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Abstract

Reproducing kernel Hilbert spaces are elucidated without assuming
prior familiarity with Hilbert spaces. Compared with extant pedagogic
material, greater care is placed on motivating the definition of repro-
ducing kernel Hilbert spaces and explaining when and why these spaces
are efficacious. The novel viewpoint is that reproducing kernel Hilbert
space theory studies extrinsic geometry, associating with each geomet-
ric configuration a canonical overdetermined coordinate system. This
coordinate system varies continuously with changing geometric config-
urations, making it well-suited for studying problems whose solutions
also vary continuously with changing geometry. This primer can also
serve as an introduction to infinite-dimensional linear algebra because
reproducing kernel Hilbert spaces have more properties in common with
Euclidean spaces than do more general Hilbert spaces.

J. H. Manton and P.-O. Amblard. A Primer on Reproducing Kernel Hilbert Spaces.
Foundations and Trends® in Signal Processing, vol. 8, no. 1-2, pp. 1–126, 2014.
DOI: 10.1561/2000000050.
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1
Introduction

Hilbert space theory is a prime example in mathematics of a beauti-
ful synergy between symbolic manipulation and visual reasoning. Two-
dimensional and three-dimensional pictures can be used to reason about
infinite-dimensional Hilbert spaces, with symbolic manipulations sub-
sequently verifying the soundness of this reasoning, or suggesting mod-
ifications and refinements. Visualising a problem is especially beneficial
because over half the human brain is involved to some extent with vi-
sual processing. Hilbert space theory is an invaluable tool in numerous
signal processing and systems theory applications [61, 11, 9].

Hilbert spaces satisfying certain additional properties are known
as Reproducing Kernel Hilbert Spaces (RKHSs), and RKHS theory is
normally described as a transform theory between Reproducing Kernel
Hilbert Spaces and positive semi-definite functions, called kernels: ev-
ery RKHS has a unique kernel, and certain problems posed in RKHSs
are more easily solved by involving the kernel. However, this descrip-
tion hides the crucial aspect that the kernel captures not just intrinsic
properties of the Hilbert space but also how the Hilbert space is embed-
ded in a larger function space, which is referred to here as its extrinsic
geometry. A novel feature of this primer is drawing attention to this

2
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3

extrinsic geometry, and using it to explain why certain problems can
be solved more efficiently in terms of the kernel than the space itself.

Another novel feature of this primer is that it motivates and devel-
ops RKHS theory in finite dimensions before considering infinite dimen-
sions. RKHS theory is ingenious; the underlying definitions are simple
but powerful and broadly applicable. These aspects are best brought
out in the finite-dimensional case, free from the distraction of infinite-
dimensional technicalities. Essentially all of the finite-dimensional re-
sults carry over to the infinite-dimensional setting.

This primer ultimately aims to empower readers to recognise when
and how RKHS theory can profit them in their own work. The following
are three of the known uses of RKHS theory.

1. If a problem involves a subspace of a function space, and if the
subspace (or its completion) is a RKHS, then the additional prop-
erties enjoyed by RKHSs may help solve the problem. (Explicitly
computing limits of sequences in Hilbert spaces can be difficult,
but in a RKHS the limit can be found pointwise.)

2. Certain classes of problems involving positive semi-definite func-
tions can be solved by introducing an associated RKHS whose
kernel is precisely the positive semi-definite function of interest.
A classic example, due to Parzen, is associating a RKHS with a
stochastic process, where the kernel of the RKHS is the covari-
ance function of the stochastic process (see §7.2).

3. Given a set of points and a function specifying the desired dis-
tances between points, the points can be embedded in a RKHS
with the distances between points being precisely as prescribed;
see §5. (Support vector machines use this to convert certain non-
linear problems into linear problems.)

In several contexts, RKHS methods have been described as provid-
ing a unified framework [76, 31, 45, 58]; although a subclass of problems
was solved earlier by other techniques, a RKHS approach was found
to be more elegant, have broader applicability, or offer new insight for
obtaining actual solutions, either in closed form or numerically. Parzen
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4 Introduction

describes RKHS theory as facilitating a coordinate-free approach [45].
While the underlying Hilbert space certainly allows for coordinate-free
expressions, the power of a RKHS beyond that of a Hilbert space is
the presence of two coordinate systems: the pointwise coordinate sys-
tem coming from the RKHS being a function space, and a canonical
(but overdetermined) coordinate system coming from the kernel. The
pointwise coordinate system facilitates taking limits while a number
of geometric problems have solutions conveniently expressed in terms
of what we define to be the canonical coordinate system. (Geometers
may wish to think of a RKHS as a subspace V ⊂ RX with pointwise
coordinates being the extrinsic coordinates coming from RX while the
canonical coordinates are intrinsic coordinates on V relating directly
to the inner product structure on V .)

The body of the primer elaborates on all of the points mentioned
above and provides simple but illuminating examples to ruminate on.
Parenthetical remarks are used to provide greater technical detail that
some readers may welcome. They may be ignored without compromis-
ing the cohesion of the primer. Proofs are there for those wishing to
gain experience at working with RKHSs; simple proofs are preferred to
short, clever, but otherwise uninformative proofs. Italicised comments
appearing in proofs provide intuition or orientation or both.

This primer is neither a review nor a historical survey, and as such,
many classic works have not been discussed, including those by leading
pioneers such as Wahba [71, 72].
Contributions This primer is effectively in two parts. The first part
(§1–§7), written by the first author, gives a gentle and novel intro-
duction to RKHS theory. It also presents several classical applications.
The second part (§8–§9), with §8 written jointly and §9 written by the
second author, focuses on recent developments in the machine learning
literature concerning embeddings of random variables.

1.1 Assumed Knowledge

Basic familiarity with concepts from finite-dimensional linear algebra
is assumed: vector space, norm, inner product, linear independence,
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1.2. Extrinsic Geometry and a Motivating Example 5

basis, orthonormal basis, matrix manipulations and so forth.
Given an inner product 〈·, ·〉, the induced norm is ‖x‖ =

√
〈x, x〉.

Not every norm comes from an inner product, meaning some norms
cannot be written in this form. If a norm does come from an inner
product, the inner product can be uniquely determined from the norm
by the polarisation identity 4〈x, y〉 = ‖x + y‖2 − ‖x − y‖2. (A corre-
sponding formula exists for complex-valued vector spaces.)

A metric d(·, ·) is a “distance function” describing the distance be-
tween two points in a metric space. To be a valid metric, it must satisfy
several axioms, including the triangle inequality. A normed space is au-
tomatically a metric space by the correspondence d(x, y) = ‖x− y‖.

1.2 Extrinsic Geometry and a Motivating Example

Differential geometry groups geometric properties into two kinds: in-
trinsic and extrinsic. Intrinsic properties depend only on the space it-
self, while extrinsic properties depend on precisely how the space is
embedded in a larger space. A simple example in linear algebra is that
the orientation of a straight line passing through the origin in R2 de-
scribes the extrinsic geometry of the line.

The following observation helps motivate the development of finite-
dimensional RKHS theory in §2. Let

L(θ) = {(t cos θ, t sin θ) | t ∈ R} ⊂ R2 (1.1)

denote a straight line in R2 passing through the origin and intersecting
the horizontal axis at an angle of θ radians; it is a one-dimensional
subspace of R2. Fix an arbitrary point p = (p1, p2) ∈ R2 and define
f(θ) to be the point on L(θ) closest to p with respect to the Euclidean
metric. It can be shown that

f(θ) = (r(θ) cos θ, r(θ) sin θ), r(θ) = p1 cos θ + p2 sin θ. (1.2)

Visualising f(θ) as the projection of p onto L(θ) shows that f(θ) de-
pends continuously on the orientation of the line. While (1.2) veri-
fies this continuous dependence, it resorted to introducing an ad hoc
parametrisation θ, and different values of θ (e.g., θ, π + θ and 2π + θ)
can describe the same line.

Full text available at: http://dx.doi.org/10.1561/2000000050



6 Introduction

Is there a more natural way of representing L(θ) and f(θ), using
linear algebra?

A first attempt might involve using an orthonormal basis vector
to represent L(θ). However, there is no continuous map from the line
L(θ) to an orthonormal basis vector v(θ) ∈ L(θ). (This should be self-
evident with some thought, and follows rigorously from the Borsuk-
Ulam theorem.) Note that θ 7→ (cos θ, sin θ) is not a well-defined map
from L(θ) to R2 because L(0) and L(π) represent the same line yet
(cos 0, sin 0) 6= (cosπ, sin π).

RKHS theory uses not one but two vectors to represent L(θ). Specif-
ically, it turns out that the kernel of L(θ), in matrix form, is

K(θ) =
[
cos θ
sin θ

] [
cos θ sin θ

]
=
[

cos2 θ sin θ cos θ
sin θ cos θ sin2 θ

]
. (1.3)

The columns of K(θ) are

k1(θ) = cos θ
[
cos θ
sin θ

]
, k2(θ) = sin θ

[
cos θ
sin θ

]
. (1.4)

Note that L(θ) is spanned by k1(θ) and k2(θ), and moreover, both k1
and k2 are well-defined (and continuous) functions of L; if L(θ) = L(φ)
then k1(θ) = k1(φ) and k2(θ) = k2(φ). To emphasise, although θ is
used here for convenience to describe the construction, RKHS theory
defines a map from L to k1 and k2 that does not depend on any ad hoc
choice of parametrisation. It is valid to write k1(L) and k2(L) to show
they are functions of L alone.

Interestingly, f has a simple representation in terms of the kernel:

f(L) = p1 k1(L) + p2 k2(L). (1.5)

Compared with (1.2), this is both simple and natural, and does not
depend on any ad hoc parametrisation θ of the line L. In summary,

• the kernel represents a vector subspace by a possibly overdeter-
mined (i.e., linearly dependent) ordered set of vectors, and the
correspondence from a subspace to this ordered set is continuous;
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1.3. Pointwise Coordinates and Canonical Coordinates 7

• this continuous correspondence cannot be achieved with an or-
dered set of basis (i.e., linearly independent) vectors;

• certain problems have solutions that depend continuously on the
subspace and can be written elegantly in terms of the kernel:

subspace→ kernel→ solution. (1.6)

The above will be described in greater detail in §2.
Remark The above example was chosen for its simplicity. Ironically,
the general problem of projecting a point onto a subspace is not well-
suited to the RKHS framework for several reasons, including that
RKHS theory assumes there is a norm only on the subspace; if there is
a norm on the larger space in which the subspace sits then it is ignored.
A more typical optimisation problem benefitting from RKHS theory is
finding the minimum-norm function passing through a finite number of
given points; minimising the norm acts to regularise this interpolation
problem; see §6.1.

1.3 Pointwise Coordinates and Canonical Coordinates

Aimed at readers already familiar with Hilbert space theory, this sec-
tion motivates and defines two coordinate systems on a RKHS.

A separable Hilbert space H possesses an orthonormal basis
e1, e2, · · · ∈ H. An arbitrary element v ∈ H can be expressed as an
infinite series v = ∑∞

i=0 αiei where the “coordinates” αi are given by
αi = 〈v, ei〉. A classic example is using a Fourier series to represent a
periodic function. The utility of such a construction is that an arbitrary
element of H can be written as the limit of a linear combination of a
manageable set of fixed vectors.

RKHS theory generalises this ability of writing an arbitrary element
of a Hilbert space as the limit of a linear combination of a manageable
set of fixed vectors. If H ⊂ RT is a (not necessarily separable) RKHS
then an arbitrary element v ∈ H can be expressed as the limit of
a sequence v1, v2, · · · ∈ H of vectors, each of which is a finite linear
combination of the vectors {K(·, t) | t ∈ T}, where K : T × T → R is
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8 Introduction

the kernel of H. It is this ability to represent an arbitrary element of
a RKHS H as the limit of a linear combination of the K(·, t) that, for
brevity, we refer to as the presence of a canonical coordinate system.
The utility of this canonical coordinate system was hinted at in §1.2.

There is another natural coordinate system: since an element v of
a RKHS H ⊂ RT is a function from T to R, its tth coordinate can
be thought of as v(t). The relationship between this pointwise coor-
dinate system and the aforementioned canonical coordinates is that
v(t) = 〈v,K(·, t)〉. Note though that whereas an arbitrary linear com-
bination of the K(·, t) is guaranteed to be an element of H, assigning
values arbitrarily to the v(t), i.e., writing down an arbitrary function
v, may not yield an element of H; canonical coordinates are intrinsic
whereas pointwise coordinates are extrinsic. The utility of the pointwise
coordinate system is that limits in a RKHS can be determined point-
wise: if vk is a Cauchy sequence, implying there exists a v satisfying
‖vk − v‖ → 0, then v is fully determined by v(t) = limk vk(t).
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