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ABSTRACT
Massive multiple-input multiple-output (MIMO) is one of the
most promising technologies for the next generation of wireless
communication networks because it has the potential to provide
game-changing improvements in spectral efficiency (SE) and en-
ergy efficiency (EE). This monograph summarizes many years of
research insights in a clear and self-contained way and provides
the reader with the necessary knowledge and mathematical tools
to carry out independent research in this area. Starting from
a rigorous definition of Massive MIMO, the monograph covers
the important aspects of channel estimation, SE, EE, hardware
efficiency (HE), and various practical deployment considerations.
From the beginning, a very general, yet tractable, canonical system
model with spatial channel correlation is introduced. This model
is used to realistically assess the SE and EE, and is later extended
to also include the impact of hardware impairments. Owing to
this rigorous modeling approach, a lot of classic “wisdom” about
Massive MIMO, based on too simplistic system models, is shown
to be questionable.
The monograph contains many numerical examples, which can
be reproduced using Matlab code that is available online at
https://dx.doi.org/10.1561/2000000093_supp.

Emil Björnson, Jakob Hoydis and Luca Sanguinetti (2017), “Massive MIMO Networks:
Spectral, Energy, and Hardware Efficiency”, Foundations and TrendsR© in Signal
Processing: Vol. 11, No. 3-4, pp 154–655. DOI: 10.1561/2000000093.
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Preface

Why We Wrote this Monograph

Massive multiple-input multiple-output (MIMO) is currently a buzz-
word in the evolution of cellular networks, but there is a great divide
between what different people read into it. Some say Massive MIMO
was conceived by Thomas Marzetta in a seminal paper from 2010,
but the terminology cannot be found in that paper. Some say it is a
reincarnation of space-division multiple access (SDMA), but with more
antennas than in the field-trials carried out in the 1990s. Some say that
any radio technology with at least 64 antennas is Massive MIMO. In
this monograph, we explain what Massive MIMO is to us and how the
research conducted in the past decades lead to a scalable multiantenna
technology that offers great throughput and energy efficiency under
practical conditions. We decided to write this monograph to share
the insights and know-how that each of us has obtained through ten
years of multiuser MIMO research. Two key differences from previous
books on this topic are the spatial channel correlation and the rigorous
signal processing design considered herein, which uncover fundamental
characteristics that are easily overlooked by using more tractable but
less realistic models and processing schemes. In our effort to provide a
coherent description of the topic, we cover many details that cannot be
found in the research literature, but are important to connect the dots.

2
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3

This monograph is substantially longer than the average monograph
published in Foundations and Trends, but we did not choose the pub-
lisher based on the format but the quality and openness that it offers.
We want to reach a broad audience by offering printed books as well as
open access to an electronic version. We have made the simulation code
available online, to encourage reproducibility and continued research.
This monograph is targeted at graduate students, researchers, and pro-
fessors who want to learn the conceptual and analytical foundations of
Massive MIMO, in terms of spectral, energy, and/or hardware efficiency,
as well as channel estimation and practical considerations. We also
cover some related topics and recent trends, but purposely in less detail,
to focus on the unchanging fundamentals and not on the things that
current research is targeting. Basic linear algebra, probability theory,
estimation theory, and information theory are sufficient to read this
monograph. The appendices contain detailed proofs of the analytical
results and, for completeness, the basic theory is also summarized.

Structure of the Monograph

Section 1 introduces the basic concepts that lay the foundation for the
definition and design of Massive MIMO. Section 2 provides a rigorous
definition of the Massive MIMO technology and introduces the system
and channel models that are used in the remainder of the monograph.
Section 3 describes the signal processing used for channel estimation
on the basis of uplink (UL) pilots. Receive combining and transmit
precoding are considered in Section 4 wherein expressions for the spectral
efficiency (SE) achieved in the UL and downlink (DL) are derived and
the key insights are described and exemplified. Section 5 shows that
Massive MIMO also plays a key role when designing highly energy-
efficient cellular networks. Section 6 analyzes how transceiver hardware
impairments affect the SE and shows that Massive MIMO makes more
efficient use of the hardware. This opens the door for using components
with lower resolution (e.g., fewer quantization bits) to save energy and
cost. Section 7 provides an overview of important practical aspects,
such as spatial resource allocation, channel modeling, array deployment,
and the role of Massive MIMO in heterogeneous networks.

Full text available at: http://dx.doi.org/10.1561/2000000093



4

How to Use this Monograph

Researchers who want to delve into the field of Massive MIMO (e.g., for
the purpose of performing independent research) can basically read the
monograph from cover to cover. However, we stress that Sections 5, 6,
and 7 can be read in any order, based on personal preferences.

Each section ends with a summary of key points. A professor who
is familiar with the broad field of MIMO can read these summaries to
become acquainted with the content, and then decide what to read in
detail.

A graduate-level course can cover Sections 1–4 in depth or partially.
Selected parts of the remaining sections may also be included in the
course, depending on the background and interest of the students. An
extensive slide set and homework exercises are made available for teach-
ers who would like to give a course based on this monograph.

The authors, October 2017
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1
Introduction and Motivation

Wireless communication technology has fundamentally changed the
way we communicate. The time when telephones, computers, and Inter-
net connections were bound to be wired, and only used at predefined
locations, has passed. These communications services are nowadays
wirelessly accessible almost everywhere on Earth, thanks to the deploy-
ment of cellular wide area networks (e.g., based on the GSM1, UMTS2,
and LTE3 standards), local area networks (based on different versions
of the WiFi standard IEEE 802.11), and satellite services. Wireless
connectivity has become an essential part of the society—as vital as
electricity—and as such the technology itself spurs new applications and
services. We have already witnessed the streaming media revolution,
where music and video are delivered on demand over the Internet. The
first steps towards a fully networked society with augmented reality
applications, connected homes and cars, and machine-to-machine com-
munications have also been taken. Looking 15 years into the future, we
will find new innovative wireless services that we cannot predict today.

1Global System for Mobile Communications (GSM).
2Universal Mobile Telecommunications System (UMTS).
3Long Term Evolution (LTE).

5
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6 Introduction and Motivation

The amount of wireless voice and data communications has grown
at an exponential pace for many decades. This trend is referred to as
Cooper’s law because the wireless researcher Martin Cooper [91] noticed
in the 1990s that the number of voice and data connections has doubled
every two-and-a-half years, since Guglielmo Marconi’s first wireless
transmissions in 1895. This corresponds to a 32% annual growth rate.
Looking ahead, the Ericsson Mobility Report forecasts a compound
annual growth rate of 42% in mobile data traffic from 2016 to 2022 [109],
which is even faster than Cooper’s law. The demand for wireless data
connectivity will definitely continue to increase in the foreseeable future;
for example, since the video fidelity is constantly growing, since new
must-have services are likely to arise, and because we are moving into a
networked society, where all electronic devices connect to the Internet.
An important question is how to evolve the current wireless communi-
cations technologies to meet the continuously increasing demand, and
thereby avoid an imminent data traffic crunch. An equally important
question is how to satisfy the rising expectations of service quality. Cus-
tomers will expect the wireless services to work equally well anywhere
and at any time, just as they expect the electricity grid to be robust
and constantly available. To keep up with an exponential traffic growth
rate and simultaneously provide ubiquitous connectivity, industrial and
academic researchers need to turn every stone to design new revolution-
ary wireless network technologies. This monograph explains what the
Massive multiple-input multiple-output (MIMO) technology is and why
it is a promising solution to handle several orders-of-magnitude4 more
wireless data traffic than today’s technologies.

The cellular concept for wireless communication networks is defined
in Section 1.1, which also discusses how to evolve current network
technology to accommodate more traffic. Section 1.2 defines the spectral
efficiency (SE) notion and provides basic information-theoretic results
that will serve as a foundation for later analysis. Different ways to
improve the SE are compared in Section 1.3, which motivates the design
of Massive MIMO. The key points are summarized in Section 1.4.

4In communications, a factor ten is called one order-of-magnitude, while a factor
100 stands for two orders-of-magnitude and so on.

Full text available at: http://dx.doi.org/10.1561/2000000093



1.1. Cellular Networks 7

1.1 Cellular Networks

Wireless communication is based on radio, meaning that electromagnetic
(EM) waves are designed to carry information from a transmitter to
one or multiple receivers. Since the EM waves propagate in all possible
directions from the transmitter, the signal energy spreads out and less
energy reaches a desired receiver as the distance increases. To deliver
wireless services with sufficiently high received signal energy over wide
coverage areas, researchers at Bell Labs postulated in 1947 that a cellular
network topology is needed [277]. According to this idea, the coverage
area is divided into cells that operate individually using a fixed-location
base station; that is, a piece of network equipment that facilitates
wireless communication between a device and the network. The cellular
concept was further developed and analyzed over the subsequent decades
[291, 116, 204, 364] and later deployed in practice. Without any doubt,
the cellular concept was a major breakthrough and has been the main
driver to deliver wireless services in the last forty years (since the “first
generation” of mobile phone systems emerged in the 1980s). In this
monograph, a cellular network is defined as follows.

Definition 1.1 (Cellular network). A cellular network consists of a set
of base stations (BSs) and a set of user equipments (UEs).5 Each UE is
connected to one of the BSs, which provides service to it. The downlink
(DL) refers to signals sent from the BSs to their respective UEs, while
the uplink (UL) refers to transmissions from the UEs to their respective
BSs.6

While this definition specifies the setup that we will study, it does
not cover every aspect of cellular networks; for example, to enable
efficient handover between cells, a UE can momentarily be connected
to multiple BSs.

5The terms BS and UE stem from GSM and LTE standards, respectively, but
are used in this monograph without any reference to particular standards.

6In a fully cooperative cellular network, called network MIMO [126] or cell-free
system [240], all BSs are connected to a central processing site and are used to jointly
serve all UEs in the network. In this case, the DL (UL) refers to signals transmitted
from (to) all the BSs to (from) each UE. Such a cellular network is not the focus of
this monograph, but cell-free systems are briefly described in Section 7.4.3 on p. 356.

Full text available at: http://dx.doi.org/10.1561/2000000093



8 Introduction and Motivation

Base
station

User equipment

Figure 1.1: A basic cellular network, where each BS covers a distinct geographical
area and provides service to all UEs in it. The area is called a “cell” and is illustrated
with a distinct color. The cell may consist of all geographic locations where this BS
provides the strongest DL signal.

An illustration of a cellular network is provided in Figure 1.1. This
monograph focuses on the wireless communication links between BSs
and UEs, while the remaining network infrastructure (e.g., fronthaul,
backhaul, and core network) is assumed to function perfectly. There
are several branches of wireless technologies that are currently in use,
such as the IEEE 802.11 family for WiFi wireless local area networks
(WLANs), the 3rd Generation Partnership Project (3GPP) family with
GSM/UMTS/LTE for mobile communications [128], and the competing
3GPP2 family with IS-95/CDMA2000/EV-DO. Some standards within
these families are evolutions of each other, optimized for the same use
case, while others are designed for different use cases. Together they
form a heterogeneous network consisting of two main tiers:

1. Coverage tier: Consisting of outdoor cellular BSs that provide
wide-area coverage, mobility support, and are shared between
many UEs;

2. Hotspot tier: Consisting of (mainly) indoor BSs that offer high
throughput in small local areas to a few UEs.

The term “heterogeneous” implies that these two tiers coexist in the
same area. In particular, the hotspot BSs are deployed to create small
cells (SCs) within the coverage area of the cellular BSs, as illustrated in

Full text available at: http://dx.doi.org/10.1561/2000000093



1.1. Cellular Networks 9

BS in coverage tier BS in hotspot tier UE in any tier

Figure 1.2: Current wireless networks are heterogeneous since a tier of SCs is
deployed to offload traffic from the coverage tier. BSs in the coverage tier and in
the hotspot tier are depicted differently, as shown in the figure. To improve the
area throughput of the coverage tier, it is particularly important to increase the
SE, because densification and the use of additional bandwidth at higher frequencies
would degrade mobility support and coverage.

Figure 1.2. The two tiers may utilize the same frequency spectrum, but,
in practice, it is common to use different spectrum to avoid inter-tier
coordination; for example, the coverage tier might use LTE and operate
in the 2.1GHz band, while the hotspot tier might use WiFi in the 5GHz
band.

Cellular networks were originally designed for wireless voice commu-
nications, but it is wireless data transmissions that dominate nowadays
[109]. Video on-demand accounts for the majority of traffic in wireless
networks and is also the main driver of the predicted increase in traffic

Full text available at: http://dx.doi.org/10.1561/2000000093



10 Introduction and Motivation

demand [86]. The area throughput is thus a highly relevant performance
metric of contemporary and future cellular networks. It is measured in
bit/s/km2 and can be modeled using the following high-level formula:

Area throughput [bit/s/km2] =
B [Hz] ·D [cells/km2] · SE [bit/s/Hz/cell] (1.1)

where B is the bandwidth, D is the average cell density, and SE is the
SE per cell. The SE is the amount of information that can be transferred
per second over one Hz of bandwidth, and it is later defined in detail in
Section 1.2.

These are the three main components that determine the area
throughput, and that need to be increased in order to achieve higher
area throughput in future cellular networks. This principle applies to
the coverage tier as well as to the hotspot tier. Based on (1.1), one can
think of the area throughput as being the volume of a rectangular box
with sides B, D, and SE; see Figure 1.3. There is an inherent dependence
between these three components in the sense that the choice of frequency
band and cell density affects the propagation conditions; for example,
the probability of having a line-of-sight (LoS) channel between the
transmitter and receiver (and between out-of-cell interferers and the
receiver), the average propagation losses, etc. However, one can treat
these three components as independent as a first-order approximation to
gain basic insights. Consequently, there are three main ways to improve
the area throughput of cellular networks:

1. Allocate more bandwidth;

2. Densify the network by deploying more BSs;

3. Improve the SE per cell.
The main goal of this section is to demonstrate how we can achieve

major improvements in SE. These insights are then utilized in Section 2
on p. 63 to define the Massive MIMO technology.

1.1.1 Evolving Cellular Networks for Higher Area Throughput

Suppose, for the matter of argument, that we want to design a new
cellular network that improves the area throughput by a factor of 1000

Full text available at: http://dx.doi.org/10.1561/2000000093



1.1. Cellular Networks 11

Bandwidth
(B)

Average cell 
density (D)

Spectral ef f iciency (SE)

Volume = Area throughput

Figure 1.3: The area throughput can be computed according to (1.1) as the volume
of a rectangular box where the bandwidth, average cell density, and SE are the length
of each side.

over existing networks; that is, to solve “the 1000× data challenge”
posed by Qualcomm [271]. Note that such a network can handle the
three orders-of-magnitude increase in wireless data traffic that will occur
over the next 15–20 years, if the annual traffic growth rate continues
to be in the range of 41%–59%. How can we handle such a huge traffic
growth according to the formula in (1.1)?

One potential solution would be to increase the bandwidth B by
1000×. Current cellular networks utilize collectively more than 1GHz of
bandwidth in the frequency range below 6GHz. For example, the telecom
operators in Sweden have licenses for more than 1GHz of spectrum
[65], while the corresponding number in USA is around 650MHz [30].
An additional 500MHz of spectrum is available for WiFi [65]. This
means that a 1000× increase corresponds to using more than 1THz
of bandwidth in the future. This is physically impractical since the
frequency spectrum is a global resource that is shared among many
different services, and also because it entails using much higher frequency
bands than in the past, which physically limits the range and service
reliability. There are, however, substantial bandwidths in the millimeter
wavelength (mmWave) bands (e.g., in the range 30–300GHz) that can be
used for short-range applications. These mmWave bands are attractive
in the hotspot tier, but less so in the coverage tier since the signals at

Full text available at: http://dx.doi.org/10.1561/2000000093



12 Introduction and Motivation

those frequencies are easily blocked by objects and human bodies and
thus cannot provide robust coverage.

Another potential solution would be to densify the cellular network
by deploying 1000× more BSs per km2. The inter-BS distances in the
coverage tier are currently a few hundred meters in urban areas and
the BSs are deployed at elevated locations to avoid being shadowed
by large objects and buildings. This limits the number of locations
where BSs can be deployed in the coverage tier. It is hard to densify
without moving BSs closer to UEs, which leads to increased risks of
being in deep shadow, thereby reducing coverage. Deploying additional
hotspots is a more viable solution. Although WiFi is available almost
everywhere in urban areas, the average inter-BS distance in the hotspot
tier can certainly shrink down to tens of meters in the future. Reusing
the spectrum from the coverage tier or using mmWave bands in these
SCs can also bring substantial improvements to the area throughput
[197]. Nevertheless, this solution is associated with high deployment
costs, inter-cell interference issues [19], and is not suitable for mobile
UEs, which would have to switch BS very often. Note that even under
a substantial densification of the hotspot tier, the coverage tier is still
required to support mobility and avoid coverage holes.

Higher cell density and larger bandwidth have historically domi-
nated the evolution of the coverage tier, which explains why we are
approaching a saturation point where further improvements are in-
creasingly complicated and expensive. However, it might be possible
to dramatically improve the SE of future cellular networks. This is
particularly important for BSs in the coverage tier that, as explained
above, can neither use mmWave bands nor rely on network densification.
Increasing the SE corresponds to using the BSs and bandwidth that
are already in place more efficiently by virtue of new modulation and
multiplexing techniques. The principal goal is to select a rectangular
box, as illustrated in Figure 1.4, where each side represents the multi-
plicative improvement in either B, D, or SE. As shown in the figure,
there are different ways to choose these factors in order to achieve 1000×
higher area throughput. A pragmatic approach is to first investigate how
much the SE can be improved towards the 1000× goal and then jointly
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10×

10×

10×

(a) Equal improvement.
25×

8×5×

(b) Improving some factors more than others.

Figure 1.4: Examples of different ways to achieve a 1000× improvement in area
throughput. Each side of the rectangular box represents an improvement factor in
either B, D, or SE in (1.1), and their multiplication (i.e., the volume) equals 1000×.

increase B and D to take care of the remaining part of the ambitious
final goal. Section 4 on p. 122 shows why Massive MIMO is considered
the most promising technology for improving the SE in future cellular
networks.

Remark 1.1 (Massive MIMO versus SCs in mmWave bands). This mono-
graph focuses on the coverage tier, which will remain the most chal-
lenging tier in the future since it should provide ubiquitous coverage,
support mobility, and simultaneously deliver a uniform service quality
within each cell. All of this must be achieved without any substantial
densification or use of mmWave spectrum because that would inevitably
result in patchy coverage. This is why major improvements in SE are
needed. We will demonstrate that Massive MIMO can deliver that. In
contrast, the main purpose of the hotspot tier is to reduce the pressure
on the coverage tier by offloading a large portion of the traffic from
low-mobility UEs. Since only short-range best-effort communications
must be supported, this tier can be enhanced by straightforward cell
densification and by using the large bandwidths available in mmWave
bands. The use of Massive MIMO in mmWave bands will be discussed
in Section 7.5 on p. 369, while the combination of Massive MIMO and
SCs is considered in Section 7.6 on p. 374.
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1.2 Definition of Spectral Efficiency

We now provide a definition of SE for a communication channel with a
bandwidth of B Hz. The Nyquist-Shannon sampling theorem implies
that the band-limited communication signal that is sent over this channel
is completely determined by 2B real-valued equal-spaced samples per
second [298]. When considering the complex-baseband representation
of the signal, B complex-valued samples per second is the more natural
quantity [314]. These B samples are the degrees of freedom available
for designing the communication signal. The SE is the amount of
information that can be transferred reliably per complex-valued sample.

Definition 1.2 (Spectral efficiency). The SE of an encoding/decoding
scheme is the average number of bits of information, per complex-
valued sample, that it can reliably transmit over the channel under
consideration.

From this definition, it is clear that the SE is a deterministic number
that can be measured in bit per complex-valued sample. Since there are
B samples per second, an equivalent unit of the SE is bit per second
per Hertz, often written in short-form as bit/s/Hz. For fading channels,
which change over time, the SE can be viewed as the average number of
bit/s/Hz over the fading realizations, as will be defined below. In this
monograph, we often consider the SE of a channel between a UE and a
BS, which for simplicity we refer to as the “SE of the UE”. A related
metric is the information rate [bit/s], which is defined as the product
of the SE and the bandwidth B. In addition, we commonly consider
the sum SE of the channels from all UEs in a cell to the respective BS,
which is measured in bit/s/Hz/cell.

The channel between a transmitter and a receiver at given loca-
tions can support many different SEs (depending on the chosen encod-
ing/decoding scheme), but the largest achievable SE is of key importance
when designing communication systems. The maximum SE is deter-
mined by the channel capacity, which was defined by Claude Shannon
in his seminal paper [297] from 1948. The following theorem provides
the capacity for the channel illustrated in Figure 1.5.
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Figure 1.5: A general discrete memoryless channel with input x and output y.

Theorem 1.1 (Channel capacity). Consider a discrete memoryless chan-
nel with input x and output y, which are two random variables. Any
SE smaller or equal to the channel capacity

C = sup
f(x)

(H(y)−H(y|x)
)

(1.2)

is achievable with arbitrarily low error probability, while larger values
cannot be achieved. The supremum is taken with respect to all feasible
input distributions f(x), while H(y) is the differential entropy of the
output and H(y|x) is the conditional differential entropy of the output
given the input.

The terminology of discrete memoryless channels and entropy is
defined in Appendix B.5 on p. 419. We refer to [297] and textbooks
on information theory, such as [94], for the proof of Theorem 1.1. The
set of feasible input distributions depends on the application, but it is
common to consider all distributions that satisfy a constraint on the
input power. In wireless communications, we are particularly interested
in channels where the received signal is the superposition of a scaled
version of the desired signal and additive Gaussian noise. These channels
are commonly referred to as additive white Gaussian noise (AWGN)
channels. The channel capacity in Theorem 1.1 can be computed in
closed form in the following canonical case from [298], which is also
illustrated in Figure 1.6.

Corollary 1.2. Consider a discrete memoryless channel with input x ∈ C
and output y ∈ C given by

y = hx+ n (1.3)

where n ∼ NC(0, σ2) is independent noise. The input distribution is
power-limited as E{|x|2} ≤ p and the channel response h ∈ C is known
at the output.
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Figure 1.6: A discrete memoryless channel with input x and output y = hx+ n,
where h is the channel response and n is independent Gaussian noise.

If h is deterministic, then the channel capacity is

C = log2

(
1 + p|h|2

σ2

)
(1.4)

and is achieved by the input distribution x ∼ NC(0, p).
If h is a realization of a random variable H that is independent of

the signal and noise, then the ergodic7 channel capacity is

C = E
{

log2

(
1 + p|h|2

σ2

)}
(1.5)

where the expectation is with respect to h. This is called a fading channel
and the capacity is achieved by the input distribution x ∼ NC(0, p).

Proof. The proof is available in Appendix C.1.1 on p. 426.

The channel considered in Corollary 1.2 is called a single-input
single-output (SISO) channel because one input signal is sent and
results in one output signal. An average power constraint is assumed
in the corollary and throughout this monograph, but other constraints
also exist in practice; see Remark 7.1 on p. 307 for a further discussion.
The practical meaning of the channel capacity can be described by
considering the transmission of an information sequence with N scalar
inputs, generated by an ergodic stochastic process, over the discrete

7The capacity of a fading channel requires that the transmission spans asymptot-
ically many realizations of the random variable that describes the channel. This is
referred to as the ergodic capacity since a stationary ergodic random fading process
is required if the statistical properties shall be deducible from a single sequence of
channel realizations. Each channel realization is used for a predetermined and finite
number of input signals, then a new realization is taken from the random process.
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memoryless channel in Corollary 1.2. If the scalar input has an SE
smaller or equal to the capacity, the information sequence can be
encoded such that the receiver can decode it with arbitrarily low error
probability as N → ∞. In other words, an infinite decoding delay is
required to achieve the capacity. The seminal work in [267] quantifies
how closely the capacity can be approached at a finite length of the
information sequence. The SE is generally a good performance metric
whenever data blocks of thousands of bits are transmitted [50].

The capacity expressions in (1.4) and (1.5) have a form that is
typical for communications: the base-two logarithm of one plus the
signal-to-noise ratio (SNR)-like expression

Received signal power︷ ︸︸ ︷
p|h|2
σ2
︸︷︷︸

Noise power

. (1.6)

This is the actual measurable SNR for a deterministic channel response
h, while it is the instantaneous SNR for a given channel realization
when h is random. Since the SNR fluctuates in the latter case, it is more
convenient to consider the average SNR when describing the quality of
a communication channel. We define the average SNR as

SNR = pE{|h|2}
σ2 (1.7)

where the expectation is computed with respect to the channel realiza-
tions. We call E{|h|2} the average channel gain since it is the average
scaling of the signal power incurred by the channel.

Transmissions in cellular networks are in general corrupted by in-
terference from simultaneous transmissions in the same and other cells.
By adding such interference to the channel in Figure 1.6, we obtain the
discrete memoryless interference channel in Figure 1.7. The interference
is not necessarily independent of the input x and the channel h. The
exact channel capacity of interference channels is generally unknown,
but convenient lower bounds can be obtained. Inspired by [36, 214], the
following corollary provides the lower capacity bounds that will be used
repeatedly in this monograph.
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Figure 1.7: A discrete memoryless interference channel with input x and output
y = hx+ υ + n, where h is the channel response, n is independent Gaussian noise,
and υ is the interference, which is uncorrelated with the input and the channel.

Corollary 1.3. Consider a discrete memoryless interference channel with
input x ∈ C and output y ∈ C given by

y = hx+ υ + n (1.8)
where n ∼ NC(0, σ2) is independent noise, the channel response h ∈ C
is known at the output, and υ ∈ C is random interference. The input is
power-limited as E{|x|2} ≤ p.

If h is deterministic and the interference υ has zero mean, a known
variance pυ ∈ R+, and is uncorrelated with the input (i.e., E{x?υ} = 0),
then the channel capacity C is lower bounded as

C ≥ log2

(
1 + p|h|2

pυ + σ2

)
(1.9)

where the bound is achieved using the input distribution x ∼ NC(0, p).
Suppose h ∈ C is instead a realization of the random variable H and

that U is a random variable with realization u that affects the interfer-
ence variance. The realizations of these random variables are known at
the output. If the noise n is conditionally independent of υ given h and
u, the interference υ has conditional zero mean (i.e., E{υ|h, u} = 0) and
conditional variance denoted by pυ(h, u) = E{|υ|2|h, u}, and the interfer-
ence is conditionally uncorrelated with the input (i.e., E{x?υ|h, u} = 0),
then the ergodic8 channel capacity C is lower bounded as

C ≥ E
{

log2

(
1 + p|h|2

pυ(h, u) + σ2

)}
(1.10)

8When transmitting an information sequence over this fading channel, a sequence
of realizations of H and U is created, forming stationary ergodic random processes.
Each set of realizations (h, u) is used for a predetermined and finite number of input
signals, then a new set of realizations is taken from the random processes.
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where the expectation is taken with respect to h and u, and the bound
is achieved using the input distribution x ∼ NC(0, p).

Proof. The proof is available in Appendix C.1.2 on p. 427.

Note that in Corollary 1.3, we use the shorthand notation E{υ|h, u}
for the conditional expectation E{υ|H = h,U = u}. For notational
convenience, we will from now on omit the random variables in similar
expressions and only write out the realizations.

The lower bounds on the channel capacity in Corollary 1.3 are
obtained by treating the interference as an additional source of noise in
the decoder, which might not be optimal from an information-theoretic
point of view. For example, if an interfering signal is very strong, then
one can potentially decode it and subtract the interference from the
received signal, before decoding the desired signal. This is conceptually
simple, but harder to perform in a practical cellular network, where
the interfering signals change over time and the cells are not fully
cooperating. In fact, there should not be any strongly interfering signal
in a well-designed cellular network. In the low-interference regime, it
is optimal (i.e., capacity-achieving) to treat interference as additional
noise, as shown in [230, 296, 20, 21, 295].

We utilize SE expressions of the type in Corollary 1.3 throughout
this monograph and stress that these might not be the highest achievable
SEs, but SEs that can be achieved by low-complexity signal processing
in the receiver, where interference is treated as noise. The SE expressions
in (1.9) and (1.10) have a form typical for wireless communications: the
base-two logarithm of one plus the expression

SINR =

Received signal power︷ ︸︸ ︷
p|h|2

pυ︸︷︷︸
Interference power

+ σ2
︸︷︷︸

Noise power

(1.11)

that can be interpreted as the signal-to-interference-plus-noise ratio
(SINR). Formally, this is only an SINR when h and pυ are deterministic;
the expression is otherwise random. For simplicity, we will refer to
any term a that appears as E{log2(1 + a)} in an SE expression as an
instantaneous SINR (with slight abuse of terminology).
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The SE expressions presented in this section are the fundamental
building blocks for the theory developed in later sections. The capacity
results consider discrete memoryless channels, which are different from
practical continuous wireless channels. However, the bandwidth B can
be divided into narrow subchannels (e.g., using orthogonal frequency-
division multiplexing (OFDM)) that are essentially memoryless if the
symbol time is much longer than the delay spread of the propagation
environment [314].

1.3 Ways to Improve the Spectral Efficiency

There are different ways to improve the per-cell SE in cellular networks.
In this section, we will compare different approaches to showcase which
ones are the most promising. For simplicity, we consider a two-cell
network where the average channel gain between a BS and every UE in
a cell is identical, as illustrated in Figure 1.8. This is a tractable model
for studying the basic properties of cellular communications, due to
the small number of system parameters. It is an instance of the Wyner
model, initially proposed by Aaron Wyner in [353] and studied for fading
channels in [304]. It has been used extensively to study the fundamental
information-theoretic properties of cellular networks; see the monograph
[303] and references therein. More realistic, but less tractable, network
models will be considered in later sections.

In the UL scenario shown in Figure 1.8, the UEs in cell 0 transmit
to their serving BS, while the UL signals from the UEs in cell 1 leak
into cell 0 as interference. The average channel gain from a UE in cell 0
to its serving BS is denoted by β0

0 , while the interfering signals from
UEs in cell 1 have an average channel gain of β0

1 . Similarly, the average
channel gain from a UE in cell 1 to its serving BS is denoted by β1

1 ,
while the interfering signals from UEs in cell 0 have an average channel
gain of β1

0 . Notice that the superscript indicates the cell of the receiving
BS and the subscript indicates the cell that the transmitting UE resides
in. The average channel gains are positive dimensionless quantities that
are often very small since the signal energy decays quickly with the
propagation distance; values in the range from −70 dB to −120 dB are
common within the serving cell, while even smaller values appear for
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Desired signal
Interfering signal

Cell 0

Cell 1

β0
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β0
0

β1
1

β1
0

Figure 1.8: Illustration of the notion of desired and interfering UL signals in a
two-cell network. In the Wyner model, every UE in cell 0 has the same value of the
average channel gain β0

0 from its serving BS and of the average channel gain β1
0 to

the other-cell BS, while every UE in cell 1 has the same value of β0
1 and β1

1 .

interfering signals. As shown later, it is not the absolute values that are
of main importance when computing the SE, but the relative strength
of the interference as compared to the desired signals. For simplicity, we
assume that the intra-cell channel gains are equal (i.e., β0

0 = β1
1) and

that the inter-cell channel gains are equal as well (i.e., β0
1 = β1

0); this is
commonly assumed in the Wyner model. We can then define the ratio
β̄ between the inter-cell and intra-cell channel gains as

β̄ = β0
1
β0

0
= β1

0
β0

0
= β0

1
β1

1
= β1

0
β1

1
. (1.12)

This ratio will be used in the analysis of both UL and DL. We typically
have 0 ≤ β̄ ≤ 1, where β̄ ≈ 0 corresponds to a negligibly weak inter-cell
interference and β̄ ≈ 1 means that the inter-cell interference is as strong
as the desired signals (which may happen for UEs at the cell edge). We
will use this model in the remainder of Section 1, to discuss different
ways to improve the SE per cell.

1.3.1 Increase the Transmit Power

The SE naturally depends on the strength of the received desired signal,
represented by the average SNR, defined in (1.7). Using the Wyner
model described above, the average SNR of a UE in cell 0 is

SNR0 = p

σ2β
0
0 (1.13)

where p denotes the UE’s transmit power and σ2 is the noise power.
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These power quantities are measured in Joule per time interval. Any
type of time interval can be utilized as long as it is the same for both
the signal and the noise, but common choices are “one second” or “one
sample”. The parameter SNR0 plays a key role in many of the expressions
computed in this section.

Assume that there is one active UE per cell and that each BS and
UE is equipped with a single antenna. Notice that with “antenna” we
refer to a component with a size that is smaller than the wavelength
(e.g., a patch antenna) and not the type of large high-gain antennas
that are used at the BSs in conventional cellular networks. Antennas
and antenna arrays are further discussed in Section 7.4 on p. 347.

Focusing on a flat-fading9 wireless channel, the symbol-sampled
complex-baseband signal y0 ∈ C received at the BS in cell 0 is

y0 = h0
0s0︸ ︷︷ ︸

Desired signal

+ h0
1s1︸ ︷︷ ︸

Interfering signal

+ n0︸︷︷︸
Noise

(1.14)

where the additive receiver noise is modeled as n0 ∼ NC(0, σ2). The
scalars s0, s1 ∼ NC(0, p) in (1.14) represent the information signals10
transmitted by the desired and interfering UEs, respectively. More-
over, their channel responses are denoted by h0

0 ∈ C and h0
1 ∈ C,

respectively. The properties of these channel responses depend on the
propagation environment. In this section, we consider one model of LoS
propagation and one model of non-line-of-sight (NLoS) propagation.
In single-antenna LoS propagation, h0

0 and h0
1 are deterministic scalars

corresponding to the square-root of the (average) channel gains:

h0
i =

√
β0
i for i = 0, 1. (1.15)

In general, the channel response will also have a phase rotation, but
it is neglected here since it does not affect the SE. The channel gain

9In flat-fading channels, the coherence bandwidth of the channel is larger than
the signal bandwidth [314]. Therefore, all frequency components of the signal will
experience the same magnitude of fading, resulting in a scalar channel response.

10The information signals are assumed to be complex Gaussian distributed since
this maximizes the differential entropy of the signal (see Lemma B.21 on p. 421) and
achieves the capacity in interference-free scenarios (see Corollary 1.2). In practice,
quadrature amplitude modulation (QAM) schemes with finite number of constellation
points are commonly used, which leads to a small shaping-loss as compared to having
infinitely many constellation points from a Gaussian distribution.
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β0
i can be interpreted as the macroscopic large-scale fading in LoS

propagation, caused by distance-dependent pathloss. The impact of
the transceiver hardware, including the antenna gains, is also absorbed
into this parameter. The parameter is constant if the transmitter and
receiver are fixed, while it changes if the transmitter and/or receiver
move. Microscopic movements (at the order of the wavelength) can be
modeled as phase-rotations in h0

i , while large movements (at the order
of meters) lead to substantial changes in β0

i . We consider a fixed value of
h0
i in order to apply the SE expression in Corollary 1.3 for deterministic

channels.
In NLoS propagation environments, the channel responses are ran-

dom variables that change over time and frequency. If there is sufficient
scattering between the UEs and the BS, then h0

0 and h0
1 are well-modeled

as
h0
i ∼ NC

(
0, β0

i

)
for i = 0, 1 (1.16)

as validated by the channel measurements reported in [337, 177, 83,
365]. The transmitted signal reaches the receiver through many different
paths and the superimposed received signals can either reinforce or
cancel each other. When the number of paths is large, the central limit
theorem motivates the use of a Gaussian distribution. This phenomenon
is known as small-scale fading and is a microscopic effect caused by
small variations in the propagation environment (e.g., movement of
the transmitter, receiver, or other objects). In contrast, the variance
β0
i is interpreted as the macroscopic large-scale fading, which includes

distance-dependent pathloss, shadowing, antenna gains, and penetration
losses in NLoS propagation. The channel model in (1.16) is called
Rayleigh fading, because the magnitude |h0

i | is a Rayleigh distributed
random variable.

Notice that the average channel gain is E{|h0
i |2} = β0

i , for i = 0, 1,
in both propagation cases in order to make them easily comparable.
Practical channels can contain a mix of a deterministic LoS component
and a random NLoS component, but, by studying the differences between
the two extreme cases, we can predict what will happen in the mixed
cases as well. The following lemma provides closed-form SE expressions
for the LoS and NLoS cases.
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Lemma 1.4. Suppose the BS in cell 0 knows the channel responses. An
achievable11 UL SE for the desired UE in the LoS case is

SELoS
0 = log2

(
1 + 1

β̄ + 1
SNR0

)
(1.17)

with β̄ and SNR0 given by (1.12) and (1.13), respectively. In the NLoS
case (with β̄ 6= 1), an achievable UL SE is

SENLoS
0 = E

{
log2

(
1 + p|h0

0|2
p|h0

1|2 + σ2

)}

=
e

1
SNR0E1

(
1

SNR0

)
− e

1
SNR0β̄E1

(
1

SNR0β̄

)

loge(2)
(
1− β̄

) (1.18)

where E1(x) =
∫∞

1
e−xu
u du denotes the exponential integral and loge(·)

denotes the natural logarithm.
Proof. The proof is available in Appendix C.1.3 on p. 429.

This lemma shows that the SE is fully characterized by the SNR
of the desired signal, SNR0, and the relative strength of the inter-cell
interference, β̄. Note that the closed-form NLoS expression in (1.18)
only applies for β̄ 6= 1. Recall that 0 ≤ β̄ ≤ 1 is the typical range of
β̄. The pathological case β̄ = 1 represents a cell-edge scenario where
the desired and interfering signals are equally strong. An alternative
expression can be derived for β̄ = 1, using the same methodology as in
the proof of Lemma 1.4, but it does not provide any further insights
and is therefore omitted.

The SE is naturally an increasing function of the SNR, which is
most easily seen from the LoS expression in (1.17), where the SE is the
logarithm of the following SINR expression:

1
β̄ + 1

SNR0

=

Signal power︷︸︸︷
pβ0

0
pβ0

1︸︷︷︸
Interference power

+ σ2
︸︷︷︸

Noise power

. (1.19)

11Recall that an SE is achievable if there exists a sequence of codes such that the
maximum probability of error in transmission for any message of length N converges
to zero as N →∞ [94]. Any SE smaller or equal to the capacity is thus achievable.

Full text available at: http://dx.doi.org/10.1561/2000000093



1.3. Ways to Improve the Spectral Efficiency 25

−10 −5 0 5 10 15 20 25 30
0

2

4

6

8

10

SNR [dB]

A
ve

ra
ge

 S
E 

[b
it/

s/
H

z]

 

 

LoS
NLoS

β̄ = −10 dB

β̄ = −30 dB

Figure 1.9: Average UL SE as a function of the SNR for different cases of inter-cell
interference strength, β̄ ∈ {−10,−30} dB, and different channel models.

One can improve the SE by increasing the transmit power p. However,
the SE will not increase indefinitely with p. In the LoS case, we have

SELoS
0 → log2

(
1 + 1

β̄

)
as p→∞ (1.20)

where the limit is completely determined by the strength of the inter-
ference. This is due to the fact that the desired UE and the interfering
UE both increase their transmit powers, which is the case of interest in
cellular networks since good service quality should be guaranteed in all
cells. The corresponding limit in the NLoS case is

SENLoS
0 → 1

1− β̄ log2

( 1
β̄

)
as p→∞ (1.21)

which can be proved by expanding the exponential integrals in (1.18)
using the identity in [3, Eq. (5.1.11)] and then taking the limit p→∞.

To exemplify these behaviors, Figure 1.9 shows the SE as a function
of the SNR, where an SNR increase is interpreted as increasing the
transmit power p. We consider two different strengths of the inter-
cell interference: β̄ = −10dB and β̄ = −30dB. The SE converges
quickly to the LoS limit log2(1 + 1/β̄) ≈ 3.46bit/s/Hz and the NLoS
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limit log2(1/β̄)/(1 − β̄) ≈ 3.69bit/s/Hz in the former case, since the
interference is only 10 dB weaker than the desired signal. In the case of
β̄ = −30 dB, the convergence to the LoS limit 9.97 bit/s/Hz and NLoS
limit 9.98bit/s/Hz is less visible in the considered SNR range, since
the interference is weaker and the logarithm makes the SE grow slowly.
Nevertheless, we notice that going from SNR0 = 10 dB to SNR0 = 30 dB
only doubles the SE, though 100 times more transmit power is required.
The NLoS case provides slightly lower SE than the LoS case for most
SNRs, due to the random fluctuations of the squared magnitude |h0

0|2
of the channel. However, the randomness turns into a small advantage
at high SNR, where the limit is slightly higher in NLoS because the
interference can be much weaker than the signal for some channel
realizations. This behavior is seen for β̄ = −10dB in Figure 1.9, while
it occurs at higher SNRs for β̄ = −30 dB.

In summary, increasing the SNR by using more transmit power
improves the SE, but the positive effect quickly pushes the network
into an interference-limited regime where no extraordinary SEs can be
obtained. This is basically because of the lack of degrees of freedom at
the BS, which cannot separate the desired signal from the interference
from a single observation.12 This interference-limited regime is where
the coverage tier operates in current networks, while the situation for
the hotspot tier depends on how the BSs are deployed. For example, the
signals at mmWave frequencies are greatly attenuated by walls and other
objects. A mmWave SC will typically cover a very limited area, but on
the other hand the cell might be noise-limited since the interfering signals
from SCs in other rooms are also attenuated by walls. The SE range in
Figure 1.9 is comparable to what contemporary networks deliver (e.g.,
0–5 bit/s/Hz in LTE [144]). Hence, a simple power-scaling approach
cannot contribute much to achieving higher SE in cellular networks.

Remark 1.2 (Increasing cell density). Another way to increase the SNR
is to keep the transmit power fixed and increase the cell density D

12The transmission scheme considered in this example is not optimal. The UEs
could take turns in transmitting, thereby achieving an SE that grows without bound,
but with a pre-log factor of 1/2 if each UE is active 50% of the time. More generally,
interference alignment methods can be used to handle the interference [70].
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instead. It is commonly assumed in channel modeling that the average
channel gain is inversely proportional to the propagation distance to
some fixed “pathloss” exponent. Under such a basic propagation model,
the power of the received desired signal and the inter-cell interference
increase at roughly the same pace when D is increased, since both the
distance to the desired BS and the interfering BSs are reduced. This
implies that the interference-limited SE limit is obtained also when
D increases. While D cannot be much increased in the coverage tier,
cell densification is a suitable way to improve the hotspot tier [198];
the area throughput in (1.1) increases linearly with D as long as the
basic propagation model holds true. At some point, this model will,
however, become invalid since the pathloss exponent will also reduce
with the distance and approach the free-space propagation scenario
with an exponent of two [19]. Cell densification is no longer desired in
this extreme short-range scenario since the sum power of the interfering
signals increase faster than the desired signal power.

1.3.2 Obtain an Array Gain

Instead of increasing the UL transmit power, the BS can deploy multiple
receive antennas to collect more energy from the EM waves. This concept
has at least been around since the 1930s [257, 117], with the particular
focus on achieving spatial diversity; that is, to combat the channel fading
in NLoS propagation by deploying multiple receive antennas that observe
different fading realizations. The related idea of using multiple transmit
antennas to increase the received signal power was described as early
as 1919 [10]. Having multiple receive antennas also allows the receiver
to distinguish between signals with different spatial directivity by using
spatial filtering/processing [324]. Implementations of these methods have
been referred to as “adaptive” or “smart” antennas [16, 350]. In general,
it is more convenient to equip the BSs with multiple antennas than
the UEs, because the latter are typically compact commercial end-user
products powered by batteries and relying on low-cost components.

Suppose the BS in cell 0 is equipped with an array of M antennas.
The channel responses from the desired and interfering UEs can then
be represented by the vectors h0

0 ∈ CM and h0
1 ∈ CM , respectively. The
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mth element of each vector is the channel response observed at the mth
BS antenna, for m = 1, . . . ,M . The scalar received UL signal in (1.14)
is then extended to a received vector y0 ∈ CM , modeled as

y0 = h0
0s0︸ ︷︷ ︸

Desired signal

+ h0
1s1︸ ︷︷ ︸

Interfering signal

+ n0︸︷︷︸
Noise

(1.22)

where n0 ∼ NC(0M , σ2IM ) is the receiver noise over the BS array and
the transmit signals s0 and s1 are defined as in (1.14).

To analyze the SE of this UL single-input multiple-output (SIMO)
channel with inter-cell interference, we need to extend the propagation
models to the multiple antenna case. In the LoS case, we consider
a horizontal uniform linear array (ULA) with antenna spacing dH,
which is measured in the number of wavelengths between adjacent
antennas. Hence, if λ denotes the wavelength at the carrier frequency,
then the antenna spacing is λdH meters. Channel models for other array
geometries are considered in Section 7.3 on p. 329. We further assume
that the UEs are located at fixed locations in the far-field of the BS
array, which leads to the following deterministic channel response [254]:

h0
i =

√
β0
i

[
1 e2πjdH sin(ϕ0

i ) . . . e2πjdH(M−1) sin(ϕ0
i )
]T

for i = 0, 1 (1.23)

where ϕ0
i ∈ [0, 2π) is the azimuth angle to the UE, relative to the

boresight of the array at the BS in cell 0, and β0
i describes the macro-

scopic large-scale fading. The channel response in (1.23) can also have
a common phase rotation of all elements, but it is neglected here since
it does not affect the SE. The LoS propagation model is illustrated
in Figure 1.10, where a plane wave reaches the array from a generic
azimuth angle ϕ. When comparing two adjacent antennas, one of them
observes a signal that has traveled dH sin(ϕ) longer than the other one.
This leads to the array response in (1.23) with phase rotations that are
multiples of dH sin(ϕ), as also illustrated in Figure 1.10.

In the NLoS case, we assume for now that the channel response is
spatially uncorrelated over the array. This yields

h0
i ∼ NC

(
0M , β0

i IM
)

for i = 0, 1 (1.24)
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dH

0

(M−1)dH

. . . Uplink signal

Plane wave in far-f ield

dHsin(ϕ)

. .
 .

ϕ

Figure 1.10: LoS propagation between a transmitting single-antenna UE and a BS
equipped with a ULA with M antennas. The antenna spacing is dH wavelengths, the
azimuth angle to the UE is ϕ, and the UE is located in the far-field of the array, so
that a plane wave reaches it. Note that the setup is illustrated from above.

where β0
i describes the macroscopic large-scale fading, while the random-

ness and Gaussian distribution account for the small-scale fading. This
channel model is called uncorrelated Rayleigh fading or independent
and identically distributed (i.i.d.) Rayleigh fading, since the elements
in h0

i are uncorrelated (and also independent) and have Rayleigh dis-
tributed magnitudes. Uncorrelated Rayleigh fading is a tractable model
for rich scattering conditions, where the BS array is surrounded by
many scattering objects, as compared to the number of antennas. We
will use it to describe the basic properties in this section, while a more
general and realistic model is introduced in Section 2.2 on p. 69 and
then used in the remainder of the monograph. Channel modeling is
further discussed in Section 7.3 on p. 329. The NLoS propagation model
with uncorrelated Rayleigh fading is illustrated in Figure 1.11. Notice
that the average channel gain β0

i is, for simplicity, assumed to be the
same for all BS antennas. This is a reasonable approximation when
the distance between the BS and UE is much larger than the distance
between the BS antennas. However, in practice, there can be several
decibels of channel gain variations between the antennas [122]. This fact
is neglected in this section, but has a strong impact on the SE when M
is large; see Section 4.4 on p. 183 for further details.
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Uplink signal

Rich scattering
environment

Line of sight
is blocked

M antennas

. .
 .

Figure 1.11: NLoS propagation with uncorrelated Rayleigh fading between a
transmitting single-antenna UE and a BS equipped with an array of M antennas.
The LoS path is blocked, but the signal finds multiple other paths via scattering
objects. The BS is surrounded by many scattering objects so that the UE location
has no impact on the spatial directivity of the received signal.

The benefits of having multiple antennas at the BS appear when
the BS knows the channel response of the desired UE. This knowledge
enables the BS to coherently combine the received signals from all
antennas. Estimation of the channel response is thus a key aspect in
multiantenna systems and will be further discussed in Section 1.3.5 and
later analyzed in detail in Section 3 on p. 91. For now, we assume that
the channel responses are known at the BS and can be used to select a
receive combining vector v0 ∈ CM . This vector is multiplied with the
received signal in (1.22) to obtain

vH
0y0 = vH

0h0
0s0︸ ︷︷ ︸

Desired signal

+ vH
0h0

1s1︸ ︷︷ ︸
Interfering signal

+ vH
0n0︸ ︷︷ ︸

Noise

. (1.25)

Receive combining is a linear projection, which transforms the SIMO
channel into an effective SISO channel that may support higher SEs
than in the single-antenna case, if the combining vector is selected
judiciously. There are many different combining schemes, but a simple
and popular one is maximum ratio (MR) combining, defined as

v0 = h0
0. (1.26)

This is a vector that maximizes the ratio |vH
0h0

0|2/‖v0‖2 between the
power of the desired signal and the squared norm of the combining
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vector [172, 68].13 The following lemma gives closed-form SE expressions
for the case of MR combining.

Lemma 1.5. Suppose the BS in cell 0 knows the channel responses and
applies MR combining to the received signal in (1.22). An achievable
UL SE for the desired UE in the LoS case is

SELoS
0 = log2

(
1 + M

β̄ g
(
ϕ0

0, ϕ
0
1
)

+ 1
SNR0

)
(1.27)

where the function g(ϕ,ψ) is defined as

g(ϕ,ψ) =





sin2
(
πdHM(sin(ϕ)−sin(ψ))

)

M sin2
(
πdH(sin(ϕ)−sin(ψ))

) if sin(ϕ) 6= sin(ψ)

M if sin(ϕ) = sin(ψ).
(1.28)

Similarly, an achievable UL SE for the desired UE in the NLoS case
(with β̄ 6= 1) is

SENLoS
0 =




1
(
1− 1

β̄

)M − 1



e

1
SNR0β̄E1

(
1

SNR0β̄

)

loge(2)

+
M∑

m=1

M−m∑

l=0

(−1)M−m−l+1
(
1− 1

β̄

)m

(
e

1
SNR0E1

(
1

SNR0

)
+

l∑
n=1

1
n

n−1∑
j=0

1
j!SNRj0

)

(M −m− l)! SNRM−m−l0 β̄ loge(2)
(1.29)

where n! denotes the factorial function and E1(x) =
∫∞

1
e−xu
u du denotes

the exponential integral.

Proof. The proof is available in Appendix C.1.4 on p. 430.

This lemma shows that the SE is characterized by the SNR of
the desired signal, SNR0, the strength of the inter-cell interference, β̄,
and the number of BS antennas, M . Notice that by having M receive
antennas, the array collects M times more energy from the desired

13The Cauchy-Schwartz inequality can be used to prove that v0 = h0
0 maximizes

the ratio |vH
0 h0

0|2/‖v0‖2.
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and interfering signals, and also from the noise. In the LoS case in
(1.27), the gain of the desired signal scales as M . The linear scaling
with the number of antennas is called array gain. It shows that MR
coherently combines all the received energy from the desired signal,
because the combining vector is matched to the channel response of
the desired UE. In contrast, MR combines the noise and the interfering
signal components non-coherently over the array since v0 is independent
of h0

1 and n0. As a consequence, the interference power β̄g
(
ϕ0

0, ϕ
0
1
)
in

(1.27) can be upper bounded as

β̄g(ϕ0
0, ϕ

0
1) ≤ β̄

M

1
sin2 (πdH

(
sin(ϕ0

0)− sin(ϕ0
1)
)) (1.30)

when sin(ϕ0
0) 6= sin(ϕ0

1), which decreases as 1/M when more receive
antennas are added. The basic reason that MR combining rejects the
interfering signal is that the M antennas provide the BS with M

spatial degrees of freedom, which can be used to separate the desired
signal from the interfering signal. In particular, the directions of the
LoS channel responses h0

0 and h0
1 gradually become orthogonal as M

increases. This property is called (asymptotically) favorable propagation
[245], since UEs with orthogonal channels can communicate with the
BS simultaneously without causing mutual interference. We will further
discuss this property in Section 1.3.3 and also in Section 2.5.2 on p. 80.

The equation sin(ϕ0
0) = sin(ϕ0

1) has two unique solutions: ϕ0
0 = ϕ0

1
and the mirror reflection ϕ0

0 = π − ϕ0
1. Hence, the ULA can only

uniquely resolve angles either in the interval [−π/2, π/2] or in the
interval [π/2, 3π/2] at the other side of the array. The discussion above
does not apply when sin(ϕ0

0) = sin(ϕ0
1), because then g(ϕ0

0, ϕ
0
1) = M

instead. It is natural that both the desired and the interfering signal scale
linearly with M in this case, because the two signals arrive from exactly
the same angle (or its mirror reflection). This will most likely never
happen in practice, but we can infer from (1.28) that the interference is
stronger when the UEs’ angles are similar to each other. For example,
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we can utilize the fact that sin(πz) ≈ πz for |z| < 0.2 to show that

g(ϕ,ψ) =
sin2 (πdHM(sin(ϕ)− sin(ψ))

)

M sin2 (πdH(sin(ϕ)− sin(ψ))
)

≈
(
πdHM(sin(ϕ)− sin(ψ))

)2

M
(
πdH(sin(ϕ)− sin(ψ))

)2 = M (1.31)

if dHM | sin(ϕ)− sin(ψ)| < 0.2. The angular interval for which this holds
becomes smaller as the aperture dHM of the ULA increases, but it exists
for any finite-sized array. Since it is dHM that determines the angular
resolution, the interference is reduced by either increasing the number
of antennas M and/or using a larger antenna spacing dH. This is in
contrast to the signal term, which is proportional only to the number of
antennas. For a given array aperture, it is therefore beneficial to have
many antennas rather than widely separated antennas. Note that we
have considered a two-dimensional LoS model in this section where only
the azimuth angle can differ between the UEs. In practice, UEs can also
have different elevation angles to the BS array and this can be exploited
to separate the UEs. These aspects will be discussed in more detail in
Section 7.4.2 on p. 350.

To illustrate these behaviors, the function g(ϕ0
0, ϕ

0
1) is shown in

Figure 1.12 for a desired UE at the fixed angle ϕ0
0 = 30◦, while the angle

of the interfering UE is varied between −180◦ and 180◦. The antenna-
spacing is dH = 1/2. In the single-antenna case, we have g(ϕ0

0, ϕ
0
1) = 1

irrespective of the angles, which is in line with Lemma 1.4. When the
BS has multiple antennas, g(ϕ0

0, ϕ
0
1) depends strongly on the individual

UE angles. There are interference peaks when the two UEs have the
same angle (i.e., ϕ0

1 = 30◦) and when the angles are each others’ mirror
reflections (i.e., ϕ0

1 = 180◦ − 30◦ = 150◦). The function is equal to M
at these peaks, because the interfering signal is coherently combined
by the MR combining (just as the desired signal). When the ULA
can resolve the individual UEs, the interference level instead decreases
rapidly (notice the logarithmic vertical scale) and gets generally smaller
as M increases. In these cases, the interference level oscillates as the
interfering UE’s angle is varied, but is approximately 1/M times weaker
than in the single-antenna case. Hence, the multiple BS antennas help to
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Figure 1.12: The function g(ϕ0
0, ϕ

0
1) in (1.28) that determines the interference level

in an LoS scenario. The desired UE is at the fixed angle ϕ0
0 = 30◦ and the interfering

UE has a varying angle ϕ0
1 ∈ [−180◦, 180◦].

suppress interference, as long as the UE angles are sufficiently different.
The SE in the NLoS case is harder to interpret since the closed-form

expression in (1.29) has a complicated structure with several summa-
tions and special functions. Fortunately, we can obtain the following
convenient lower bound that is very tight for M � 1 (see Figure 1.14
for a comparison).

Corollary 1.6. A lower bound on the UL SE in (1.29) for NLoS channels
is

SENLoS
0 = E





log2


1 + p‖h0

0‖2

p
|(h0

0)Hh0
1|2

‖h0
0‖2

+ σ2







≥ log2

(
1 + M − 1

β̄ + 1
SNR0

)
.

(1.32)

Proof. The proof is available in Appendix C.1.5 on p. 433.

The SE expression above can be interpreted similarly to the LoS
expression in (1.27); it is the logarithm of one plus an SINR expression
where the signal power increases as (M − 1). A linear array gain is thus
obtained for both LoS and NLoS channels. It is the lower-bounding
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Figure 1.13: CDF of the relative interference gain in (1.33), using logarithmic scale
on the horizontal axis. The randomness in the NLoS case is due to Rayleigh fading,
while it is due to random UE angles in the LoS cases. The percentages of realizations
when LoS gives higher interference gain than NLoS are indicated.

technique used in Corollary 1.6 that made the desired signal scale as
(M − 1), instead of M which is the natural array gain obtained with
MR combining. However, the difference is negligible when M is large.
The interference power in (1.32) is independent of M , in contrast to
the LoS case in (1.27) where it decays as 1/M . This scaling behavior
suggests that NLoS channels provide less favorable propagation than
LoS channels, but the reality is more complicated. To exemplify this,
Figure 1.13 shows the cumulative distribution function (CDF) of the
relative interference gain

1
β0

1

|(h0
0)Hh0

1|2
‖h0

0‖2
(1.33)

which determines how well interference is suppressed by MR combining.
For NLoS channels, (1.33) can be shown to have an Exp(1) distribu-

tion, irrespectively of the value ofM . In contrast, (1.33) equals g(ϕ0
0, ϕ

0
1)

in (1.28) for LoS channels, which is a function of M and the UE angles.
Figure 1.13 considers the LoS case with M = 10 and M = 100, and
shows the CDF over different uniformly distributed UE angles between
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0 and 2π (with dH = 1/2). The CDF of the small-scale fading with
NLoS channels is also shown. Figure 1.13 shows that LoS channels often
provide several orders-of-magnitude lower interference gains than NLoS
channels, but this only applies to the majority of random angle realiza-
tions. There is a small probability that the interference gain is larger in
LoS than in NLoS; it happens in 18% of the realizations with M = 10
and 4% of the realizations with M = 100. This corresponds to cases
when sin(ϕ0

0) ≈ sin(ϕ0
1) so that the array cannot resolve and separate

the UE angles. As discussed earlier, this occurs approximately when
dHM | sin(ϕ0

0)− sin(ϕ0
1)| < 0.2. This happens less frequently for random

angles as M increases (for fixed dH), since the array aperture grows
and thus obtains a better spatial resolution. Nevertheless, for any finite
M , there will be a small angular interval around ϕ0

0 where incoming
interference will be amplified just as the desired signal. Since the array is
unable to separate UEs with such small angle differences, time-frequency
scheduling might be needed to separate them; see Section 7.2.2 on p. 321
for further guidelines for scheduling.

The favorable propagation concept provides a way to quantify the
ability to separate UE channels at a BS with many antennas [245].
The channels h0

i and h0
k are said to provide asymptotically favorable

propagation if

(h0
i )Hh0

k√
E{‖h0

i ‖2}E{‖h0
k‖2}

→ 0 as M →∞. (1.34)

For fading channels, different types of convergence can be considered
in (1.34). Herein, we consider almost sure convergence, also known
as convergence with probability one, but the literature also contains
definitions that build on weaker types of convergence (e.g., convergence
in probability). The interpretation of (1.34) is that the channel directions
h0
i /
√
E{‖h0

i ‖2} and h0
k/
√
E{‖h0

k‖2} becomes asymptotically orthogonal.
The condition in (1.34) is satisfied for LoS channels as well as for NLoS
channels with uncorrelated Rayleigh fading [245]. One can show that
the superposition of LoS and NLoS components also satisfies (1.34).
Channel measurements with large BS arrays have also confirmed that
the UE channels decorrelate as more antennas are added [120, 150]; see
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Figure 1.14: Average UL SE as a function of the number of BS antennas M for
different channel models. The SNR is SNR0 = 0 dB and the strength of the inter-cell
interference is β̄ = −10 dB.

Section 7.3.4 on p. 342 for further details on channel measurements. Note
that (1.34) does not imply that channel responses become orthogonal,
in the sense that (h0

i )Hh0
k → 0. We later provide a general definition of

asymptotically favorable propagation in Section 2.5.2 on p. 80.
Figure 1.14 shows the average SE as a function of the number of

BS antennas when the SNR of the desired UE is fixed at SNR0 = 0 dB
and the strength of the inter-cell interference is β̄ = −10dB. The LoS
case considers a ULA with dH = 1/2 and the results are averaged
over different independent UE angles, all being uniformly distributed
from 0 to 2π. Despite the rather poor SNR and interference conditions,
Figure 1.14 shows that, by going from M = 1 to M = 10 antennas, one
can improve the SE from 0.8 bit/s/Hz to 3.3 bit/s/Hz. This is achieved
thanks to the array gain provided by MR combining. We notice that
the lower bound on the SE with NLoS propagation in Corollary 1.6 is
very tight for M > 10. The SE is a monotonically increasing function
of M and grows without limit as M → ∞, in contrast to the power-
scaling case analyzed in Section 1.3.2 where the SE saturated in the
high-SNR regime. This is once again due to MR combining, which
selectively collects more signal energy from the array, without collecting
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more interference energy. The difference between LoS and NLoS is
negligible in Figure 1.14 because the channel fading has a gradually
smaller impact on the mutual information between the transmitted and
received signal as more antennas are added [142]. This is attributed to
the spatial diversity from having multiple receive antennas that observe
independent fading realizations, which are unlikely to all be nearly zero
simultaneously. This phenomenon has been known for a long time; in
fact, the early works [257, 117] on multiantenna reception focused on
combating channel fading. The term channel hardening was used in
[142] to describe a fading channel that behaves almost deterministically
due to spatial diversity.

In the Massive MIMO literature [243], a channel h0
i is said to provide

asymptotic channel hardening if

‖h0
i ‖2

E{‖h0
i ‖2}

→ 1 (1.35)

almost surely as M →∞. The essence of this result is that the channel
variations reduce as more antennas are added, in the sense that the
normalized instantaneous channel gain converges to the deterministic
average channel gain. It is no surprise that deterministic LoS channels
provide channel hardening. More importantly, in NLoS propagation,

‖h0
i ‖2

E{‖h0
i ‖2}

= ‖h
0
i ‖2

Mβ0
i

→ 1 (1.36)

almost surely as M → ∞. This is an example of the strong law of
large numbers (see Lemma B.12 on p. 411) and can be interpreted as
the variations of ‖h0

i ‖2/M becoming increasingly concentrated around
its mean value E{‖h0

i ‖2}/M = β0
i as more antennas are added. This

does not mean that ‖h0
i ‖2 becomes deterministic; in fact, its standard

deviation grows as
√
M , while the standard deviation of ‖h0

i ‖2/M goes
asymptotically to zero as 1/

√
M . Asymptotic channel hardening can be

also proved for other channel distributions, as will be further discussed
in Section 2.5.1 on p. 78.

The channel hardening effect for the M -dimensional channel h ∼
NC(0M , IM ) is illustrated in Figure 1.15. The mean value of the normal-
ized instantaneous channel gain ‖h‖2/E{‖h‖2} and the 10% and 90%
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Figure 1.15: Illustration of the channel hardening phenomenon for an M -
dimensional channel h ∼ NC(0M , IM ). The normalized instantaneous channel gain
‖h‖2/E{‖h‖2} approaches its average value 1 and the standard deviations reduces
as 1/

√
M .

percentiles are shown for different numbers of antennas. One random
realization is also shown. As expected, we have ‖h‖2/E{‖h‖2} ≈ 1
when M is large. The convergence towards this limit is gradual, but the
approximation is reasonably tight for M ≥ 50.

In summary, increasing the number of BS antennas improves the SE,
which even grows without bound when M →∞. This is because the BS
can process its received signal over the array to selectively increase the
signal gain without collecting more interference. In contrast, increasing
the transmit power will increase both the signal and interference equally
much and give an upper SE limit. Nevertheless, the SE grows only
logarithmically with the number of antennas, as log2(M), which does
not provide sufficient scalability to achieve any order-of-magnitude
improvement in SE in future cellular networks.

Remark 1.3 (Physical limits of large arrays). The scaling behavior ob-
tained by the asymptotic analysis above has been validated experimen-
tally for practical antenna numbers [120, 150]. However, it is important
to note that the physics prevent us from letting the size of the array grow
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indefinitely as M →∞, since the propagation environment is enclosed
by a finite volume [281]. Ideally, we can cover the surface of this volume
with antennas, and neglect any absorption, to collect all signal energy,
but we can never collect more energy than was transmitted. This is not
an issue when we deal with hundreds or thousands of antennas since a
“large” channel gain of −60 dB in cellular communications implies that
we need one million antennas to collect all the transmitted energy. In
conclusion, the limit M →∞ is not physically achievable, but asymp-
totic analysis can still be suitable for investigating the system behavior
at practically large antenna numbers. Other channel distributions than
uncorrelated Rayleigh fading are, however, needed to get reliable results;
see Section 2.2 on p. 69 and Section 7.3 on p. 329 for further details.

1.3.3 Uplink Space-Division Multiple Access

Increasing the transmit power or using multiple BS antennas can only
bring modest improvements to the UL SE, as previously shown. This
is because these methods improve the SINR, which appears inside
the logarithm of the SE expression, thus the SE increases slowly. We
would like to identify a way that improves the SE at the outside of
the logarithm instead. Since the logarithmic expressions in Lemmas 1.4
and 1.5 describe the SE of the channel between a particular UE and
its serving BS, we can potentially serve multiple UEs, say K UEs,
simultaneously in each cell and achieve a sum SE that is the summation
of K SE expressions of the types in Lemmas 1.4 and 1.5. An obvious
bottleneck of such multiplexing of UEs is the co-user interference that
increases with K and now appears also within each cell. The intra-cell
interference can be much stronger than the inter-cell interference and
needs to be suppressed if a K-fold increase in SE is actually to be
achieved.

Space-division multiple access (SDMA) was conceived in the late1980s
and early 1990s [349, 308, 17, 280, 125, 373] to handle the co-user in-
terference in a cell by using multiple antennas at the BS to reject
interference by spatial processing. Multiple field-trials were carried out
in the 1990s, using (at least) up to ten antennas [15, 96, 16]. The
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information-theoretic capacity14 of these systems was characterized in
the early 2000s and described in [74, 129, 335, 342, 366, 127] for single-
cell systems, where the terminology “multiuser MIMO” was used. Note
that the K UEs are the multiple inputs and the M BS antennas are the
multiple outputs, thus the MIMO terminology is used irrespective of
how many antennas each UE is equipped with.15 Extensions of multiuser
MIMO to cellular networks have been developed and surveyed in papers
such as [276, 33, 294, 46, 126, 208], but the exact capacity is hard to
obtain in this case.

We will now analyze a cellular network with UL SDMA transmission
by assuming that there are K active UEs in each cell, as previously
illustrated in Figure 1.8. The channel response between the kth desired
UE in cell 0 and the serving BS is denoted by h0

0k ∈ CM for k = 1, . . . ,K,
while the channel responses from the interfering UEs in cell 1 to the
BS in cell 0 are denoted by h0

1i ∈ CM for i = 1, . . . ,K. Notice that the
subscript still indicates the identity of the UE, while the superscript is
the index of the receiving BS. The received multiantenna UL signal in
(1.22) is then generalized to

y0 =
K∑

k=1
h0

0ks0k

︸ ︷︷ ︸
Desired signals

+
K∑

k=1
h0

1ks1k

︸ ︷︷ ︸
Interfering signals

+ n0

︸︷︷︸
Noise

(1.37)

where sjk ∼ NC(0, p) is the signal transmitted by the kth UE in cell j
and the receiver noise n0 ∼ NC(0M , σ2IM ) is the same as before.

We consider the same LoS and NLoS propagation models as before.
More precisely, the LoS channel response for UE k in cell j is

h0
jk =

√
β0
j

[
1 e2πjdH sin(ϕ0

jk) . . . e2πjdH(M−1) sin(ϕ0
jk)
]T

(1.38)

14When there are K UEs in the network, the conventional one-dimensional
capacity notion generalizes to a K-dimensional capacity region that represents the
set of capacities that the K UEs can achieve simultaneously. The sum capacity
represents one point in this region and has gained particular traction since it is the
one-dimensional metric that describes the aggregate capacity of the network. This
and other operating points are further described in Section 7.1 on p. 299.

15The terminology “multiuser SIMO” was used in the 1990s for the case of SDMA
with single-antenna UEs [254], but nowadays the information-theoretic multiuser
MIMO terminology dominates and it is adopted in this monograph.
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where ϕ0
jk ∈ [0, 2π) is the azimuth angle relative to the boresight of

the BS array in cell 0. In the NLoS case, the corresponding channel
response between UE k in cell j and the BS in cell 0 is defined as

h0
jk ∼ NC

(
0M , β0

j IM
)

(1.39)

and assumed to be statistically independent between UEs. Recall that
we use the Wyner model in which, for simplicity, the average channel
gain β0

j is assumed to be the same for all UEs in cell j.
Since the BS in cell 0 receives a superposition of the signals trans-

mitted by its K desired UEs, it needs to process the received signal
in (1.37) to separate the UEs in the spatial domain—simply speak-
ing, by directing its hearing towards the location of each desired UE.
The separation of UEs is more demanding in SDMA than in con-
ventional time-frequency multiplexing of UEs, because it requires the
BS to have knowledge of the channel responses [127]. For example,
the BS in cell 0 can use knowledge of its kth UE’s channel response
to tailor a receive combining vector v0k ∈ CM to this UE channel.
This vector is multiplied with the received signal in (1.37) to obtain

vH
0ky0 = vH

0kh0
0ks0k

︸ ︷︷ ︸
Desired signal

+
K∑

i=1
i6=k

vH
0kh0

0is0i

︸ ︷︷ ︸
Intra-cell interference

+
K∑

i=1
vH

0kh0
1is1i

︸ ︷︷ ︸
Inter-cell interference

+ vH
0kn0

︸ ︷︷ ︸
Noise

.

(1.40)
The purpose of the receive combining is to make the desired signal much
stronger than the sum of interfering signals and noise. MR combined
with

v0k = h0
0k (1.41)

is a popular suboptimal choice since it maximizes the relative power
|vH

0kh0
0k|2/‖v0k‖2 of the desired signal, but it is not the optimal choice

when there are interfering signals [28, 348, 349]. The receive combining
design for multiuser MIMO is analytically similar to multiuser detection
in code-division multiple access (CDMA) [202, 205, 106] and the key
methods were developed at roughly the same time. In Section 4.1 on
p. 122, we will show that it is the multicell minimum mean-squared
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error (M-MMSE) combining vector

v0k = p

(
p
K∑

i=1
h0

0i(h0
0i)H + p

K∑

i=1
h0

1i(h0
1i)H + σ2IM

)−1

h0
0k (1.42)

that maximizes the UL SE in cellular networks. This combining scheme
has received its name from the fact that it also minimizes the mean-
squared error (MSE) E{|s0k − vH

0ky0|2} between the desired signal s0k
and the receive combined signal vH

0ky0, where the expectation is with
respect to the transmit signals (while the channels are considered de-
terministic). Interfering signals from all cells are taken into account in
M-MMSE combining and the matrix inverse in (1.42) has a role similar
to that of a whitening filter in classic signal processing [175]. M-MMSE
combining maximizes the SINR by finding the best balance between
amplifying the desired signal and suppressing interference in the spatial
domain. The price to pay is the increased computational complexity
from inverting a matrix and the need to learn the matrix that is inverted
in (1.42).

The next lemma provides closed-form SE expressions for the case of
MR combining. M-MMSE combining will be studied by simulations.

Lemma 1.7. If the BS in cell 0 knows the channel responses of all UEs
and applies MR combining to detect the signals from each of its K
desired UEs, then an achievable UL sum SE [bit/s/Hz/cell] in the LoS
case is

SELoS
0 =

K∑

k=1
log2




1 + M
K∑
i=1
i6=k

g
(
ϕ0

0k, ϕ
0
0i
)

+ β̄
K∑
i=1

g
(
ϕ0

0k, ϕ
0
1i
)

+ 1
SNR0




(1.43)
with g(·, ·) being defined in (1.28).

With NLoS channels, an achievable UL sum SE [bit/s/Hz/cell] and
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a closed-form lower bound are

SENLoS
0 =

K∑

k=1
E





log2




1 + p‖h0
0k‖2

K∑
i=1
i6=k

p
|(h0

0k)Hh0
0i|2

‖h0
0k‖2

+
K∑
i=1

p
|(h0

0k)Hh0
1i|2

‖h0
0k‖2

+ σ2








≥ K log2

(
1 + M − 1

(K − 1) +Kβ̄ + 1
SNR0

)
. (1.44)

Proof. The proof is available in Appendix C.1.6 on p. 434.

The sum SE expressions in Lemma 1.7 have similar forms as the
ones in Lemma 1.5 and Corollary 1.6, but are more complicated due
to the addition of intra-cell interference and the greater amount of
inter-cell interference. In the LoS case, SDMA results in the summation
of K SE expressions, one per desired UE. The desired signal gains
inside the logarithms increase linearly with M and thus every UE
experiences the full array gain when using MR combining. The drawback
of SDMA is seen from the denominator, where the interference terms
contain contributions from K − 1 intra-cell UEs and K inter-cell UEs.
Each interference term has the same form as in the single-user case in
Lemma 1.5, thus one can expect the interference to be the lowest when
the UEs have well-separated angles (to avoid the worst cases illustrated
in Figure 1.12). Recall from (1.30) that the function g(ϕ,ψ) decreases
as 1/M for any sin(ϕ) 6≈ sin(ψ). In conjunction with the array gain of
the desired signal, we can thus serve multiple UEs and still maintain
roughly the same SINR per UE if M is increased proportionally to

√
K

to counteract the increased interference.16
The NLoS case in Lemma 1.7 generalizes the lower bound in Corol-

lary 1.6 to K ≥ 1 and the bound is tight for M � 1. An exact
closed-form expression similar to (1.29) can also be obtained, but it
contains many summations and is omitted since it does not provide

16To obtain this scaling behavior, we notice that the desired signal power grows
as M and the interference power is proportional to K/M , due to the bound in (1.30).
The signal-to-interference ratio becomes M2/K and thus it is sufficient to scale M
proportionally to

√
K to achieve a constant signal-to-interference ratio as K grows.
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any additional insight. The gain from SDMA is easily seen from (1.44);
there is a factor K in front of the logarithm that shows that the sum
SE increases proportionally to the number of UEs. This multiplicative
factor is known as the multiplexing gain and achieving this gain is the
main point with SDMA. Inside the logarithm, the desired signal power
increases linearly with M , while the intra-cell interference power K − 1
and the inter-cell interference power K β̄ increase linearly with K. This
means that, as we add more UEs, we can counteract the increasing
interference by adding a proportional amount of additional BS antennas;
more precisely, we can maintain roughly the same SINR per UE by
increasing M jointly with K to keep the antenna-UE ratio M/K fixed.
Interestingly, this means that more antennas are needed to suppress
interference with MR combining in the NLoS case than in the LoS case,
where M only needs to increase as

√
K. The explanation is that all

interfering UEs cause substantial interference in the NLoS case, while
only the ones with sufficiently similar angles to the desired UE does that
in the LoS case (and the angular interval where this happens decreases
with M).

To exemplify these behaviors, Figure 1.16 shows the average sum SE
as a function of the number of UEs per cell, for either M = 10 or M =
100 antennas. The sum SE with MR combining is shown in Figure 1.16a
based on the analytic formulas from Lemma 1.7, while Monte-Carlo
simulations are used for M-MMSE combining in Figure 1.16b. In both
cases, the SNR is fixed at SNR0 = 0 dB and the strength of the inter-cell
interference is β̄ = −10dB. The antenna spacing is dH = 1/2 in the
LoS case and the results are averaged over different independent UE
angles, all being uniformly distributed from 0 to 2π.

Figure 1.16 shows that the sum SE is a slowly increasing function
of K in the case of M = 10, because the BS does not have enough
spatial degrees of freedom to separate the UEs—neither by MR nor
by M-MMSE combining. The behavior is completely different when
M = 100 antennas are used since the channel response of each UE is
then a 100-dimensional vector but there are only up to 20 UEs per cell
so the UE channels only span a small portion of the spatial dimensions
that the BS can resolve. Consequently, the sum SE increases almost

Full text available at: http://dx.doi.org/10.1561/2000000093



46 Introduction and Motivation

0 5 10 15 20
0

10

20

30

40

50

60

70

80

Number of UEs (K)

A
ve

ra
ge

 s
um

 S
E 

[b
it/

s/
H

z/
ce

ll]

 

 
LoS
NLoS
NLoS (lower bound)

M = 100
M = 10

(a) MR combining.

0 5 10 15 20
0

20

40

60

80

100

120

Number of UEs (K)

A
ve

ra
ge

 s
um

 S
E 

[b
it/

s/
H

z/
ce

ll]

 

 
LoS
NLoS

M = 10

M = 100

(b) M-MMSE combining.

Figure 1.16: Average UL sum SE as a function of the number of UEs per cell
for different combining schemes, different channel models, and either M = 10 or
M = 100 BS antennas. The SNR is SNR0 = 0dB and the strength of the inter-cell
interference is β̄ = −10dB. The sum SE grows linearly with K as long as M/K
remains large. M-MMSE rejects interference more efficiently than MR.
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linearly with the number of UEs and we can achieve a roughly K-fold
improvement in sum SE over a single-user scenario. For example, we
achieve an SE of 3.3 bit/s/Hz/cell with (M,K) = (10, 1) using MR/M-
MMSE combining and can increase it to 71.6 bit/s/Hz/cell with MR
and 101 bit/s/Hz/cell with M-MMSE for (M,K) = (100, 20). This
corresponds to 21× and 31× gains in SE, respectively. These numbers
were selected from the LoS curves, because the NLoS case shows some
interesting behaviors that deserve further discussion. The sum SE is
considerably lower with NLoS than with LoS when using MR combining,
while we get the opposite result when using M-MMSE combining. The
reason for this is that each UE is affected by interference from many
UEs in the NLoS case, while only a few UEs with similar angles cause
strong interference in the LoS case. If the interference is ignored, as
with MR combining, the SE is lower in the NLoS case due to the larger
sum interference power. However, it is easier for M-MMSE combining
to reject interference in NLoS than in LoS, where there might be a few
UEs with channels that are nearly parallel to the desired UE’s channel.
That is why the SE is higher in the NLoS when using M-MMSE.

We now consider cases wherein M is increased proportionally to
K, to suppress the inter-user interference that increases with K. The
proportionality constant M/K is called antenna-UE ratio. Figure 1.17
shows the sum SE obtained by M-MMSE combining, as a function of
K for different antenna-UE ratios: M/K ∈ {1, 2, 4, 8}. The SE grows
almost linearly with K in all four cases, as expected from Lemma
1.7. The steepness of the curves increases as M/K increases, since it
becomes easier to suppress the interference when M � K. Looking at
the NLoS case withK = 10, the first doubling of the number of antennas
(from M/K = 1 to M/K = 2) gives a 94% gain in SE, while the second
doubling gives another 51% gain and the third doubling gives yet another
29% gain. Since the relative improvements are decaying, we say that
M/K ≥ 4 is the preferred operating regime for multiuser MIMO.17 The
LoS and NLoS cases once again provide comparable results.

17We will revisit this statement in Section 7.2.2 on p. 321, where scheduling is
discussed. By taking the channel estimation overhead into account, we will show
that for a given M there is a particular K that maximizes the sum SE.
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Figure 1.17: Average UL sum SE with M-MMSE combining as a function of the
number of UEs per cell, when the number of antennas increases with K with different
fixed antenna-UE ratios M/K. The SNR is SNR0 = 0dB and the strength of the
inter-cell interference is β̄ = −10 dB. The sum SE grows as M/K increases.

M-MMSE is the linear receive combining scheme that maximizes
the SE. The basic characteristic of linear schemes is that they treat
interference as spatially colored noise. From a channel capacity per-
spective, this is only optimal when the interference between each pair
of UEs is sufficiently small [230, 296, 20, 21, 295]. The information
theory for interference channels proves that strong interference sources
should be canceled using non-linear receiver processing schemes, such
as successive interference cancelation, before the desired signals are
decoded [314]. However, such schemes are rather impractical, since
one needs to store large blocks of received signals and then decode
the UEs’ data sequentially, leading to high complexity, large memory
requirements, and latency issues. If we would limit ourselves to linear
receiver processing schemes, how large is the performance loss?

Figure 1.18 quantifies the performance loss of linear receiver pro-
cessing as compared to non-linear receiver processing, as a function of
the number of UEs. The figure shows the ratio between the average UL
sum SE achieved by M-MMSE combining and by successive interfer-
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Figure 1.18: Ratio between the average UL sum SE achieved with M-MMSE
combining and with non-linear receiver processing, as a function of the number
of UEs per cell. The number of antennas M increases with K for different fixed
antenna-UE ratios: M/K ∈ {1, 2, 4, 8}. The SNR is SNR0 = 0 dB and the strength
of the inter-cell interference is β̄ = −10 dB.

ence cancelation, where the intra-cell signals are decoded sequentially
while treating inter-cell interference as noise [314]. The setup is the
same as in the previous figure, but we only consider NLoS propaga-
tion for simplicity. The non-linear scheme performs much better for
M/K = 1, in which case M-MMSE only achieves 70%–80% of its sum
SE. The performance difference reduces quickly as M/K increases. For
M/K = 4 and M/K = 8, we only lose a few percentages in sum SE
by using M-MMSE instead of the non-linear scheme, even if there is as
much as 20 UEs. The interpretation is that the favorable propagation,
achieved by having many BS antennas, makes the interference between
each pair of UEs sufficiently small to make linear receiver processing
nearly optimal. When there are many active UEs, the total interference
caused to a UE can indeed be large, but nevertheless, linear processing
performs well since the interference between each pair of UEs is small.
Similar observations have been made in the overview articles [50, 209,
210].
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In summary, UL SDMA transmission can increase the sum SE per
cell by more than one order-of-magnitude. This is achieved by serving
K UEs simultaneously and increasing the number of BS antennas to
achieve an array gain that counteracts the increased interference. This
leads to an operating regime with antenna-UE ratio M/K ≥ c, for
some preferably large value c, where we can provide K-fold gains in
sum SE. This is the type of highly scalable SE improvements that are
needed to handle much higher data volumes in the coverage tier of
future cellular networks. Note that the SE per UE is not dramatically
changed, thus the use of more spectrum is still key to improving the
throughput per UE. The sum SE gains are achievable with both LoS
and NLoS channels, using either MR combining that maximizes the
array gain or M-MMSE combining that also suppresses interference to
maximize the SE. Non-linear processing schemes can only bring minor
performance improvements in the preferable operating regime and are
therefore not considered in the remainder of this monograph.

Remark 1.4 (Multiantenna UEs). We have shown above that SDMA
transmission with many single-antenna UEs and an even larger number
of BS antennas achieves high sum SE. What would happen if the
UEs were also equipped with multiple antennas? The cost, size, and
complexity of each UE will certainly increase. The positive effect is that
a UE with NUE antennas can transmit up to NUE simultaneous data
streams to its serving BS. From the BS’s perspective, each stream can
be treated as a signal from a separate “virtual” UE and the signal can
only be distinguished if it has a different spatial directivity than the
other signals. This means that the vector that describes the channel
response from the BS to the nth antenna of a particular UE should
be nearly orthogonal to the other antennas’ channel responses (for
n = 1, . . . , NUE). In NLoS propagation, this is achieved when the
UE antennas observe nearly uncorrelated random channel realizations,
which is possible in a rich scattering environment with an adequate
antenna spacing. Channel orthogonality is much harder to achieve in LoS
propagation since the angle between the BS and a UE in the far-field is
roughly the same for all the antennas at the UE; recall from (1.28) that
the inner product g(ϕ,ψ) between LoS channel responses with angles ϕ
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and ψ is large whenever ϕ ≈ ψ. Hence, the benefit of sending multiple
data signals cannot be exploited in propagation environments with only
a dominating LoS path. The UE can, however, achieve an additional
array gain proportional to NUE by coherently combining the signals
over NUE antennas, if it knows the channel responses. This monograph
focuses on single-antenna UEs, but the results can be readily applied to
NUE-antenna UEs by viewing them as NUE virtual UEs that transmit
NUE separate signals, representing different data streams. The paper
[194] considers multiantenna UEs and shows that the SE is maximized
when a particular number of data streams are received/transmitted per
cell (see Section 7.2.2 on p. 321 for a further discussion). Suppose this
number of streams is K?

stream and that each UE is allocated as many
streams as it has antennas. The analysis in [194] indicates that roughly
the same sum SE is achieved when having K UEs that are equipped
with NUE antennas and when having NUEK single-antenna UEs. Hence,
the distinct advantage of having multiple UE antennas occurs at low
user load, K < K?

stream, where the only way to send all K?
stream streams

is to allocate multiple streams per UE.

1.3.4 Downlink Space-Division Multiple Access

This section has so far focused on the UL, where we have identified
SDMA as a suitable way to improve the SE by an order-of-magnitude
or more. We will now describe how SDMA is applied in the DL. We
continue to use the Wyner model, which is illustrated in Figure 1.19
for the DL. The main difference from the UL in Figure 1.8 is that the
signals are transmitted from BSs instead of from UEs. There are K
active UEs in each cell and the serving BS sends a separate signal to each
of them using linear transmit precoding from an array of M antennas.
Precoding means that each data signal is sent from all antennas, but
with different amplitude and phase to direct the signal spatially. This
is also called beamforming, but we refrain from using this terminology
since it can give the misleading impression that a signal beam is always
formed in a particular angular direction and that analog phase-shifters
are used. In contrast, precoding means that each antenna’s transmit
signal is generated separately in the digital baseband, which gives full

Full text available at: http://dx.doi.org/10.1561/2000000093



52 Introduction and Motivation
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Figure 1.19: Illustration of the notion of desired and interfering DL signals in a
two-cell network. In the Wyner model, every UE in cell 0 has the same value of the
average channel gains β0

0 and β0
1 , while every UE in cell 1 has the same value of β1

0
and β1

1 .

flexibility in the signal generation.18 Angular beams are a special case
of precoding that is useful in LoS propagation, but for NLoS channels
the transmitted signal might not have a distinct angular directivity, but
can still be precoded such that the multipath components are received
coherently at the UE.

Similar to the UL, the DL channel response between the BS in
cell 0 and its kth desired UE is denoted by (h0

0k)H for k = 1, . . . ,K.
The DL channel response between the BS in cell 1 and the kth UE
in cell 0 is denoted by (h1

0k)H. The transpose represents the fact that
we are now looking at the channel from the opposite direction, while
the complex conjugate is added for notational convenience. There is no
such conjugation in practice, but it simplifies the notation and does not
change the SE.

The received DL signal z0k ∈ C at UE k in cell 0 is modeled as

z0k = (h0
0k)Hw0kς0k

︸ ︷︷ ︸
Desired signal

+
K∑

i=1
i6=k

(h0
0k)Hw0iς0i

︸ ︷︷ ︸
Intra-cell interference

+
K∑

i=1
(h1

0k)Hw1iς1i

︸ ︷︷ ︸
Inter-cell interference

+ n0k

︸︷︷︸
Noise

(1.45)

where ςjk ∼ NC(0, p) is the signal transmitted to the kth UE in cell j
18An animation of precoding is found at https://youtu.be/XBb481RNqGw.
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and wjk ∈ CM is the corresponding unit-norm precoding vector (i.e.,
‖wjk‖ = 1) that determines the spatial directivity of the signal. The
receiver noise at this UE is denoted by n0k ∼ NC(0, σ2).

We consider the same LoS and NLoS propagation models as before.
In the LoS case, we have the multiple-input single-output (MISO)
channel response

hljk =
√
βlj

[
1 e2πjdH sin(ϕljk) . . . e2πjdH(M−1) sin(ϕljk)

]T

(1.46)

between UE k in cell j and the BS in cell l, where ϕljk ∈ [0, 2π) is the
azimuth angle relative to the boresight of the transmitting BS array. In
the NLoS case, the corresponding channel response is

hljk ∼ NC
(
0M , βljIM

)
(1.47)

and is assumed to be independent between UEs. Recall from (1.12)
that we use the same notation, β̄ = β1

0/β
0
0 , for the relative strength of

inter-cell interference in the DL as in the UL.
The precoding vectors wjk, for k = 1, . . . ,K and j = 0, 1, can be

selected in a variety of ways. As seen from the received signal in (1.45),
each UE is affected by all the precoding vectors; the own precoding
vector is multiplied with the channel response from the serving BS,
while the other ones cause interference and are multiplied with the
channel response from the corresponding transmitting BSs. Hence, the
precoding vectors should be selected carefully in the DL, based on
knowledge of the channel responses. We will study this in detail in
Section 4.3 on p. 162, but for now we consider MR precoding with

wjk =
hjjk
‖hjjk‖

. (1.48)

This precoding vector focuses the DL signal at the desired UE to achieve
the maximum array gain, similar to MR combining in the UL. Note
that ‖wjk‖2 = 1, which implies that the total transmit power of the
BS is constant, irrespective of the number of antennas. Consequently,
the transmit power per BS antenna decreases roughly as 1/M . The
following lemma provides SE expressions for MR precoding.
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Lemma 1.8. If the BSs use MR precoding and the UEs in cell 0 know
their respective effective channels (h0

0k)Hw0k and the interference vari-
ance, then an achievable DL sum SE [bit/s/Hz/cell] in the LoS case is

SELoS
0 =

K∑

k=1
log2




1 + M
K∑
i=1
i6=k

g(ϕ0
0i, ϕ

0
0k) + β̄

K∑
i=1

g(ϕ1
1i, ϕ

1
0k) + 1

SNR0



.

(1.49)
With NLoS channels, a DL sum SE [bit/s/Hz/cell] and a closed-form

lower bound are

SENLoS
0 =

K∑

k=1
E





log2




1 + p‖h0
0k‖2

K∑
i=1
i6=k

p
|(h0

0k)Hh0
0i|2

‖h0
0i‖2

+
K∑
i=1

p
|(h1

0k)Hh1
1i|2

‖h1
1i‖2

+ σ2








≥ K log2

(
1 + (M − 1)

(K − 1)M−1
M +Kβ̄ + 1

SNR0

)
. (1.50)

Proof. The proof is available in Appendix C.1.7 on p. 435.

The DL sum SE in this lemma is very similar to the UL sum SE in
Lemma 1.7. The NLoS case only differs in the extra multiplicative term
M−1
M in the denominator of (1.50), which is almost one for large M .

The LoS case only differs in the angles that appear in each expression;
all angles in the UL are from UEs to the BS in cell 0, while the DL
includes both the angles from the desired UE to all transmitting BSs
and the angles from the other UEs that these BSs are transmitting to
(representing the directivity of each DL signal). Some of the similarities
are induced by the Wyner model since we have assumed that the inter-
cell interference is equally strong in the UL and DL (i.e., β1

0 = β0
1); in

general, there are also differences in the average channel gains, as we
elaborate on in Section 4.3.2 on p. 167. Nonetheless, when using the
Wyner model, the UL simulations in Figures 1.16–1.17 are representative
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for the DL performance as well—no additional simulations are needed
to uncover the basic behaviors.

The array gain is M with MR processing in both UL and DL, but
it is obtained differently. In the UL, the BS makes M observations of
the desired signal over its M receive antennas, each being corrupted
by an independent noise term. By coherently combining the M signal
components, the signal power grows proportionally toM while the noise
realizations add incoherently so that the noise variance is unchanged. In
the DL, theM transmit antennas have different channels to the receiving
UE. Since the total transmit power is fixed, the signal power per antenna
is reduced as 1/M and the signal amplitude as 1/

√
M . With precoding

that makes the M transmitted signal components add coherently at the
UE, the received signal’s amplitude grows as M/

√
M =

√
M and the

received signal power therefore grows as M .

1.3.5 Acquiring Channel State Information

The channel responses, hjjk, are utilized by BS j to process the UL and
DL signals. We have assumed so far that the channel responses are known
perfectly, but in practice, these vectors need to be estimated regularly.
More precisely, the channel responses are typically only constant for
a few milliseconds and over a bandwidth of a few hundred kHz. A
random distribution is commonly used to model the channel variations.
The current set of channel response realizations is called the channel
state and the knowledge that the BSs have of them is referred to as
the channel state information (CSI). Full statistical CSI regarding the
distributions19 of random variables is assumed to be available anywhere
in the network, while instantaneous CSI regarding the current channel
realizations need to be acquired at the same pace as the channels
change. The main method for CSI acquisition is pilot signaling, where
a predefined pilot signal is transmitted from an antenna. As illustrated
in Figure 1.20, any other antenna in the network can simultaneously
receive the transmission and compare it with the known pilot signal to

19It is in many cases sufficient to know the first- and second-order moments of
the random variables, but for simplicity we assume that the full distributions are
available.
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One pilot signal

Multiple receive antennas

Figure 1.20: When an antenna is transmitting a pilot signal, any number of receive
antennas can simultaneously receive the pilot signal and use it to estimate their
respective channels to the transmitter.

estimate the channel from the transmitting antenna. If we instead need
to estimate the channel response from two transmitting antennas, two
orthogonal pilot signals are generally required to separate the signals
from the two antennas [182, 195, 38]. The orthogonality is achieved
by spending two samples on the transmission, as further explained
in Section 3.1 on p. 91. The number of orthogonal pilot signals is
proportional to the number of transmit antennas, while any number of
receive antennas can “listen” to the pilots simultaneously and estimate
their individual channels to the transmitters.

Every pilot signal that is transmitted could have been a signal that
carried payload data, thus we want to minimize this overhead caused by
pilot signaling. In SDMA, there are key differences between UL and DL
in terms of the overhead for channel acquisition. There are K single-
antenna UEs per cell and thus K pilot signals are required to estimate
the channels in the UL. Similarly, there are M antennas at the BS and
thus M pilot signals are required to estimate the channels in the DL.
Since having an antenna-UE ratio M/K ≥ 4 is the preferable operating
regime in SDMA, the overhead from sending DL pilots is typically much
larger than that from UL pilots. A BS antenna is only useful if we know
the channel response, which limits the number of BS antennas that we
can utilize in practice, unless we can find a workaround.

The UL and DL can be separated in either time or frequency; see
Figure 1.21. If the UL and DL are separated in time, using a time-division
duplex (TDD) protocol, then the channel responses are reciprocal20 [254].

20The physical propagation channels are reciprocal, but the transceiver chains are
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Time

Frequency

Uplink

Downlink

FDD operation

Frequency

TDD operation

Uplink Downlink

Uplink Downlink

Time

Figure 1.21: Illustration of two ways to divide a block of time/frequency resources
between UL and DL. Each solid box represents a time-frequency block where the
channel responses are constant and need to be estimated.

This means that the channel response is the same in both directions and
can be estimated at the BS using only K UL pilots. Only the BS in cell j
needs to know the complete channel response hjjk to its kth UE, while
the corresponding UE only needs to know the effective scalar channel
gjk = (hjjk)Hwjk that is obtained after precoding. Since the value of gjk
is constant as long as the channels are constant, it can be estimated
blindly from the DL payload data signals, irrespective of the channel
distribution [243].21 For example, the BS can use its CSI to adjust the
phase of wjk so that the phase of gjk becomes (nearly) deterministic,
thereby mainly the magnitude |gjk| needs to be estimated. Channel
hardening improves the estimation quality since the relative variations
in |gjk|/E{|gjk|} becomes smaller. Consequently, a TDD protocol only
requires K pilots, independently of the number of antennas, M .

If the UL and DL are instead separated in frequency, using a
frequency-division duplex (FDD) protocol, then the UL and DL chan-
nels are always different and we cannot rely on reciprocity. Hence, we
need to send pilots in both UL and DL. In addition, the estimates of
the DL channel responses need to be fed back to the BS, to enable DL
precoding computation. The feedback overhead is approximately the

generally not fully reciprocal. This is further discussed in Section 6.4.4 on p. 292.
21DL pilot signals can be utilized to improve the estimation quality, but this does

not necessarily improve the SE since the overhead for channel estimation increases
[243].
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Figure 1.22: Illustration of the operating points (M,K) that are supported by using
τp = 20 pilots, for TDD and FDD protocols. The shaded area corresponds to the
preferable operating points for SDMA systems. The TDD protocol is scalable with
respect to the number of antennas and the number of UEs that can be supported is
only limited by τp.

same as that of sending M additional UL pilot signals.22 The precoded
channels gjk = (hjjk)Hwjk can be estimated from the DL signals, as
described for TDD above. Hence, an FDD protocol has a pilot/feedback
overhead that is equivalent to sending M +K pilots in the UL and M
pilots in the DL. To compare this with TDD, suppose the frequency
resources in FDD are divided equally between UL and DL. The average
pilot overhead of the FDD protocol is then M+K+M

2 = M + K
2 .

We will now illustrate the important difference in pilot dimensionality
between TDD and FDD operation. Consider an SDMA system that
can afford τp pilots. This value determines the combinations of M and
K that can be supported. The TDD protocol supports up to K = τp
UEs and an arbitrary M . The FDD protocol supports any M and
K such that M + K

2 ≤ τp. The operating points supported by these
protocols are illustrated in Figure 1.22 for τp = 20. The shaded area
indicates M ≥ 4K, which are the operating points attractive for SDMA
as discussed in Section 1.3.3 (see for example the results in Figure 1.17).
The tradeoff between antennas and UEs caused by the FDD protocol

22This approximation assumes analog CSI feedback, where UE k sends the value
of each element in hjjk as a real-valued data symbol and this feedback is multiplexed
using SDMA. Quantized digital feedback is another option, but it gives roughly the
same overhead if the feedback accuracy should be the same [73].
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leads to a very limited intersection with the shaded area. In contrast,
the TDD protocol is entirely scalable with respect toM and the number
of pilots only limits how many UEs can be supported. Any number
of antennas can be used, but preferably we select one of the many
operating points that lie in the shaded area.

In summary, SDMA systems should ideally be combined with TDD,
by exploiting the reciprocity between UL and DL channels. This is
because the required channel acquisition overhead in TDD is K, while
it is M + K

2 in FDD. The FDD overhead is around 50% larger when
M ≈ K, while it is much larger for M � K, which is the preferable
operating regime for SDMA. Note that it is the channel acquisition
needed for DL precoding that differs between TDD and FDD, while the
UL works essentially the same.

Remark 1.5 (Channel parameterizations). In some propagation scenarios,
the set of possible M -dimensional channel responses can be parame-
terized using much less than M parameters. A key example is LoS
propagation where the model that we used in (1.38) mainly depends
on the angle ϕ0

jk between the BS and the UE. Instead of transmitting
M DL pilots, we can in the LoS case select a set of equally spaced
angles between 0 and π and send precoded DL pilot signals only in
these directions. If the number of such angles is much smaller than
M , then this method can enable FDD operation with reduced pilot
overhead and can still give good estimation quality [50]. However, LoS
channel parameterizations require the array geometry to be predefined
and that the antennas are phase-calibrated, in the sense that the phase
drifts incurred by the radio frequency (RF) hardware are known and
can be compensated for. In particular, the model in (1.38) is only valid
for phase-calibrated ULAs. There are several drawbacks with building
a system that strictly relies on channel parameterizations. One is that
even if some UE channels can be parameterized efficiently, there might
not exist a single low-dimensional parameterization model that applies
to all channels—it is sufficient that one part of the cell provides approx-
imately uncorrelated Rayleigh fading to discourage the use of channel
parametrization for simplified DL estimation. Another drawback is that
practical channels are not bound to follow a particular channel model.
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NLoS channels can consist of various multipath components that arrive
from different angles and with different phase-rotations, while practical
LoS channels contain random reflections and scattering, in addition
to the deterministic LoS path. TDD operation is generally preferred
because we want to design a network that can operate efficiently in any
kind of propagation environment, with any array geometry, and without
inter-antenna phase-calibration. However, TDD also has its own specific
challenges: i) the SNR is slightly lower than in FDD since the power
amplifier is only turned on part of the time; ii) the transmitter and
receiver hardware of an antenna must be calibrated to maintain channel
reciprocity (see Section 6.4.4 on p. 292 for a further discussion).
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1.4 Summary of Key Points in Section 1

• Users of future networks will demand wireless connectivity
with uniform service quality, anywhere at any time.

• The demand for data traffic increases rapidly and calls for
higher area throughput in future cellular networks. This can
be achieved by cell densification, allocating more frequency
spectrum, and/or improving the SE [bit/s/Hz/cell].

• Current and future network infrastructure consists of two
key parts: the coverage tier and the hotspot tier. The area
throughput needs to be improved in both tiers.

• The coverage tier takes care of coverage, mobility, and guaran-
tees a minimum service quality. To increase the area through-
put of this tier, it is preferred to increase the SE, since densi-
fication or the use of spectrum at higher frequencies degrade
the mobility support and coverage.

• The hotspot tier offloads traffic from the coverage tier, for
example, from low-mobility indoor UEs. Densification and
the use of new spectrum at higher frequencies are attractive
ways to increase the area throughput of this tier, but the SE
can be also improved by an array gain.

• The SE of a single UE is a slowly increasing, logarithmic
function of the SINR. Only modest SE gains are possible by
increasing the SINR (e.g., by using higher transmit power
or deploying multiple antennas at the BS).

• A K-fold SE gain is achievable by serving K UEs per cell,
on the same time/frequency resources, using SDMA. The
number of BS antennas is preferably increased with K to get
an array gain that compensates for the increased interference.
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• Each BS should have more antennas, M , than UEs, leading
to an antenna-UE ratio M/K > 1. This makes linear UL
receive combining and DL transmit precoding nearly optimal
since each interfering UE contributes with relatively little
interference.

• When the number of BS antennas is large, the effective
channels to the desired UEs are almost deterministic after
combining/precoding, although the channel responses are
random. This phenomenon is called channel hardening.

• CSI is used by the BS to spatially separate the UEs in UL
and DL. The channels are most efficiently estimated with
a TDD protocol that utilizes channel reciprocity, since only
UL pilot signals are required and no feedback is needed.
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