frame. How-
ever, motion search does not have to be limited to one frame from each
prediction direction. Temporal correlation can be often nontrivial for
temporally distant frames. In this article, the term multiple-reference
frame motion compensation encompasses any method that uses combi-
nations of more than one reference frame to predict the current frame.
We also discuss cases where reference frames can be synthesized frames,
such as panoramas and mosaics, or even composite frames that are
assembled from parts of multiple previously coded frames. Finally, we
note that we wish to decouple the term reference frame from that of a
decoded frame. While a decoded frame can be a reference frame used
for MCP of the current frame, a reference frame is not constrained to
be identical to a decoded frame. The first treatise of the then state-
of-the-art in multiple-reference frames for MCP is [109]. This work
is intended to be somewhat broader and more tutorial. The article
is organized as follows. Section 2 describes background, mosaic, and
library coding, which preceded the development of modern multiple-
reference techniques. Multiple-frame motion compensation is treated in

Full text available at: http://dx.doi.org/10.1561/2000000019



8 Introduction

Section 3, while the almost concurrent development of multihypothesis
prediction, often seen as a superset of multiple-reference prediction, is
investigated in Section 4. The commercialization and rapid deployment
of multiple-reference predictors has been hampered by the increased
complexity requirements for motion estimation. Low complexity algo-
rithms for multiple-frame motion search are covered in Section 5. The
uses of multiple references for error resilience and error concealment
are discussed in Sections 6 and 7, respectively. An experimental eval-
uation of some of the advances discussed in this work is presented in
Section 8. This survey is concluded with Section 9. Appendix A pro-
vides the reader with additional information on rate-distortion opti-
mization and Lagrangian minimization. Note that this work disregards
the impact of each prediction scheme on decoder complexity.

Full text available at: http://dx.doi.org/10.1561/2000000019
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