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Abstract

This introduction to the expectation–maximization (EM) algorithm
provides an intuitive and mathematically rigorous understanding of
EM. Two of the most popular applications of EM are described in
detail: estimating Gaussian mixture models (GMMs), and estimat-
ing hidden Markov models (HMMs). EM solutions are also derived
for learning an optimal mixture of fixed models, for estimating the
parameters of a compound Dirichlet distribution, and for dis-entangling
superimposed signals. Practical issues that arise in the use of EM are
discussed, as well as variants of the algorithm that help deal with these
challenges.
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1

The Expectation-Maximization Method

Expectation–maximization (EM) is an iterative method that attempts
to find the maximum likelihood estimator of a parameter θ of a para-
metric probability distribution. Let us begin with an example. Consider
the temperature outside your window for each of the 24 hours of a
day, represented by x ∈ R24, and say that this temperature depends on
the season θ ∈ {summer, fall, winter, spring}, and that you know the
seasonal temperature distribution p(x |θ). But what if you could only
measure the average temperature y = x̄ for some day, and you would
like to estimate what season θ it is (for example, is spring here yet?). In
particular, you might seek the maximum likelihood estimate of θ, that
is, the value θ̂ that maximizes p(y |θ). If this is not a trivial maximum
likelihood problem, you might call upon EM. EM iteratively alternates
between making guesses about the complete data x, and finding the θ
that maximizes p(x |θ) over θ. In this way, EM tries to find the maxi-
mum likelihood estimate of θ given y. We will see in later sections that
EM does not actually promise to find the θ that maximizes p(y |θ),
but there are some theoretical guarantees, and it often does a good job
in practice, though it may need a little help in the form of multiple
random starts.

1
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2 The Expectation-Maximization Method

This exposition is designed to be useful to both the EM novice and
the experienced EM user looking to better understand the method and
its use. To this end, we err on the side of providing too many explicit
details rather than too few.

First, we go over the steps of EM, breaking down the usual two-step
description into a five-step description. Table 1.1 summarizes the key
notation. We recommend reading this document linearly up through
Section 1.4, after which sections can generally be read out-of-order.
Section 1 ends with a detailed version of a historical toy example for
EM. In Section 2 we show that EM never gets worse as it iterates in
terms of the likelihood of the estimate it produces, and we explain the
maximization–maximization interpretation of EM. We also explain the
general advantages and disadvantages of EM compared to other options
for maximizing the likelihood, like the Newton–Raphson method. The

Table 1.1. Notation summary.

R Set of real numbers
R+ Set of positive real numbers

N Set of natural numbers

y ∈ Rd Given measurement or observation

Y ∈ Rd Random measurement; y is a realization of Y

x ∈ Rd1 Complete data you wish you had

X ∈ Rd1 Random complete data; x is a realization of X

z ∈ Rd2 Missing data; in some problems x = (y,z)

Z ∈ Rd2 Random missing data; z is a realization of Z

θ ∈ Ω Parameter(s) to estimate, Ω is the parameter space

θ(m) ∈ Ω mth estimate of θ

p(y |θ) Density of y given θ; also written as p(Y = y |θ)
X Support of X (closure of the set of x where

p(x |θ) > 0)

X (y) Support of X conditioned on y (closure of the

set of x where p(x |y,θ) > 0)

, “Is defined to be”

L(θ) Likelihood of θ given y, that is, p(y |θ)
`(θ) Log-likelihood of θ given y, that is, logp(y |θ)
EX|y,θ[X] Expectation of X conditioned on y and θ, that is,∫

X (y) xp(x |y,θ)dx
1{·} Indicator function: equals 1 if the expression {·} is

true, and 0 otherwise

1 Vector of ones
DKL(P ‖Q) Kullback–Leibler divergence (a.k.a. relative entropy)

between distributions P and Q

Full text available at: http://dx.doi.org/10.1561/2000000034



1.1 The EM Algorithm 3

advantages of EM are made clearer in Sections 3 and 4, in which we
derive a number of popular applications of EM and use these applica-
tions to illustrate practical issues that can arise with EM. Section 3
covers learning the optimal combination of fixed models to explain the
observed data, and fitting a Gaussian mixture model (GMM) to the
data. Section 4 covers learning hidden Markov models (HMMs), sep-
arating superimposed signals, and estimating the parameter for the
compound Dirichlet distribution. In Section 5, we categorize and dis-
cuss some of the variants of EM and related methods, and we conclude
this manuscript in Section 6 with some historical notes.

1.1 The EM Algorithm

To use EM, you must be given some observed data y, a parametric
density p(y |θ), a description of some complete data x that you wish
you had, and the parametric density p(x |θ).1 In Sections 3 and 4 we
will explain how to define the complete data x for some standard EM
applications.

We assume that the complete data can be modeled as a continuous2

random vector X with density p(x |θ),3 where θ ∈ Ω for some set Ω. You
do not observe X directly; instead, you observe a realization y of the
random vector Y that depends4 on X. For example, X might be a
random vector and Y the mean of its components, or if X is a complex
number then Y might be only its magnitude, or Y might be the first
component of the vector X.

1 A different standard choice of notation for a parametric density would be p(y;θ), but
we prefer p(y |θ) because this notation is clearer when one wants to find the maximum

a posteriori estimate rather than the maximum likelihood estimate—we will talk more
about the maximum a posteriori estimate of θ in Section 1.3.

2 The treatment of discrete random vectors is a straightforward special case of the continuous

treatment: one only needs to replace the probability density function with probability mass

function and integral with summation.
3 We assume that the support of X, denoted by X , which is the closure of the set

{x
∣∣ p(x |θ) > 0}, does not depend on θ. An example where the support does depend on

θ is if X is uniformly distributed on the interval [0,θ]. If the support does depend on θ,
then the monotonicity of the EM algorithm might not hold. See Section 2.1 for details.

4 A rigorous description of this dependency is deferred to Section 1.4.
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4 The Expectation-Maximization Method

Given that you only have y, the goal here is to find the maximum
likelihood estimate (MLE) of θ:

θ̂MLE = arg max
θ∈Ω

p(y |θ). (1.1)

It is often easier to calculate the θ that maximizes the log-likelihood
of y:

θ̂MLE = argmax
θ∈Ω

logp(y |θ). (1.2)

Because log is a monotonically increasing function, the solution to (1.1)
will be the same as the solution to (1.2). However, for some problems it
is difficult to solve either (1.1) or (1.2). Then we can try EM: we make
a guess about the complete data X and solve for the θ that maximizes
the (expected) log-likelihood of X. And once we have an estimate for
θ, we can make a better guess about the complete data X, and iterate.

EM is usually described as two steps (the E-step and the M-step),
but let us first break it down into five steps:

Step 1: Let m = 0 and make an initial estimate θ(m) for θ.
Step 2: Given the observed data y and pretending for the moment

that your current guess θ(m) is correct, formulate the condi-
tional probability distribution p(x |y,θ(m)) for the complete
data x.

Step 3: Using the conditional probability distribution p(x |y,θ(m)) cal-
culated in Step 2, form the conditional expected log-likelihood,
which is called the Q-function5:

Q(θ |θ(m)) =
∫
X (y)

logp(x |θ)p(x |y,θ(m))dx

= EX|y,θ(m) [logp(X |θ)], (1.3)

5 Note this Q-function has nothing to do with the sum of the tail of a Gaussian, which is

also called the Q-function. People call (1.3) the Q-function because the original paper [11]
used a Q to notate it. We like to say that the Q stands for quixotic because it is a bit
crazy and hopeful and beautiful to think you can find the maximum likelihood estimate

of θ in this way that iterates round-and-round like a windmill, and if Don Quixote had
been a statistician, it is just the sort of thing he might have done.
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1.1 The EM Algorithm 5

where the integral is over the set X (y), which is the closure
of the set {x

∣∣ p(x |y,θ) > 0}, and we assume that X (y) does
not depend on θ.
Note that θ is a free variable in (1.3), so the Q-function is
a function of θ, but also depends on your current guess θ(m)

implicitly through the p(x |y,θ(m)) calculated in Step 2.
Step 4: Find the θ that maximizes the Q-function (1.3); the result is

your new estimate θ(m+1).
Step 5: Let m := m + 1 and go back to Step 2. (The EM algorithm

does not specify a stopping criterion; standard criteria are to
iterate until the estimate stops changing: ‖θ(m+1) − θ(m)‖ < ε

for some ε > 0, or to iterate until the log-likelihood `(θ) =
logp(y |θ) stops changing: |`(θ(m+1)) − `(θ(m))| < ε for some
ε > 0.)

The EM estimate is only guaranteed to never get worse (see Section 2.1
for details). Usually, it will find a peak in the likelihood p(y |θ), but
if the likelihood function p(y |θ) has multiple peaks, EM will not nec-
essarily find the global maximum of the likelihood. In practice, it is
common to start EM from multiple random initial guesses, and choose
the one with the largest likelihood as the final guess for θ.

The traditional description of the EM algorithm consists of only
two steps. The above Steps 2 and 3 combined are called the E-step for
expectation, and Step 4 is called the M-step for maximization:
E-step: Given the estimate from the previous iteration θ(m), compute
the conditional expectation Q(θ |θ(m)) given in (1.3).
M-step: The (m + 1)th guess of θ is:

θ(m+1) = argmax
θ∈Ω

Q(θ |θ(m)). (1.4)

Since the E-step is just to compute the Q-function which is used
in the M-step, EM can be summarized as just iteratively solving the
M-step given by (1.4). When applying EM to a particular problem, this
is usually the best way to think about EM because then one does not
waste time computing parts of the Q-function that do not depend on θ.

Full text available at: http://dx.doi.org/10.1561/2000000034



6 The Expectation-Maximization Method

1.2 Contrasting EM with a Simple Variant

As a comparison that may help illuminate EM, we next consider a
simple variant of EM. In Step 2 above, one computes the conditional
distribution p(x |y,θ(m)) over all possible values of x, and this entire
conditional distribution is taken into account in the M-step. A simple
variant is to instead use only the mth maximum likelihood estimate
x(m) of the complete data x:

E-like-step: x(m) = arg max
x∈X (y)

p(x |y,θ(m)),

M-like-step: θ(m+1) = argmax
θ∈Ω

p(x(m) |θ).

We call this variant the point-estimate variant of EM ; it has also been
called classification EM. More on this variant can be found in [7, 9].

Perhaps the most famous example of this variant is k-means clus-
tering6 [21, 35]. In k-means clustering, we have n observed data points
y =

[
y1 y2 . . . yn

]T
, where each yi ∈ Rd, and it is believed that the

data points belong to k clusters. Let the complete data be the observed
data points and the missing information that specifies which of the k
clusters each observed data point belongs to. The goal is to estimate
the k cluster centers θ. First, one makes an initial guess θ̂0 of the k clus-
ter centers. Then in the E-like step, one assigns each of the n points
to the closest cluster based on the estimated cluster centers θ(m). Then
in the M-like step, one takes all the points assigned to each cluster,
and computes the mean of those points to form a new estimate of the
cluster’s centroid. Underlying k-means is a model that the clusters are
defined by Gaussian distributions with unknown means (the θ to be
estimated) and identity covariance matrices.

EM clustering differs from k-means clustering in that at each iter-
ation you do not choose a single x(m), that is, one does not force each
observed point yi to belong to only one cluster. Instead, each observed
point yi is probabilistically assigned to the k clusters by estimating
p(x |y,θ(m)). We treat EM clustering in more depth in Section 3.2.

6 The k-means clustering algorithm dates to 1967 [35] and is a special case of vector

quantization, which was first proposed as Lloyd’s algorithm in 1957 [32]. See [17] for
details.

Full text available at: http://dx.doi.org/10.1561/2000000034



1.3 Using a Prior with EM (MAP EM) 7

1.3 Using a Prior with EM (MAP EM)

The EM algorithm can fail due to singularities of the log-likelihood
function — for example, for learning a GMM with 10 components, it
may decide that the most likely solution is for one of the Gaussians to
only have one data point assigned to it, with the bad result that the
Gaussian is estimated as having zero covariance (see Section 3.2.5 for
details).

A straightforward solution to such degeneracies is to take into
account or impose some prior information on the solution for θ. One
approach would be to restrict the set of possible θ. Such a restriction
is equivalent to putting a uniform prior probability over the restricted
set. More generally, one can impose any prior p(θ), and then modify
EM to maximize the posterior rather than the likelihood:

θ̂MAP = argmax
θ∈Ω

logp(θ |y) = argmax
θ∈Ω

(logp(y |θ) + logp(θ)).

The EM algorithm is easily extended to maximum a posteriori (MAP)
estimation by modifying the M-step:
E-step: Given the estimate from the previous iteration θ(m), compute
as a function of θ ∈ Ω the conditional expectation

Q(θ |θ(m)) = EX|y,θ(m) [logp(X |θ)].

M-step: Maximize Q(θ |θ(m)) + logp(θ) over θ ∈ Ω to find

θ(m+1) = argmax
θ∈Ω

(Q(θ |θ(m)) + logp(θ)).

An example of MAP EM is given in Section 3.3.

1.4 Specifying the Complete Data

Practically, the complete data should be defined so that given x it is
relatively easy to maximize p(x |θ) with respect to θ. Theoretically,
the complete data X must satisfy the Markov relationship θ→ X → Y

with respect to the parameter θ and the observed data Y , that is, it
must be that

p(y |x,θ) = p(y |x).

Full text available at: http://dx.doi.org/10.1561/2000000034



8 The Expectation-Maximization Method

A special case is when Y is a function of X, that is, Y = T (X); in
this case, X → Y is a deterministic function, and thus the Markov
relationship always holds.

1.4.1 EM for Missing Data Problems

For many applications of EM, including GMM and HMM, the com-
plete data X is the observed data Y plus some missing (sometimes
called latent or hidden) data Z, such that X = (Y,Z). This is a spe-
cial case of Y = T (X), where the function T simply removes Z from
X to produce Y . In general when using EM with missing data, one
can write the Q-function as an integral over the domain of Z, denoted
by Z, rather than over the domain of X, because the only random part
of the complete data X is the missing data Z. Then, for missing data
problems where x = (y,z),

Q(θ |θ(m)) =
∫
X

logp(x |θ)p(x |y,θ(m))dx

=
∫
X

logp(y,z |θ)p(y,z |y,θ(m))dx

=
∫
Z

logp(y,z |θ)p(z |y,θ(m))dz

= EZ|y,θ(m) [logp(y,Z |θ)]. (1.5)

1.4.2 EM for Independently, Identically
Distributed Samples

For many common applications such as learning a GMM or HMM, the
complete data X is a set of n independent and identically distributed
(i.i.d.) random vectors, X =

[
X1 X2 . . . Xn

]T
and the ith observed

sample yi is only a function of xi. Then the following proposition is
useful for decomposing the Q-function into a sum:

Proposition 1.1. Suppose p(x |θ) =
∏n
i=1 p(xi |θ) for all x ∈ X n and

all θ ∈ Ω, and the Markov relationship θ→ Xi→ Yi holds for all i =
1, . . . ,n, that is,

p(yi |x,y1, . . . ,yi−1,yi+1, . . . ,yn,θ) = p(yi |xi), (1.6)

Full text available at: http://dx.doi.org/10.1561/2000000034



1.4 Specifying the Complete Data 9

then

Q(θ |θ(m)) =
n∑
i=1

Qi(θ |θ(m)),

where

Qi(θ |θ(m)) = EXi|yi,θ(m) [logp(Xi |θ)], i = 1, . . . ,n.

Proof. First, we show that given θ, the elements of the set {(Xi,Yi)},
i = 1, . . . ,n, are mutually independent, that is,

p(x,y |θ) =
n∏
i=1

p(xi,yi |θ). (1.7)

This mutual independence holds because

p(x,y |θ) = p(y1 |y2, . . . ,yn,x,θ) · · ·p(yn |x,θ)p(x |θ)
(by the chain rule)

= p(y1 |x1,θ) · · ·p(yn |xn,θ)p(x |θ)
(by (1.6), but keep θ in the condition)

= p(y1 |x1,θ) · · ·p(yn |xn,θ)
n∏
i=1

p(xi |θ)

(by the independence assumption on X)

=
n∏
i=1

p(yi |xi,θ)p(xi |θ)

=
n∏
i=1

p(xi,yi |θ).

Then we show that for all i = 1, . . . ,n, we have

p(xi |y,θ) = p(xi |yi,θ). (1.8)

This is because

p(xi |y,θ) =
p(xi,y |θ)
p(y |θ)

(by Bayes’ rule)

=

∫
Xn−1 p(x,y |θ)dx1 . . .dxi−1dxi+1 . . .dxn∫

Xn p(x,y |θ)dx

Full text available at: http://dx.doi.org/10.1561/2000000034



10 The Expectation-Maximization Method

=

∫
Xn−1

∏n
j=1 p(xj ,yj |θ)dx1 . . .dxi−1dxi+1 . . .dxn∫
Xn
∏n
j=1 p(xj ,yj |θ)dx1 . . .dxn

(by (1.7))

=
p(xi,yi |θ)

∏n
j=1, j 6=i

∫
X p(xj ,yj |θ)dxj∏n

j=1

∫
X p(xj ,yj |θ)dxj

=
p(xi,yi |θ)

∏n
j=1, j 6=i p(yj |θ)∏n

j=1 p(yj |θ)

=
p(xi,yi |θ)
p(yi |θ)

= p(xi |yi,θ).

Then,

Q(θ |θ(m)) = EX|y,θ(m) [logp(X |θ)]

= EX|y,θ(m)

[
log

n∏
i=1

p(Xi |θ)

]
(by the independence assumption on X)

= EX|y,θ(m)

[
n∑
i=1

logp(Xi |θ)

]

=
n∑
i=1

EXi|y,θ(m) [logp(Xi |θ)]

=
n∑
i=1

EXi|yi,θ(m) [logp(Xi |θ)],

where the last line holds because of (1.8).

1.5 A Toy Example

We next present a fully worked-out version of a “toy example” of EM
that was used in the seminal EM paper [11]. Here, we give more details,
and we have changed it to literally be a toy example.

Imagine you ask n kids to choose a toy out of four choices. Let Y =[
Y1 . . . Y4

]T
denote the histogram of their n choices, where Yi is the

number of the kids that chose toy i, for i = 1, . . . ,4. We can model this
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1.5 A Toy Example 11

random histogram Y as being distributed according to a multinomial
distribution. The multinomial has two parameters: the number of kids
asked, denoted by n ∈ N, and the probability that a kid will choose each
of the four toys, denoted by p ∈ [0,1]4, where p1 + p2 + p3 + p4 = 1.
Then the probability of seeing some particular histogram y is:

P (y |p) =
n!

y1!y2!y3!y4!
py1

1 p
y2
2 p

y3
3 p

y4
4 . (1.9)

Next, say that we have reason to believe that the unknown proba-
bility p of choosing each of the toys is parameterized by some hidden
value θ ∈ (0,1) such that

pθ =
[

1
2

+
1
4
θ

1
4

(1 − θ) 1
4

(1 − θ) 1
4
θ

]T

, θ ∈ (0,1). (1.10)

The estimation problem is to guess the θ that maximizes the probability
of the observed histogram y of toy choices.

Combining (1.9) and (1.10), we can write the probability of seeing
the histogram y =

[
y1 y2 y3 y4

]T
as

P (y |θ) =
n!

y1!y2!y3!y4!

(
1
2

+
θ

4

)y1
(

1 − θ
4

)y2
(

1 − θ
4

)y3
(
θ

4

)y4

.

For this simple example, one could directly maximize the log-likelihood
logP (y |θ), but here we will instead illustrate how to use the EM algo-
rithm to find the maximum likelihood estimate of θ.

To use EM, we need to specify what the complete data X is. We
will choose the complete data to enable us to specify the probability
mass function (pmf) in terms of only θ and 1 − θ. To that end, we
define the complete data to be X =

[
X1 . . . X5

]T
, where X has a

multinomial distribution with number of trials n and the probability
of each event is:

qθ =
[

1
2

1
4
θ

1
4

(1 − θ) 1
4

(1 − θ) 1
4
θ

]T

, θ ∈ (0,1).

By defining X this way, we can then write the observed data Y as:

Y = T (X) =
[
X1 + X2 X3 X4 X5

]T
.
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12 The Expectation-Maximization Method

The likelihood of a realization x of the complete data is

P (x |θ) =
n!∏5
i=1xi!

(
1
2

)x1
(
θ

4

)x2+x5
(

1 − θ
4

)x3+x4

. (1.11)

For EM, we need to maximize the Q-function:

θ(m+1) = arg max
θ∈(0,1)

Q(θ |θ(m)) = arg max
θ∈(0,1)

EX|y,θ(m) [logp(X |θ)].

To solve the above equation, we actually only need the terms of
logp(x |θ) that depend on θ, because the other terms are irrelevant
as far as maximizing over θ is concerned. Take the log of (1.11) and
ignore those terms that do not depend on θ, then

θ(m+1) = arg max
θ∈(0,1)

EX|y,θ(m) [(X2 + X5) logθ + (X3 + X4) log(1 − θ)]

= arg max
θ∈(0,1)

(EX|y,θ(m) [X2] + EX|y,θ(m) [X5]) logθ

+ (EX|y,θ(m) [X3] + EX|y,θ(m) [X4]) log(1 − θ).

To solve the above maximization problem, we need the expectation
of the complete data X conditioned on the already known incomplete
data y, which only leaves the uncertainty about X1 and X2. Since we
know that X1 + X2 = y1, we can use the indicator function 1{·} to
write that given y1, the pair (X1,X2) is binomially distributed with X1

“successes” in y1 events:

P (x |y,θ(m))

=
y1!

x1!x2!

(
1
2

1
2 + θ(m)

4

)x1
(

θ(m)

4
1
2 + θ(m)

4

)x2

1{x1+x2=y1}

5∏
i=3

1{xi=yi−1}

=
y1!

x1!x2!

(
2

2 + θ(m)

)x1
(

θ(m)

2 + θ(m)

)x2

1{x1+x2=y1}

5∏
i=3

1{xi=yi−1}.

Then the conditional expectation of X given y and θ(m) is

EX|y,θ(m) [X] =
[

2
2+θ(m) y1

θ(m)

2+θ(m) y1 y2 y3 y4

]T
,
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1.5 A Toy Example 13

and the M-step becomes

θ(m+1) = arg max
θ∈(0,1)

((
θ(m)

2 + θ(m)
y1 + y4

)
logθ + (y2 + y3) log(1 − θ)

)

=
θ(m)

2+θ(m) y1 + y4

θ(m)

2+θ(m) y1 + y2 + y3 + y4

.

Given an initial estimate θ(0) = 0.5, the above algorithm reaches θ̂MLE

to MATLAB’s numerical precision on the 18th iteration.
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