A Signal Processing Perspective on Financial Engineering # **Yiyong Feng** Dept. of Electronic and Computer Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong yiyong@connect.ust.hk ## Daniel P. Palomar Dept. of Electronic and Computer Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong palomar@ust.hk # Foundations and Trends® in Signal Processing Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com sales@nowpublishers.com Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is Y. Feng and D. P. Palomar. A Signal Processing Perspective on Financial Engineering. Foundations and Trends $^{\circledR}$ in Signal Processing, vol. 9, no. 1-2, pp. 1–231, 2015. This Foundations and Trends[®] issue was typeset in LaTeX using a class file designed by Neal Parikh. Printed on acid-free paper. ISBN: 978-1-68083-119-1 © 2016 Y. Feng and D. P. Palomar All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The 'services' for users can be found on the internet at: www.copyright.com For those organizations that have been granted a photocopy license, a separate system of payment has been arranged. Authorization does not extend to other kinds of copying, such as that for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com; sales@nowpublishers.com now Publishers Inc. has an exclusive license to publish this material worldwide. Permission to use this content must be obtained from the copyright license holder. Please apply to now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail: sales@nowpublishers.com # Foundations and Trends[®] in Signal Processing Volume 9, Issue 1-2, 2015 # **Editorial Board** #### Editor-in-Chief #### Yonina Eldar Technion - Israel Institute of Technology Israel #### **Editors** Robert M. Gray Founding Editor-in-Chief Stanford University Pao-Chi Chang NCU, Taiwan Pamela Cosman $UC\ San\ Diego$ $\begin{array}{c} \text{Michelle Effros} \\ Caltech \end{array}$ Yariv Ephraim GMU Alfonso Farina Selex ES Sadaoki Furui Tokyo Tech Georgios Giannakis University of Minnesota Vivek Goyal Boston University Sinan Gunturk Courant Institute Christine Guillemot INRIA Robert W. Heath, Jr. UT Austin Sheila Hemami Northeastern University Lina Karam Arizona State U Nick Kingsbury University of Cambridge Alex Kot NTU, Singapore Jelena Kovacevic CMU Geert Leus TU Delft Jia Li Penn State Henrique Malvar Microsoft Research B.S. Manjunath UC Santa Barbara Urbashi Mitra USC Björn Ottersten KTH Stockholm Vincent Poor Princeton University Anna Scaglione UC Davis Mihaela van der Shaar UCLA Nicholas D. Sidiropoulos TU Crete Michael Unser EPFL P. P. Vaidyanathan CaltechAmi Wiesel $Hebrew\ U$ Min Wu University of Maryland Josiane Zerubia INRIA # **Editorial Scope** ## **Topics** Foundations and Trends $^{\circledR}$ in Signal Processing publishes survey and tutorial articles in the following topics: - Adaptive signal processing - Audio signal processing - Biological and biomedical signal processing - Complexity in signal processing - Digital signal processing - Distributed and network signal processing - Image and video processing - Linear and nonlinear filtering - Multidimensional signal processing - Multimodal signal processing - Multirate signal processing - Multiresolution signal processing - Nonlinear signal processing - Randomized algorithms in signal processing - Sensor and multiple source signal processing, source separation - Signal decompositions, subband and transform methods, sparse representations - Signal processing for communications - Signal processing for security and forensic analysis, biometric signal processing - Signal quantization, sampling, analog-to-digital conversion, coding and compression - Signal reconstruction, digital-to-analog conversion, enhancement, decoding and inverse problems - Speech/audio/image/video compression - Speech and spoken language processing - Statistical/machine learning - Statistical signal processing #### Information for Librarians Foundations and Trends[®] in Signal Processing, 2015, Volume 9, 4 issues. ISSN paper version 1932-8346. ISSN online version 1932-8354. Also available as a combined paper and online subscription. Foundations and Trends® in Signal Processing Vol. 9, No. 1-2 (2015) 1–231 © 2016 Y. Feng and D. P. Palomar DOI: 10.1561/2000000072 # A Signal Processing Perspective on Financial Engineering Yiyong Feng Dept. of Electronic and Computer Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong yiyong@connect.ust.hk Daniel P. Palomar Dept. of Electronic and Computer Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong palomar@ust.hk # **Contents** | 1 | Intr | oduction | 2 | |---|------|--|----| | | 1.1 | A Signal Processing Perspective on Financial Engineering . | 5 | | | 1.2 | Connections between Fin. Eng. and Signal Process | 9 | | | 1.3 | Outline | 12 | | ı | Fina | ncial Modeling & Order Execution | 16 | | 2 | Mod | deling of Financial Time Series | 17 | | | 2.1 | Asset Returns | 18 | | | 2.2 | General Structure of a Model | 21 | | | 2.3 | I.I.D. Model | 22 | | | 2.4 | Factor Model | 23 | | | 2.5 | VARMA Model | 27 | | | 2.6 | VECM | 31 | | | 2.7 | Conditional Volatility Models | 34 | | | 2.8 | Summary of Different Models and Their Limitations | 42 | | 3 | Mod | deling Fitting: Mean and Covariance Matrix Estimators | 47 | | | 3.1 | Fitting Process, Types of Estimators, and Main Focus | 47 | | | 3.2 | Warm Up: Large Sample Regime | 50 | | | 3.3 | Small Sample Regime: Shrinkage Estimators | 59 | Risk Parity Portfolio Formulations $\dots \dots 165$ 9.2 | | 9.3 | SCRIP: An Efficient Numerical Solving Approach | 169 | |----|-------|--|-----| | Ш | Sta | ntistical Arbitrage (Mean-Reversion) | 172 | | 10 | Stat | istical Arbitrage | 173 | | | 10.1 | Cointegration versus Correlation | 174 | | | | Pairs Selection | | | | | Cointegration Test | | | | | Investing in Cointegrated Pairs | | | | 10.5 | From Pairs Trading to Statistical Arbitrage | 198 | | 11 | Cond | clusions | 201 | | Ар | pend | ices | 203 | | Α | MAT | ΓLAB Code of Example 3.1 | 204 | | В | MAT | ΓLAB Code of Figure 5.1 | 207 | | C | MAT | ΓLAB Code of Example 10.4 | 209 | | Αb | brevi | ations | 211 | | No | tatio | n | 213 | | Re | feren | ces | 216 | #### **Abstract** Financial engineering and electrical engineering are seemingly different areas that share strong underlying connections. Both areas rely on statistical analysis and modeling of systems; either modeling the financial markets or modeling, say, wireless communication channels. Having a model of reality allows us to make predictions and to optimize the strategies. It is as important to optimize our investment strategies in a financial market as it is to optimize the signal transmitted by an antenna in a wireless link. This monograph provides a survey of financial engineering from a signal processing perspective, that is, it reviews financial modeling, the design of quantitative investment strategies, and order execution with comparison to seemingly different problems in signal processing and communication systems, such as signal modeling, filter/beamforming design, network scheduling, and power allocation. DOI: 10.1561/2000000072. Y. Feng and D. P. Palomar. A Signal Processing Perspective on Financial Engineering. Foundations and Trends® in Signal Processing, vol. 9, no. 1-2, pp. 1–231, 2015. # 1 # Introduction Despite the different natures of financial engineering and electrical engineering, both areas are intimately connected on a mathematical level. The foundations of financial engineering lie on the statistical analysis of numerical time series and the modeling of the behavior of the financial markets in order to perform predictions and systematically optimize investment strategies. Similarly, the foundations of electrical engineering, for instance, wireless communication systems, lie on statistical signal processing and the modeling of communication channels in order to perform predictions and systematically optimize transmission strategies. Both foundations are the same in disguise. This observation immediately prompts the question of whether both areas can benefit from each other. It is often the case in science that the same or very similar methodologies are developed and applied independently in different areas. The purpose of this monograph is to explore such connections and to capitalize on the existing mathematical tools developed in wireless communications and signal processing to solve real-life problems arising in the financial markets in an unprecedented way. Thus, this monograph is about investment in financial assets treated as a signal processing and optimization problem. An investment is the current commitment of resources in the expectation of
reaping future benefits. In financial markets, such resources usually take the form of money and thus the investment is the present commitment of money in order to reap (hopefully more) money later [27]. The carriers of money in financial markets are usually referred to as financial assets. There are various classes of financial assets, namely, equity securities (e.g., common stocks), exchange-traded funds (ETFs), market indexes, commodities, exchanges rates, fixed-income securities, derivatives (e.g., options and futures), etc. A detailed description of each kind of asset is well documented, e.g., [27, 103]. For different kinds of assets, the key quantities of interest are not the same; for example, for equity securities the quantities of interest are the compounded returns or log-returns; for fixed-income securities they are the changes in yield to maturity; and for options they are changes in the rolling at-the-money forward implied volatility [143]. Roughly speaking, there are three families of investment philosophies: fundamental analysis, technical analysis, and quantitative analysis. Fundamental analysis uses financial and economical measures, such as earnings, dividend yields, expectations of future interest rates, and management, to determine the value of each share of the company's stocks and then recommends purchasing the stocks if the estimated value exceeds the current stock price [88, 89]. Warren Buffett of Berkshire Hathaway is probably the most famous practitioner of fundamental analysis [91]. Technical analysis, also known as "charting," is essentially the search for patterns in one dimensional charts of the prices of a stock. In a way, it pretends to be a scientific analysis of patterns (similar to machine learning) but generally implemented in an unscientific and anecdotal way with a low predictive power, as detailed in [132]. Quantitative analysis applies quantitative (namely scientific or mathematical) tools to discover the predictive patterns from financial data [128]. To put this in perspective with the previous approach, technical analysis is to quantitative analysis what astrology is to astronomy. The pioneer of the quantitative investment approach is Edward O. Thorp, who used 4 Introduction his knowledge of probability and statistics in the stock markets and has made a significant fortune since the late 1960s [193]. Quantitative analysis has become more and more widely used since advanced computer science technology has enabled practitioners to apply complex quantitative techniques to reap many more rewards more efficiently and more frequently in practice [4]. In fact, one could even go further to say that algorithmic trading has been one of the main driving forces in the technological advancement of computers. Some institutional hedge fund firms that rely on quantitative analysis include Renaissance Technologies, AQR Capital, Winton Capital Management, and D. E. Shaw & Co., to name a few. In this monograph, we will focus on the quantitative analysis of equity securities since they are the simplest and easiest accessible assets. As we will discover, many quantitative techniques employed in signal processing methods may be applicable in quantitative investment. Nevertheless, the discussion in this monograph can be easily extended to some other tradeable assets such as commodities, ETFs, and futures. Thus, to explore the multiple connections between quantitative investment in financial engineering and areas in signal processing and communications, we will show how to capitalize on existing mathematical tools and methodologies that have been developed and are widely applied in the context of signal processing applications to solve problems in the field of portfolio optimization and investment management in quantitative finance. In particular, we will explore financial engineering in several respects: i) we will provide the fundamentals of market data modeling and asset return predictability, as well as outline stateof-the-art methodologies for the estimation and forecasting of portfolio design parameters in realistic, non-frictionless financial markets; ii) we will present the problem of optimal portfolio construction, elaborate on advanced optimization issues, and make the connections between portfolio optimization and filter/beamforming design in signal processing; iii) we will reveal the theoretical mechanisms underlying the design and evaluation of statistical arbitrage trading strategies from a signal processing perspective based on multivariate data analysis and time series modeling; and iv) we will discuss the optimal order execution and compare it with network scheduling in sensor networks and power allocation in communication systems. We hope this monograph can provide more straightforward and systematic access to financial engineering for researchers in signal processing and communication societies¹ so that they can understand problems in financial engineering more easily and may even apply signal processing techniques to handle financial problems. In the following content of this introduction, we first introduce financial engineering from a signal processing perspective and then make connections between problems arising in financial engineering and those arising in different areas of signal processing and communication systems. At the end, the outline of the monograph is detailed. # 1.1 A Signal Processing Perspective on Financial Engineering Figure 1.1 summarizes the procedure of quantitative investment. Roughly speaking and oversimplifying, there are three main steps (shown in Figure 1.1): - financial modeling: modeling a very noisy financial time series to decompose it into trend and noise components; - portfolio design: designing quantitative investment strategies based on the estimated financial models to optimize some preferred criterion; and - order execution: properly executing the orders to establish or unwind positions of the designed portfolio in an optimal way. In the following, we will further elaborate the above three steps from a signal processing perspective. ¹There have been some initiatives in Signal Processing journals on the financial engineering topic, namely, the 2011 IEEE Signal Processing Magazine - Special Issue on Signal Processing for Financial Applications, the 2012 IEEE Journal of Selected Topics in Sginal Processing - Special Issue on Signal Processing Methods in Finance and Electronic Trading, and the 2016 IEEE Journal of Selected Topics in Signal Processing - Special Issue on Financial Signal Processing and Machine Learning for Electronic Trading. 6 Introduction Figure 1.1: Block diagram of quantitative investment in financial engineering. # 1.1.1 Financial Modeling For equity securities, the log-prices (i.e., the logarithm of the prices) and the compounded returns or log-returns (i.e., the differences of the log-prices) are the quantities of interest. From a signal processing perspective, a log-price sequence can be decomposed into two parts: trend and noise components, which are also referred to as market and idiosyncratic components, respectively. The purpose of financial modeling or signal modeling is to decompose the trend components from the noisy financial series. Then based on the constructed financial models, one can properly design some quantitative investment strategies for future benefits [196, 129, 143]. For instance, a simple and popular financial model of the log-price series is the following random walk with drift: $$y_t = \mu + y_{t-1} + w_t, \tag{1.1}$$ where y_t is the log-price at discrete-time t, $\{w_t\}$ is a zero-mean white noise series, and the constant term μ represents the time trend of the ## 1.1. A Signal Processing Perspective on Financial Engineering Figure 1.2: The decomposition of the log-price sequence of the S&P 500 Index into time trend component, and the component without time trend (i.e., the accumulative noise). log-price y_t since $\mathsf{E}\left[y_t - y_{t-1}\right] = \mu$, which is usually referred to as drift. Based on model (1.1), we can see the trend signal and noise components in the log-prices more clearly by rewriting y_t as follows: $$y_t = \mu t + y_0 + \sum_{i=1}^t w_i, \tag{1.2}$$ where the term μt denotes the trend (e.g., uptrend if $\mu > 0$, downtrend if $\mu < 0$, or no trend if $\mu = 0$), and the term $\sum_{i=1}^{t} w_i$ denotes the accumulative noise as time evolves. Figure 1.2 shows the weekly log-prices of the S&P 500 index from 04-Jan-2010 to 04-Feb-2015 (the log-prices are shifted down so that the initial log-price is zero, i.e., $y_0 = 0$), where the estimated drift is $\mu = 0.0022$. Obviously, we observe two patterns: first, there exists a significant uptrend since 2010 in the US market (see the dashed red 8 Introduction line μt); and second, the accumulative noise in the log-prices is not steady and looks like a random walk (see the solid gray line for the accumulative noise $\sum_{i=1}^{t} w_i = y_t - \mu t$). #### 1.1.2 Quantitative Investment Once the specific financial model is calibrated from the financial time series, the next question is how to utilize such a calibrated financial model to invest. As mentioned before, one widely employed approach is to apply quantitative techniques to design the investment strategies, i.e., the quantitative investment [65, 128, 64, 143]. Figure 1.2 shows that there are two main components in a financial series: trend and noise. Correspondingly, there are two main types of quantitative investment strategies based on the two components: a trend-based approach, termed risk-return trade-off investment; and a noise-based approach, termed mean-reversion investment. The trend-based risk-return trade-off investment tends to maximize the expected portfolio return while keeping the risk low; however, this is easier said than done because of the sensitivity to the imperfect estimation of the drift component and the
covariance matrix of the noise component of multiple assets. In practice, one needs to consider the parameter estimation errors in the problem formulation to design the portfolio in a robust way. Traditionally, the variance of the portfolio return is taken as a measure of risk, and the method is thus referred to as "mean-variance portfolio optimization" in the financial literature [135, 137, 138]. From the signal processing perspective, interestingly, the design of a mean-variance portfolio is mathematically identical to the design of a filter in signal processing or the design of beamforming in wireless multi-antenna communication systems [123, 149, 213]. The noise-based mean-reversion investment aims at seeking profitability based on the noise component. For clarity of presentation, let us use a simple example of only two stocks to illustrate the rough idea. Suppose the log-price sequences of the two stocks are cointegrated (i.e., they share the same stochastic drift), at some point in time if one stock moves up while the other moves down, then people can short-sell the first overperforming stock and long/buy the second underperforming stock², betting that the deviation between the two stocks will eventually diminish. This idea can be generalized from only two stocks to a larger number of stocks to create more profitable opportunities. This type of quantitative investment is often referred to as "pairs trading", or more generally, "statistical arbitrage" in the literature [160, 203]. #### 1.1.3 Order Execution Ideally, after one has made a prediction and designed a portfolio, the execution should be a seamless part of the process. However, in practice, the process of executing the orders affects the original predictions in the wrong way, i.e., the achieved prices of the executed orders will be worse than what they should have been. This detrimental effect is called market impact. Since it has been shown that smaller orders have a much smaller market impact, a natural idea to execute a large order is to partition it into many small pieces and then execute them sequentially [8, 18, 78, 146]. Interestingly, the order execution problem is close to many other scheduling and optimization problems in signal processing and communication systems. From a dynamic control point of view, the order execution problem is quite similar to sensor scheduling in dynamic wireless sensor networks [180, 181, 208]. From an optimization point of view, distributing a large order into many smaller sized orders over a certain time window [8, 79] corresponds to allocating total power over different communication channels in broadcasting networks [198] or wireless sensor networks [214]. # 1.2 Connections between Financial Engineering and Areas in Signal Processing and Communication Systems We have already briefly introduced the main components of financial engineering from a signal processing perspective. In the following we make several specific connections between financial engineering and areas in signal processing and communication systems. $^{^2}$ In financial engineering, to "long" means simply to buy financial instruments, to "short-sell" (or simply, to "short") means to sell financial instruments that are not currently owned. 10 Introduction **Modeling.** One of the most popular models used in financial engineering is the autoregressive moving average (ARMA) model. It models the current observation (e.g., today's return) as the weighted summation of a linear combination of previous observations (e.g., several previous days' returns) and a moving average of the current and several previous noise components [196]. Actually, this model is also widely used in signal processing and it is referred to as a rational model because its z-transform is a rational function, or as a pole-zero model because the roots of the numerator polynomial of the z-transform are known as zeros and the roots of the denominator polynomial of the z-transform are known as poles [133]. Robust Covariance Matrix Estimation. After a specific model has been selected, the next step is to estimate or calibrate its parameters from the empirical data. In general, a critical parameter to be estimated is the covariance matrix of the returns of multiple stocks. Usually the empirical data contains noise and some robust estimation methods are needed in practice. One popular idea in financial engineering is to shrink the sample covariance matrix to the identity matrix as the robust covariance matrix estimator [120]. Interestingly, this is mathematically the same as the diagonal loading matrix (i.e., the addition of a scaled identity matrix to the sample interference-plus-noise covariance matrix) derived more than thirty years ago for robust adaptive beamforming in signal processing and communication systems [1, 38, 45]. For large-dimensional data, the asymptotic performance of the covariance matrix estimators is important. The mathematical tool for the asymptotic analysis is referred to as general asymptotics or large-dimensional general asymptotics in financial engineering [121, 122], or as random matrix theory (RMT) in information theory and communications [199]. **Portfolio Optimization vs Filter/Beamforming Design.** One popular portfolio optimization problem is the minimum variance problem: $$\begin{aligned} & \underset{\mathbf{w}}{\text{minimize}} & & \mathbf{w}^T \mathbf{\Sigma} \mathbf{w} \\ & \text{subject to} & & \mathbf{w}^T \mathbf{1} = 1, \end{aligned} \tag{1.3}$$ where $\mathbf{w} \in \mathbb{R}^N$ is the portfolio vector variable representing the normalized dollars invested in N stocks, $\mathbf{w}^T \mathbf{1} = 1$ is the capital budget constraint, and $\mathbf{\Sigma} \in \mathbb{R}^{N \times N}$ is the (estimated in advance) positive definite covariance matrix of the stock returns. The above problem (1.3) is really mathematically identical to the filter/beamforming design problem in signal processing [149]: $$\begin{aligned} & \underset{\mathbf{w}}{\text{minimize}} & & \mathbf{w}^H \mathbf{R} \mathbf{w} \\ & \text{subject to} & & \mathbf{w}^H \mathbf{a} = 1, \end{aligned} \tag{1.4}$$ where $\mathbf{w} \in \mathbb{C}^N$ is the complex beamforming vector variable denoting the weights of N array observations and $\mathbf{a} \in \mathbb{C}^N$ and $\mathbf{R} \in \mathbb{C}^{N \times N}$ (estimated in advance) are the signal steering vector (also known as the transmission channel) and the positive definite interference-plus-noise covariance matrix, respectively. The similarity between problems (1.3) and (1.4) shows some potential connections between portfolio optimization and filter/beamforming design, and we will explore more related formulations in detail later in the monograph. Index Tracking vs Sparse Signal Recovery. Index tracing is a widely used quantitative investment that aims at mimicking the market index but with much fewer stocks. That is, suppose that a benchmark index is composed of N stocks and let $\mathbf{r}^b = [r_1^b, \dots, r_T^b]^T \in \mathbb{R}^T$ and $\mathbf{X} = [\mathbf{r}_1, \dots, \mathbf{r}_T]^T \in \mathbb{R}^{T \times N}$ denote the returns of the benchmark index and the N stocks in the past T days, respectively, index tracking intends to find a sparse portfolio \mathbf{w} to minimize the tracking error between the tracking portfolio and benchmark index [106]: minimize $$\frac{1}{T} \|\mathbf{X}\mathbf{w} - \mathbf{r}^b\|_2^2 + \lambda \|\mathbf{w}\|_0$$ subject to $$\mathbf{1}^T \mathbf{w} = 1, \quad \mathbf{w} \ge \mathbf{0},$$ where $\lambda \geq 0$ is a predefined trade-off parameter. Mathematically speaking, the above problem (1.5) is identical to the sparse signal recovery problem [37] and compressive sensing [51] in signal processing: $$\underset{\mathbf{w}}{\text{minimize}} \quad \frac{1}{T} \|\mathbf{\Phi}\mathbf{w} - \mathbf{y}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{0}$$ (1.6) 12 Introduction | 700 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | α | 1 . | c · 1 | | 1 . | 1 . | |---|-------------|-----------|-----------|-------------|----------|-----------------| | Table L.I: | Connections | between | financial | engineering | and sig | nal processing. | | | COLLICOTION | 000110011 | IIII CICI | 0110011110 | 4114 518 | rai processing. | | | FINANCIAL ENGINEER-
ING | SIGNAL PROCESSING | | | |------------------------------------|--|---|--|--| | Modeling | ARMA model [196] | rational or pole-zero
model [133] | | | | Covariance
Matrix
Estimation | shrinkage sample co-
variance matrix estima-
tor [120] | diagonal loading in beamforming [1, 38, 45] | | | | Asymptotic
Analysis | (large-dimensional)
general asymptotics
[121, 122] | random matrix theory [199] | | | | Optimization | portfolio optimization [135, 137, 179, 213] | filter/beamforming design [149, 213] | | | | Sparsity | index tracking [106] | sparse signal recovery [37, 51] | | | where $\lambda \geq 0$ is a predefined trade-off parameter, $\mathbf{\Phi} \in \mathbb{R}^{T \times N}$ is a dictionary matrix with $T \ll N$, $\mathbf{y} \in \mathbb{R}^T$ is a measurement vector, and $\mathbf{w} \in \mathbb{R}^N$ is a sparse signal to be recovered. Again, the similarity between the two problems (1.5) and (1.6) shows that the quantitative techniques dealing with sparsity may be useful for both index tracking and sparse signal recovery. Table 1.1 summarizes the above comparisons in a more compact way and it is interesting to see so many similarities and connections between financial engineering and signal processing. ### 1.3 Outline The abbreviations and notations used throughout the monograph are provided on pages 211 and 213, respectively. Figure 1.3 shows the outline of the monograph and provides the recommended reading order for the reader's convenience. The detailed organization is as follows. 1.3. Outline 13 Part I
mainly focuses on financial modeling (Chapters 2 and 3) and order execution (Chapter 4). Chapter 2 starts with some basic financial concepts and then introduces several models, such as the i.i.d. model, factor model, ARMA model, autoregressive conditional heteroskedasticity (ARCH) model, generalized ARCH (GARCH) model, and vector error correction model (VECM), which will be used in the later chapters. Thus, this chapter provides a foundation for the following chapters in the monograph. Chapter 3 deals with the model parameter estimation issues. In particular, it focuses on the estimation of the mean vector and the covariance matrix of the returns of multiple stocks. Usually, these two parameters are not easy to estimate in practice, especially under two scenarios: when the number of samples is small, and when there exists outliers. This chapter reviews the start-of-the-art robust estimation of the mean vector and the covariance matrix from both financial engineering and signal processing. Chapter 4 formulates the order execution as optimization problems and presents the efficient solving approaches. Once financial modeling and order execution have been introduced in Part I, we move to the design of quantitative investment strategies. As shown in Figure 1.1 there are two main types of investment strategies, namely risk-return trade-off investment strategies and meanreversion investment strategies, which are documented in Parts II and III, respectively. Part II entitled "Portfolio Optimization" focuses on the risk-return trade-off investment. It contains Chapters 5-9 and is organized as follows. Chapter 5 reviews the most basic Markowitz mean-variance portfolio framework, that is, the objective is to optimize a trade-off between the mean and the variance of the portfolio return. However, this framework is not practical due to two reasons: first, the optimized strategy is extremely sensitive to the estimated mean vector and covariance matrix of the stock returns; and second, the variance is not an appropriate risk measurement in financial engineering. To overcome the second drawback, some more practical single side risk measurements, 14 Introduction e.g., Value-at-Risk (VaR) and Conditional VaR (CVaR), are introduced as the alternatives to the variance. Chapter 6 presents the robust portfolio optimization to deal with parameter estimation errors. The idea is to employ different uncertainty sets to characterize different estimation errors and then derive the corresponding worst-case robust formulations. Chapter 7, different from previous Chapters 5 and 6 that consider each portfolio individually, designs multiple portfolios corresponding to different clients jointly via a game theoretic approach by modeling a financial market as a game and each portfolio as a player in the game. This approach is important in practice because multiple investment decisions may affect each other. Chapter 8 considers a passive quantitative investment method named index tracking. It aims at designing a portfolio that mimics a preferred benchmark index as closely as possible but with much fewer instruments. Chapter 9 considers a newly developed approach to the portfolio design aiming at diversifying the risk, instead of diversifying the capital as usually done, among the available assets, which is called a "risk parity portfolio" in the literature. Part III, containing Chapter 10, explores the mean-reversion investment that utilizes the noise component in the log-price sequences of multiple assets. Chapter 10 introduces the idea of constructing a pair of two stocks via cointegration and optimizes the threshold for trading to achieve a preferred criterion. Then it extends further from pairs trading based on only two stocks to statistical arbitrage for multiple stocks. After covering the main content of the three parts, Chapter 11 concludes the monograph. 1.3. *Outline* 15 Figure 1.3: Outline of the monograph. - [1] Y. Abramovich. Controlled method for adaptive optimization of filters using the criterion of maximum SNR. Radio Engineering and Electronic Physics, 26(3):87–95, 1981. - [2] Y. Abramovich and N. K. Spencer. Diagonally loaded normalised sample matrix inversion (LNSMI) for outlier-resistant adaptive filtering. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, volume 3, pages III–1105. IEEE, 2007. - [3] A. N. Akansu, S. R. Kulkarni, and D. M. Malioutov, editors. *Financial Signal Processing and Machine Learning*. Wiley-IEEE Press, 2016. - [4] I. Aldridge. High-Frequency Trading: A Practical Guide to Algorithmic Strategies and Trading Systems. John Wiley & Sons, 2013. - [5] C. Alexander. Optimal hedging using cointegration. *Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences*, 357(1758):2039–2058, 1999. - [6] C. Alexander, I. Giblin, and W. Weddington. Cointegration and asset allocation: A new active hedge fund strategy. ISMA Centre Discussion Papers in Finance Series, 2002. - [7] S. Alexander, T. F. Coleman, and Y. Li. Minimizing CVaR and VaR for a portfolio of derivatives. *Journal of Banking & Finance*, 30(2):583–605, 2006. - [8] R. Almgren and N. Chriss. Optimal execution of portfolio transactions. *Journal of Risk*, 3:5–40, 2001. [9] S. Andrade, V. Di Pietro, and M. Seasholes. Understanding the profitability of pairs trading. Unpublished working paper, UC Berkeley, Northwestern University, 2005. - [10] K. Andriosopoulos, M. Doumpos, N. C. Papapostolou, and P. K. Pouliasis. Portfolio optimization and index tracking for the shipping stock and freight markets using evolutionary algorithms. *Transportation Research Part E: Logistics and Transportation Review*, 52:16–34, 2013. - [11] A. Ang and A. Timmermann. Regime changes and financial markets. Technical report, National Bureau of Economic Research, 2011. - [12] O. Arslan. Convergence behavior of an iterative reweighting algorithm to compute multivariate *m*-estimates for location and scatter. *Journal of Statistical Planning and Inference*, 118(1):115–128, 2004. - [13] M. Avellaneda and J.-H. Lee. Statistical arbitrage in the US equities market. *Quantitative Finance*, 10(7):761–782, 2010. - [14] X. Bai, K. Scheinberg, and R. Tutuncu. Least-squares approach to risk parity in portfolio selection. Available at SSRN 2343406, 2013. - [15] M. Bańbura, D. Giannone, and L. Reichlin. Large Bayesian vector auto regressions. *Journal of Applied Econometrics*, 25(1):71–92, 2010. - [16] L. Bauwens, S. Laurent, and J.V.K. Rombouts. Multivariate GARCH models: A survey. *Journal of Applied Econometrics*, 21(1):79–109, 2006. - [17] J. E. Beasley, N. Meade, and T.-J. Chang. An evolutionary heuristic for the index tracking problem. European Journal of Operational Research, 148(3):621–643, 2003. - [18] D. Bertsimas and A. W. Lo. Optimal control of execution costs. *Journal of Financial Markets*, 1:1–50, 1998. - [19] D. Bianchi and A. Gargano. High-dimensional index tracking with cointegrated assets using an hybrid genetic algorithm. Available at SSRN, 1785908, 2011. - [20] P. J. Bickel and E. Levina. Regularized estimation of large covariance matrices. The Annals of Statistics, pages 199–227, 2008. - [21] J. Bien and R. J. Tibshirani. Sparse estimation of a covariance matrix. Biometrika, 98(4):807–820, 2011. - [22] F. Black and R. Litterman. Asset allocation: combining investor views with market equilibrium. *The Journal of Fixed Income*, 1(2):7–18, 1991. - [23] F. Black and R. Litterman. Global asset allocation with equities, bonds, and currencies. *Fixed Income Research*, 2:15–28, 1991. [24] F. Black and R. Litterman. Global portfolio optimization. *Financial Analysts Journal*, 48(5):28–43, 1992. - [25] F. Black and M. Scholes. The pricing of options and corporate liabilities. The Journal of Political Economy, pages 637–654, 1973. - [26] D. Blamont and N. Firoozy. Asset allocation model. Global Markets Research: Fixed Income Research, 2003. - [27] Z. Bodie, A. Kane, and A. J. Marcus. *Investments*. Tata McGraw-Hill Education, 10th edition, 2013. - [28] T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3):307–327, 1986. - [29] T. Bollerslev. Modelling the coherence in short-run nominal exchange rates: a multivariate generalized arch model. The Review of Economics and Statistics, pages 498–505, 1990. - [30] T. Bollerslev, R. F. Engle, and J. M. Wooldridge. A capital asset pricing model with time-varying covariances. *The Journal of Political Economy*, pages 116–131, 1988. - [31] J.-P. Bouchaud. Economics needs a scientific revolution. *Nature*, 455(7217):1181–1181, 2008. - [32] S. P. Boyd and L. Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004. - [33] J. Brodie, I. Daubechies, C. De Mol, D. Giannone, and I. Loris. Sparse and stable Markowitz portfolios. *Proceedings of the National Academy* of Sciences, 106(30):12267–12272, 2009. - [34] B. Bruder and T. Roncalli. Managing risk exposures using the risk budgeting approach. Technical report, University Library of Munich, Germany, 2012. - [35] R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large-scale nonlinear programming. *SIAM Journal on Optimization*, 9(4):877–900, 1999. - [36] N. A. Canakgoz and J. E. Beasley. Mixed-integer programming approaches for index tracking and enhanced indexation. *European Journal of Operational Research*, 196(1):384–399, 2009. - [37] E. J. Candes, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by reweighted ℓ_1 minimization. *Journal of Fourier Analysis and Applications*, 14(5-6):877–905, 2008. [38] B. D. Carlson. Covariance matrix estimation errors and diagonal loading in adaptive arrays. *IEEE Transactions on Aerospace and Electronic* Systems, 24(4):397–401, 1988. - [39] Y. Chen, A. Wiesel, and A. O. Hero III. Robust shrinkage estimation of high-dimensional covariance matrices. *IEEE Transactions on Signal Processing*,
59(9):4097–4107, 2011. - [40] X. Cheng, Z. Liao, and F. Schorfheide. Shrinkage estimation of highdimensional factor models with structural instabilities. The Review of Economic Studies, 2016. - [41] T. F. Coleman, Y. Li, and J. Henniger. Minimizing tracking error while restricting the number of assets. *Journal of Risk*, 8(4):33, 2006. - [42] G. Connor. The three types of factor models: A comparison of their explanatory power. *Financial Analysts Journal*, 51(3):42–46, 1995. - [43] R. Couillet and M. McKay. Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators. *Journal of Multivariate Analysis*, 131:99–120, 2014. - [44] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, 2012. - [45] H. Cox, R. M. Zeskind, and M. M. Owen. Robust adaptive beamforming. *IEEE Transactions on Acoustics, Speech and Signal Processing*, 35(10):1365–1376, 1987. - [46] A. d'Aspremont. Identifying small mean-reverting portfolios. *Quantitative Finance*, 11(3):351–364, 2011. - [47] R. A. Davis, P. Zang, and T. Zheng. Sparse vector autoregressive modeling. *Journal of Computational and Graphical Statistics*, 0:1–53, 2015. - [48] V. DeMiguel, L. Garlappi, F. J. Nogales, and R. Uppal. A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. *Management Science*, 55(5):798–812, 2009. - [49] D. A. Dickey and W. A. Fuller. Distribution of the estimators for autoregressive time series with a unit root. *Journal of the American statistical association*, 74(366a):427–431, 1979. - [50] B. Do, R. Faff, and K. Hamza. A new approach to modeling and estimation for pairs trading. In *Proceedings of 2006 Financial Management Association European Conference*, 2006. - [51] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–1306, 2006. [52] C. Dose and S. Cincotti. Clustering of financial time series with application to index and enhanced index tracking portfolio. *Physica A:* Statistical Mechanics and its Applications, 355(1):145–151, 2005. - [53] B. Efron and C. Morris. Stein's estimation rule and its competitors-an empirical Bayes approach. *Journal of the American Statistical Associa*tion, 68(341):117–130, 1973. - [54] L. El Ghaoui and H. Lebret. Robust solutions to least-squares problems with uncertain data. SIAM Journal on Matrix Analysis and Applications, 18:1035–1064, 1997. - [55] L. El Ghaoui, M. Oks, and F. Oustry. Worst-case value-at-risk and robust portfolio optimization: A conic programming approach. *Operations Research*, pages 543–556, 2003. - [56] Y. C. Eldar. Rethinking biased estimation: Improving maximum likelihood and the Cramér–Rao bound. Foundations and Trends[®] in Signal Processing, 1(4):305–449, 2008. - [57] R. J. Elliott, J. Van Der Hoek, and W. P. Malcolm. Pairs trading. Quantitative Finance, 5(3):271–276, 2005. - [58] E. J. Elton, M. J. Gruber, S. J. Brown, and W. N. Goetzmann. Modern Portfolio Theory and Investment Analysis. John Wiley & Sons, 2009. - [59] R. F. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. *Econometrica: Journal of the Econometric Society*, pages 987–1007, 1982. - [60] R. F. Engle. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. *Journal of Business & Economic Statistics*, 20(3):339–350, 2002. - [61] R. F. Engle and C. W. J. Granger. Co-integration and error correction: representation, estimation, and testing. *Econometrica: Journal of the Econometric Society*, pages 251–276, 1987. - [62] R. F. Engle and K. F. Kroner. Multivariate simultaneous generalized ARCH. Econometric Theory, 11(01):122–150, 1995. - [63] F. J. Fabozzi. Robust Portfolio Optimization and Management. Wiley, 2007. - [64] F. J. Fabozzi, S. M. Focardi, and P. N. Kolm. Financial Modeling of the Equity Market: from CAPM to Cointegration, volume 146. John Wiley & Sons, 2006. - [65] F. J. Fabozzi, S. M. Focardi, and P. N. Kolm. Quantitative Equity Investing: Techniques and Strategies. Wiley, 2010. [66] E. F. Fama and K. R. French. The cross-section of expected stock returns. *Journal of Finance*, 47(2):427–465, 1992. - [67] E. F. Fama and K. R. French. Common risk factors in the returns on stocks and bonds. *Journal of Financial Economics*, 33(1):3–56, 1993. - [68] E. F. Fama and K. R. French. Size and book-to-market factors in earnings and returns. *Journal of Finance*, 50(1):131–155, 1995. - [69] E. F. Fama and K. R. French. Multifactor explanations of asset pricing anomalies. *Journal of Finance*, 51(1):55–84, 1996. - [70] E. F. Fama and K. R. French. The capital asset pricing model: Theory and evidence. *Journal of Economic Perspectives*, 18:25–46, 2004. - [71] J. Fan, Y. Fan, and J. Lv. High dimensional covariance matrix estimation using a factor model. *Journal of Econometrics*, 147(1):186–197, 2008. - [72] J. Fan, L. Qi, and D. Xiu. Quasi-maximum likelihood estimation of garch models with heavy-tailed likelihoods. *Journal of Business & Economic Statistics*, 32(2):178–191, 2014. - [73] J. Fan, J. Zhang, and K. Yu. Vast portfolio selection with gross-exposure constraints. *Journal of the American Statistical Association*, 107(498):592–606, 2012. - [74] B. Fastrich, S. Paterlini, and P. Winker. Constructing optimal sparse portfolios using regularization methods. *Computational Management Science*, pages 1–18, 2013. - [75] B. Fastrich, S. Paterlini, and P. Winker. Cardinality versus q-norm constraints for index tracking. *Quantitative Finance*, 14(11):2019–2032, 2014. - [76] Y. Feng and D. P. Palomar. SCRIP: Successive convex optimization methods for risk parity portfolios design. *IEEE Transactions on Signal Processing*, 63(19):5285–5300, Oct. 2015. - [77] Y. Feng, D. P. Palomar, and F. Rubio. Robust order execution under box uncertainty sets. In *Proceedings of the Asilomar Conference on Signals Systems, and Computers*, pages 44–48, Pacific Grove, CA, Nov. 2013. - [78] Y. Feng, D. P. Palomar, and F. Rubio. Robust optimization of order execution. *IEEE Transactions on Signal Processing*, 63(4):907–920, Feb. 2015. [79] Y. Feng, F. Rubio, and D. P. Palomar. Optimal order execution for algorithmic trading: A CVaR approach. In *Proceedings of the IEEE* Workshop on Signal Processing Advances in Wireless Communications, pages 480–484, Jun. 2012. - [80] C. Floros. Modelling volatility using high, low, open and closing prices: evidence from four S&P indices. *International Research Journal of Finance and Economics*, 28:198–206, 2009. - [81] G. Frahm. Generalized elliptical distributions: theory and applications. PhD thesis, Universität zu Köln, 2004. - [82] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. *Biostatistics*, 9(3):432–441, 2008. - [83] W. Fung and D. A. Hsieh. Measuring the market impact of hedge funds. Journal of Empirical Finance, 7(1):1–36, 2000. - [84] M. B. Garman and M. J. Klass. On the estimation of security price volatilities from historical data. *Journal of Business*, pages 67–78, 1980. - [85] E. Gatev, W. N. Goetzmann, and K. G. Rouwenhorst. Pairs trading: Performance of a relative-value arbitrage rule. Review of Financial Studies, 19(3):797–827, 2006. - [86] D. Goldfarb and G. Iyengar. Robust portfolio selection problems. *Mathematics of Operations Research*, 28(1):1–38, 2003. - [87] M. D. Gould, M. A. Porter, S. Williams, M. McDonald, D. J. Fenn, and S. D. Howison. Limit order books. *Quantitative Finance*, 13(11):1709– 1742, 2013. - [88] B. Graham and D. L. Dodd. Security Analysis: Principles and Technique. McGraw-Hill, 1934. - [89] B. Graham, J. Zweig, and W. E. Buffett. The Intelligent Investor: A Book of Practical Counsel. Harper & Row, 1973. - [90] T. Griveau-Billion, J.-C. Richard, and T. Roncalli. A fast algorithm for computing high-dimensional risk parity portfolios. arXiv preprint arXiv:1311.4057, 2013. - [91] R. G. Hagstrom. The Warren Buffett Way: Investment Strategies of the World's Greatest Investor. John Wiley & Sons, 1997. - [92] M. Harlacher. Cointegration based statistical arbitrage. Department of Mathematics, Swiss Federal Institute of Technology, Zurich, Switzerland, 2012. - [93] R. I. D. Harris. Using Cointegration Analysis in Econometric Modelling. Harvester Wheatsheaf, Prentice Hall, 1995. [94] J. Hasbrouck. Empirical Market Microstructure: The Institutions, Economics and Econometrics of Securities Trading. Oxford University Press, USA, 2007. - [95] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, New York, 2009. - [96] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical Learning with Sparsity: The Lasso and Generalizations. CRC Press, 2015. - [97] N. Hautsch. Econometrics of Financial High-Frequency Data. Springer Science & Business Media, 2011. - [98] S. Haykin and B. Van Veen. Signals and Systems. John Wiley & Sons, 2007. - [99] C.-J. Hsieh, I. S. Dhillon, P. K. Ravikumar, and M. A. Sustik. Sparse inverse covariance matrix estimation using quadratic approximation. In Advances in Neural Information Processing Systems, pages 2330–2338, 2011. - [100] D. Huang, S. Zhu, F. J. Fabozzi, and M. Fukushima. Portfolio selection under distributional uncertainty: A relative robust CVaR approach. European Journal of Operational Research, 203(1):185–194, 2010. - [101] P. J. Huber. Robust Statistics. Springer, 2011. - [102] G. Huberman and W. Stanzl. Optimal liquidity trading. Review of Finance, 9(2):165–200, 2005. - [103] J. C. Hull. *Options, Futures, and Other Derivatives*. Pearson Education India, 9th edition, 2014. - [104] T. M. Idzorek. A step-by-step guide to the Black-Litterman model. Forecasting Expected Returns in the Financial Markets, page 17, 2002. - [105] W. James and C. Stein. Estimation with quadratic loss. In *Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability*,
volume 1, pages 361–379, 1961. - [106] R. Jansen and R. Van Dijk. Optimal benchmark tracking with small portfolios. *The Journal of Portfolio Management*, 28(2):33–39, 2002. - [107] S. Johansen. Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. *Econometrica: Journal of the Econometric Society*, pages 1551–1580, 1991. - [108] S. Johansen. Likelihood-based inference in cointegrated vector autoregressive models. Oxford University Press Catalogue, 1995. - [109] I. Jolliffe. Principal Component Analysis. Wiley Online Library, 2002. [110] P. Jorion. Bayes-stein estimation for portfolio analysis. *Journal of Financial and Quantitative Analysis*, 21(03):279–292, 1986. - [111] T. Kailath. *Linear Systems*, volume 1. Prentice-Hall Englewood Cliffs, NJ, 1980. - [112] A. Kammerdiner, A. Sprintson, E. Pasiliao, and V. Boginski. Optimization of discrete broadcast under uncertainty using conditional value-atrisk. *Optimization Letters*, 8(1):45–59, 2014. - [113] J. T. Kent and D. E. Tyler. Maximum likelihood estimation for the wrapped cauchy distribution. *Journal of Applied Statistics*, 15(2):247–254, 1988. - [114] Masaaki Kijima. Stochastic Processes with Applications to Finance. CRC Press, 2013. - [115] R. Kissell, M. Glantz, R. Malamut, and N.A. Chriss. Optimal Trading Strategies: Quantitative Approaches for Managing Market Impact and Trading Risk. Amacom, 2003. - [116] G. M. Koop. Forecasting with medium and large bayesian VARs. *Journal of Applied Econometrics*, 28(2):177–203, 2013. - [117] C. Lam and J. Fan. Sparsistency and rates of convergence in large covariance matrix estimation. *The Annals of Statistics*, 37(6B):4254, 2009. - [118] C. Lam, Q. Yao, and N. Bathia. Factor modeling for high dimensional time series. In *Recent Advances in Functional Data Analysis and Related Topics*, pages 203–207. Springer, 2011. - [119] Z. M. Landsman and E. A. Valdez. Tail conditional expectations for elliptical distributions. The North American Actuarial Journal, 7(4):55– 71, 2003. - [120] O. Ledoit and M. Wolf. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. *Journal of Empirical Finance*, 10(5):603–621, 2003. - [121] O. Ledoit and M. Wolf. A well-conditioned estimator for largedimensional covariance matrices. *Journal of multivariate analysis*, 88(2):365–411, 2004. - [122] O. Ledoit and M. Wolf. Nonlinear shrinkage estimation of largedimensional covariance matrices. The Annals of Statistics, 40(2):1024– 1060, 2012. - [123] J. Li and P. Stoica. Robust Adaptive Beamforming. Wiley, 2006. [124] W.-L. Li, Y. Zhang, A. M.-C. So, and M. Z. Win. Slow adaptive OFDMA systems through chance constrained programming. *IEEE Transactions on Signal Processing*, 58(7):3858–3869, 2010. - [125] Y.-X. Lin, M. McCrae, and C. Gulati. Loss protection in pairs trading through minimum profit bounds: A cointegration approach. *Advances in Decision Sciences*, 2006. - [126] R. B. Litterman. Forecasting with bayesian vector autoregressions—five years of experience. *Journal of Business & Economic Statistics*, 4(1):25–38, 1986. - [127] M. S. Lobo and S. Boyd. The worst-case risk of a portfolio. Technical report, 2000. - [128] D. G. Luenberger. Investment Science. Oxford University Press, New York, 1998. - [129] H. Lütkepohl. New Introduction to Multiple Time Series Analysis. Springer Science & Business Media, 2007. - [130] J. G. MacKinnon. Critical values for cointegration tests. Technical report, Queen's Economics Department Working Paper, 2010. - [131] S. Maillard, T. Roncalli, and J. Teïletche. The properties of equally weighted risk contribution portfolios. *Journal of Portfolio Management*, 36(4):60–70, 2010. - [132] B. G. Malkiel. A Random Walk Down Wall Street: The Time-tested Strategy for Successful Investing. WW Norton & Company, 9th edition, 2007. - [133] D. G. Manolakis, V. K. Ingle, and S. M. Kogon. Statistical and adaptive signal processing: spectral estimation, signal modeling, adaptive filtering, and array processing, volume 46. Artech House Norwood, 2005. - [134] D. Maringer and O. Oyewumi. Index tracking with constrained portfolios. *Intelligent Systems in Accounting, Finance and Management*, 15(1-2):57–71, 2007. - [135] H. M. Markowitz. Portfolio selection. *Journal of Finance*, 7(1):77–91, 1952. - [136] H. M. Markowitz. The optimization of a quadratic function subject to linear constraints. Naval Research Logistics Quarterly, 3(1-2):111–133, 1956. - [137] H. M. Markowitz. Portfolio Selection: Efficient Diversification of Investments. Yale University Press, 1968. [138] H. M. Markowitz, G. P. Todd, and W. F. Sharpe. *Mean-Variance Analysis in Portfolio Choice and Capital Markets*, volume 66. Wiley, 2000. - [139] R. A. Maronna. Robust M-Estimators of multivariate location and scatter. The Annals of Statistics, 4(1):51–67, 01 1976. - [140] R. A. Maronna, D. Martin, and V. Yohai. *Robust Statistics: Theory and Methods*. John Wiley & Sons, Chichester., 2006. - [141] A. J. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press, 2005. - [142] F. W. Meng, J. Sun, and M. Goh. Stochastic optimization problems with CVaR risk measure and their sample average approximation. *Journal of Optimization Theory and Applications*, 146(2):399–418, 2010. - [143] A. Meucci. *Risk and Asset Allocation*. Springer Science & Business Media, 2009. - [144] A. Meucci. Quant nugget 2: Linear vs. compounded returns—common pitfalls in portfolio management. *GARP Risk Professional*, pages 49–51, 2010. - [145] S. Moazeni, T. F. Coleman, and Y. Li. Optimal portfolio execution strategies and sensitivity to price impact parameters. SIAM Journal on Optimization, 20(3):1620–1654, 2010. - [146] S. Moazeni, T. F. Coleman, and Y. Li. Regularized robust optimization: the optimal portfolio execution case. *Computational Optimization and Applications*, 55(2):341–377, 2013. - [147] S. Moazeni, T. F. Coleman, and Y. Li. Smoothing and parametric rules for stochastic mean-CVaR optimal execution strategy. *Annals of Operations Research*, pages 1–22, 2013. - [148] D. Monderer and L. S. Shapley. Potential games. *Games and Economic Behavior*, 14(1):124–143, 1996. - [149] R. A. Monzingo and T. W. Miller. *Introduction to Adaptive Arrays*. SciTech Publishing, 1980. - [150] MOSEK. The MOSEK optimization toolbox for MATLAB manual. Technical report, 2013. - [151] P. Nath. High frequency pairs trading with US treasury securities: Risks and rewards for hedge funds. *Available at SSRN 565441*, 2003. - [152] W. B. Nicholson, J. Bien, and D. S. Matteson. Hierarchical vector autoregression. arXiv preprint arXiv:1412.5250, 2014. [153] J. Nocedal and S. J. Wright. *Numerical Optimization*. Springer Series in Operations Research. Springer Verlag, second edition, 2006. - [154] C. O'Cinneide, B. Scherer, and X. Xu. Pooling trades in a quantitative investment process. *Journal of Portfolio Management*, 32(4):33–43, 2006. - [155] K. J. Oh, T. Y. Kim, and S. Min. Using genetic algorithm to support portfolio optimization for index fund management. Expert Systems with Applications, 28(2):371–379, 2005. - [156] M. O'Hara. Market Microstructure Theory, volume 108. Blackwell Cambridge, MA, 1995. - [157] E. Ollila and D. E. Tyler. Regularized m-estimators of scatter matrix. *IEEE Transactions on Signal Processing*, 62(22):6059–6070, Nov 2014. - [158] F. Pascal, Y. Chitour, and Y. Quek. Generalized robust shrinkage estimator and its application to stap detection problem. *IEEE Transactions on Signal Processing*, 62(21):5640–5651, 2014. - [159] A. F. Perold. The implementation shortfall: Paper versus reality. *Journal of Portfolio Management*, 14(3):4–9, 1988. - [160] A. Pole. Statistical Arbitrage: Algorithmic Trading Insights and Techniques, volume 411. John Wiley & Sons, 2011. - [161] H. Puspaningrum. Pairs Trading Using Cointegration Approach. PhD thesis, 2012. - [162] E. Qian. Risk parity portfolios: Efficient portfolios through true diversification. *Panagora Asset Management*, Sept. 2005. - [163] E. Qian. On the financial interpretation of risk contribution: Risk budgets do add up. *Journal of Investment Management*, 4(4):41, 2006. - [164] M. Razaviyayn, M. Hong, and Z.-Q. Luo. A unified convergence analysis of block successive minimization methods for nonsmooth optimization. *SIAM Journal on Optimization*, 23(2):1126–1153, 2013. - [165] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1997. - [166] R. T. Rockafellar and S. Uryasev. Optimization of conditional valueat-risk. *Journal of Risk*, 2:21–42, 2000. - [167] T. Roncalli. Introduction to Risk Parity and Budgeting. CRC Press, 2013. - [168] T. Roncalli and G. Weisang. Risk parity portfolios with risk factors. *Available at SSRN 2155159*, 2012. [169] A. Roy, T. S. McElroy, and P. Linton. Estimation of causal invertible varma models. arXiv preprint arXiv:1406.4584, 2014. - [170] F. Rubio, X. Mestre, and D. P. Palomar. Performance analysis and optimal selection of large minimum variance portfolios under estimation risk. *IEEE Journal of Selected Topics in Signal Processing*, 6(4):337–350, 2012. - [171] D. Ruppert. Statistics and Data Analysis for Financial Engineering. Springer, 2010. - [172] S. Sarykalin, G. Serraino, and S. Uryasev. Value-at-risk vs. conditional value-at-risk in risk management and optimization. *Tutorials in Operations Research. INFORMS, Hanover, MD*, 2008. - [173] S. E. Satchell and B. Scherer. Fairness in trading: A microeconomic interpretation. *Journal of Trading*, 5:40–47, 2010. - [174] S. E. Satchell and A. Scowcroft. A demystification of the black—litterman model: Managing quantitative and traditional portfolio construction. *Journal of Asset Management*, 1(2):138–150, 2000. - [175] M. W. P. Savelsbergh, R. A. Stubbs, and D. Vandenbussche. Multiportfolio optimization: A natural next step. In *Handbook of Portfolio Construction*, pages
565–581. Springer, 2010. - [176] L. L. Scharf. Statistical Signal Processing, volume 98. Addison-Wesley Reading, MA, 1991. - [177] Andrea Scozzari, Fabio Tardella, Sandra Paterlini, and Thiemo Krink. Exact and heuristic approaches for the index tracking problem with ucits constraints. *Annals of Operations Research*, 205(1):235–250, 2013. - [178] G. Scutari, F. Facchinei, Peiran Song, D. P. Palomar, and Jong-Shi Pang. Decomposition by partial linearization: Parallel optimization of multi-agent systems. *IEEE Transactions on Signal Processing*, 62(3):641–656, Feb. 2014. - [179] W. F. Sharpe. The sharpe ratio. Streetwise—the Best of the Journal of Portfolio Management, pages 169–185, 1998. - [180] L. Shi and L. Xie. Optimal sensor power scheduling for state estimation of Gauss–Markov systems over a packet-dropping network. *IEEE Transactions on Signal Processing*, 60(5):2701–2705, May 2012. - [181] L. Shi and H. Zhang. Scheduling two Gauss-Markov systems: An optimal solution for remote state estimation under bandwidth constraint. *IEEE Transactions on Signal Processing*, 60(4):2038–2042, Apr. 2012. [182] A. Silvennoinen and T. Teräsvirta. Multivariate GARCH models. In *Handbook of Financial Time Series*, pages 201–229. Springer, 2009. - [183] N. Y. Soltani, S.-J. Kim, and G. B. Giannakis. Chance-constrained optimization of OFDMA cognitive radio uplinks. *IEEE Transactions* on Wireless Communications, 12(3):1098–1107, 2013. - [184] I. Song. New Quantitative Approaches to Asset Selection and Portfolio Construction. PhD thesis, Columbia University, 2014. - [185] J. Song, P. Babu, and D. P. Palomar. Sparse generalized eigenvalue problem via smooth optimization. *IEEE Transactions on Signal Processing*, 63(7):1627–1642, April 2015. - [186] S. Song and P. J. Bickel. Large vector auto regressions. arXiv preprint arXiv:1106.3915, 2011. - [187] C. Stein. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In *Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability*, volume 1, pages 197–206, 1956. - [188] J. H. Stock and M. W. Watson. Testing for common trends. *Journal of the American statistical Association*, 83(404):1097–1107, 1988. - [189] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. *Optimization Methods and Software*, 11(1-4):625–653, 1999. - [190] Y. Sun, P. Babu, and D. P. Palomar. Regularized Tyler's scatter estimator: Existence, uniqueness, and algorithms. *IEEE Transactions on Signal Processing*, 62(19):5143–5156, 2014. - [191] Y. Sun, P. Babu, and D. P. Palomar. Regularized robust estimation of mean and covariance matrix under heavy-tailed distributions. *IEEE Transactions on Signal Processing*, 63(12):3096–3109, June 2015. - [192] K. S. Tatsuoka and D. E. Tyler. On the uniqueness of S-functionals and m-functionals under nonelliptical distributions. The Annals of Statistics, pages 1219–1243, 2000. - [193] E. O. Thorp and S. T. Kassouf. Beat the Market: A Scientific Stock Market System. Random House New York, 1967. - [194] K.-C. Toh, M. J. Todd, and R. Tütüncü. On the implementation and usage of SDPT3–a MATLAB software package for semidefinite-quadratic-linear programming, version 4.0. In *Handbook on Semidefinite, Conic and Polynomial Optimization*, pages 715–754. Springer, 2012. [195] K. Triantafyllopoulos and G. Montana. Dynamic modeling of mean-reverting spreads for statistical arbitrage. *Computational Management Science*, 8(1-2):23-49, 2011. - [196] R. S. Tsay. Analysis of Financial Time Series, volume 543. Wiley-Interscience, 3rd edition, 2010. - [197] R. S. Tsay. Multivariate Time Series Analysis: With R and Financial Applications. John Wiley & Sons, 2013. - [198] D. N. C. Tse. Optimal power allocation over parallel Gaussian broadcast channels. In *Proceedings of the International Symposium on Information Theory*, page 27, 1997. - [199] A. M. Tulino and S. Verdú. Random matrix theory and wireless communications. Foundations and Trends[®] in Communications and Information theory, 1(1):1–182, 2004. - [200] R. H. Tütüncü and M. Koenig. Robust asset allocation. *Annals of Operations Research*, 132(1):157–187, 2004. - [201] D. E. Tyler. A distribution-free m-estimator of multivariate scatter. The Annals of Statistics, pages 234–251, 1987. - [202] D. E. Tyler. Statistical analysis for the angular central gaussian distribution on the sphere. *Biometrika*, 74(3):579–589, 1987. - [203] G. Vidyamurthy. Pairs Trading: Quantitative Methods and Analysis, volume 217. John Wiley & Sons, 2004. - [204] S. A. Vorobyov, A. B. Gershman, and Z. Q. Luo. Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem. *IEEE Transactions on Signal Processing*, 51(2):313–324, 2003. - [205] S. A. Vorobyov, A. B. Gershman, Z. Q. Luo, and N. Ma. Adaptive beamforming with joint robustness against mismatched signal steering vector and interference nonstationarity. Signal Processing Letters, IEEE, 11(2):108–111, 2004. - [206] C. Wells. The Kalman Filter in Finance, volume 32. Springer Science & Business Media, 1996. - [207] A. Wiesel. Unified framework to regularized covariance estimation in scaled gaussian models. *IEEE Transactions on Signal Processing*, 60(1):29–38, 2012. - [208] C. Yang and L. Shi. Deterministic sensor data scheduling under limited communication resource. *IEEE Transactions on Signal Processing*, 59(10):5050–5056, Oct. 2011. [209] D. Yang and Q. Zhang. Drift-independent volatility estimation based on high, low, open, and close prices. The Journal of Business, 73(3):477– 492, 2000. - [210] Y. Yang, F. Rubio, G. Scutari, and D. P. Palomar. Multi-portfolio optimization: A potential game approach. *IEEE Transactions on Signal Processing*, 61(22):5590–5602, Nov. 2013. - [211] M. Yuan. High dimensional inverse covariance matrix estimation via linear programming. *The Journal of Machine Learning Research*, 11:2261–2286, 2010. - [212] M. Zhang, F. Rubio, and D. P. Palomar. Improved calibration of high-dimensional precision matrices. *IEEE Transactions on Signal Processing*, 61(6):1509–1519, 2013. - [213] M. Zhang, F. Rubio, D. P. Palomar, and X. Mestre. Finite-sample linear filter optimization in wireless communications and financial systems. *IEEE Transactions on Signal Processing*, 61(20):5014–5025, 2013. - [214] X. Zhang, H. V. Poor, and M. Chiang. Optimal power allocation for distributed detection over MIMO channels in wireless sensor networks. *IEEE Transactions on Signal Processing*, 56(9):4124–4140, Sept. 2008.