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A Brief Introduction to Machine
Learning for Engineers
Osvaldo Simeone1

1Department of Informatics, King’s College London;
osvaldo.simeone@kcl.ac.uk

ABSTRACT

This monograph aims at providing an introduction to key
concepts, algorithms, and theoretical results in machine
learning. The treatment concentrates on probabilistic models
for supervised and unsupervised learning problems. It
introduces fundamental concepts and algorithms by building
on first principles, while also exposing the reader to more
advanced topics with extensive pointers to the literature,
within a unified notation and mathematical framework. The
material is organized according to clearly defined categories,
such as discriminative and generative models, frequentist
and Bayesian approaches, exact and approximate inference,
as well as directed and undirected models. This monograph
is meant as an entry point for researchers with an engineering
background in probability and linear algebra.

Osvaldo Simeone (2018), “A Brief Introduction to Machine Learning for Engineers”,
Foundations and TrendsR© in Signal Processing: Vol. 12, No. 3-4, pp 200–431. DOI:
10.1561/2000000102.
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Notation

• Random variables or random vectors – both abbreviated as rvs –
are represented using roman typeface, while their values and realizations
are indicated by the corresponding standard font. For instance, the
equality x = x indicates that rv x takes value x.
• Matrices are indicated using uppercase fonts, with roman typeface

used for random matrices.
• Vectors will be taken to be in column form.
• XT and X† are the transpose and the pseudoinverse of matrix X,

respectively.
• The distribution of a rv x, either probability mass function (pmf)

for a discrete rv or probability density function (pdf) for continuous
rvs, is denoted as px, px(x), or p(x).
• The notation x ∼ px indicates that rv x is distributed according

to px.
• For jointly distributed rvs (x, y) ∼ pxy, the conditional distribution

of x given the observation y = y is indicated as px|y=y, px|y(x|y) or
p(x|y).
• The notation x|y = y ∼ px|y=y indicates that rv x is drawn ac-

cording to the conditional distribution px|y=y.
• The notation Ex∼px [·] indicates the expectation of the argument

with respect to the distribution of the rv x ∼ px. Accordingly, we will
also write Ex∼px|y [·|y] for the conditional expectation with respect to

1
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2 Notation

the distribution px|y=y. When clear from the context, the distribution
over which the expectation is computed may be omitted.
• The notation Prx∼px [·] indicates the probability of the argument

event with respect to the distribution of the rv x ∼ px. When clear from
the context, the subscript is dropped.
• The notation log represents the logarithm in base two, while ln

represents the natural logarithm.
• x ∼ N (µ,Σ) indicates that random vector x is distributed accord-

ing to a multivariate Gaussian pdf with mean vector µ and covariance
matrix Σ. The multivariate Gaussian pdf is denoted as N (x|µ,Σ) as a
function of x.
• x ∼ U(a, b) indicates that rv x is distributed according to a uni-

form distribution in the interval [a, b]. The corresponding uniform pdf
is denoted as U(x|a, b).
• δ(x) denotes the Dirac delta function or the Kronecker delta func-

tion, as clear from the context.
• ||a||2 =

∑N
i=1 a

2
i is the quadratic, or l2, norm of a vector

a = [a1, . . . , aN ]T . We similarly define the l1 norm as ||a||1 =
∑N
i=1 |ai|,

and the l0 pseudo-norm ||a||0 as the number of non-zero entries of vector
a.
• I denotes the identity matrix, whose dimensions will be clear from

the context. Similarly, 1 represents a vector of all ones.
• R is the set of real numbers; R+ the set of non-negative real

numbers; R− the set of non-positive real numbers; and RN is the set of
all vectors of N real numbers.
• 1 (·) is the indicator function: 1 (x) = 1 if x is true, and 1 (x) = 0

otherwise.
• |S| represents the cardinality of a set S.
• xS represents a set of rvs xk indexed by the integers k ∈ S.
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Acronyms

AI: Artificial Intelligence
AMP: Approximate Message Passing
BN: Bayesian Network
DAG: Directed Acyclic Graph
ELBO: Evidence Lower BOund
EM: Expectation Maximization
ERM: Empirical Risk Minimization
GAN: Generative Adversarial Network
GLM: Generalized Linear Model
HMM: Hidden Markov Model
i.i.d.: independent identically distributed
KL: Kullback-Leibler
LASSO: Least Absolute Shrinkage and Selection Operator
LBP: Loopy Belief Propagation
LL: Log-Likelihood
LLR: Log-Likelihood Ratio
LS: Least Squares
MC: Monte Carlo
MCMC: Markov Chain Monte Carlo
MDL: Minimum Description Length
MFVI: Mean Field Variational Inference
ML: Maximum Likelihood

3

Full text available at: http://dx.doi.org/10.1561/2000000102



4 Acronyms

MRF: Markov Random Field
NLL: Negative Log-Likelihood
PAC: Probably Approximately Correct
pdf: probability density function
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PCA: Principal Component Analysis
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QDA: Quadratic Discriminant Analysis
RBM: Restricted Boltzmann Machine
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1
Introduction

Having taught courses on machine learning, I am often asked by
colleagues and students with a background in engineering to suggest
“the best place to start” to get into this subject. I typically respond with
a list of books – for a general, but slightly outdated introduction, read
this book; for a detailed survey of methods based on probabilistic models,
check this other reference; to learn about statistical learning, I found
this text useful; and so on. This answer strikes me, and most likely also
my interlocutors, as quite unsatisfactory. This is especially so since the
size of many of these books may be discouraging for busy professionals
and students working on other projects. This monograph is an attempt
to offer a basic and compact reference that describes key ideas and
principles in simple terms and within a unified treatment, encompassing
also more recent developments and pointers to the literature for further
study.

1.1 What is Machine Learning?

A useful way to introduce the machine learning methodology is by means
of a comparison with the conventional engineering design flow. This

6
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1.1. What is Machine Learning? 7

starts with a in-depth analysis of the problem domain, which culminates
with the definition of a mathematical model. The mathematical model
is meant to capture the key features of the problem under study, and is
typically the result of the work of a number of experts. The mathematical
model is finally leveraged to derive hand-crafted solutions to the problem
that offer given optimality guarantees.

For instance, consider the problem of defining a chemical process
to produce a given molecule. The conventional flow requires chemists
to leverage their knowledge of models that predict the outcome of
individual chemical reactions, in order to craft a sequence of suitable
steps that synthesize the desired molecule. Another example is the
design of speech translation or image/video compression algorithms.
Both of these tasks involve the definition of models and algorithms by
teams of experts, such as linguists, psychologists, and signal processing
practitioners, not infrequently during the course of long standardization
meetings.

The engineering design flow outlined above may be too costly and
inefficient for problems in which faster or less expensive solutions are
desirable. The machine learning alternative is to collect large data sets,
e.g., of labelled speech, images or videos, and to use this information
to train general-purpose learning machines to carry out the desired
task. While the standard engineering flow relies on domain knowledge
and on design optimized for the problem at hand, machine learning
lets large amounts of data dictate algorithms and solutions. To this
end, rather than requiring a precise model of the set-up under study,
machine learning requires the specification of an objective, of a generic
model to be trained, and of an optimization technique.

Returning to the first example above, a machine learning approach
would proceed by training a general-purpose machine to predict the
outcome of known chemical reactions based on a large data set, and
by then using the trained algorithm to explore ways to produce more
complex molecules. In a similar manner, large data sets of images or
videos would be used to train a general-purpose algorithm with the aim
of obtaining compressed representations from which the original input
can be recovered with some distortion.

Full text available at: http://dx.doi.org/10.1561/2000000102



8 Introduction

1.2 When to Use Machine Learning?

Based on the discussion above, machine learning can offer an efficient
alternative to the conventional engineering flow when development cost
and time are the main concerns, or when the problem appears to be
too complex to afford the development of solutions with optimality
guarantees. On the flip side, the approach has the key disadvantages of
providing generally suboptimal performance, of producing black-box,
and hence non-interpretable, solutions, and of applying only to a limited
set of problems.

In order to identify tasks for which machine learning methods may
be useful, reference [31] suggests the following criteria:

1. the task involves a function that maps well-defined inputs to
well-defined outputs;

2. large data sets exist or can be created containing input-output
pairs;

3. the task provides clear feedback with clearly definable goals and
metrics;

4. the task does not involve long chains of logic or reasoning that
depend on diverse background knowledge or common sense;

5. the task does not require detailed explanations for how the decision
was made;

6. the task has a tolerance for error and no need for provably correct
or optimal solutions;

7. the phenomenon or function being learned should not change
rapidly over time; and

8. no specialized dexterity, physical skills, or mobility is required.

These criteria are useful guidelines for the decision of whether machine
learning methods are suitable for a given task of interest. They also offer
a convenient demarcation line between machine learning as is intended
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1.2. When to Use Machine Learning? 9

today, with its focus on training and computational statistics tools, and
more general notions of Artificial Intelligence (AI) based on knowledge
and common sense [86] (see [126] for an overview on AI research).

1.2.1 Learning Tasks

We can distinguish among three different main types of machine learning
problems, which are briefly introduced below. The discussion reflects
the focus of this monograph on parametric probabilistic models, as
further elaborated on in the next section.

1. Supervised learning: We have N labelled training examples
D={(xn, tn)}Nn=1, where xn represents a covariate, or explanatory
variable, while tn is the corresponding target label, or response. For
instance, variable xn may represent the text of an email, while the label
tn may be a binary variable indicating whether the email is spam or
not. The goal of supervised learning is to predict the value of the label t
for an input x that is not in the training set. In other words, supervised
learning aims at generalizing the observations in the data set D to new
inputs. For example, an algorithm trained on a set of emails should be
able to classify a new email not present in the data set D.

We can generally distinguish between classification problems, in
which the label t is discrete, as in the example above, and regression
problems, in which variable t is continuous. An example of a regression
task is the prediction of tomorrow’s temperature t based on today’s
meteorological observations x.

An effective way to learn a predictor is to identify from the data set D
a predictive distribution p(t|x) from a set of parametrized distributions.
The conditional distribution p(t|x) defines a profile of beliefs over all
possible of the label t given the input x. For instance, for temperature
prediction, one could learn mean and variance of a Gaussian distribution
p(t|x) as a function of the input x. As a special case, the output of a
supervised learning algorithm may be in the form of a deterministic
predictive function t = t̂(x).

2. Unsupervised learning: Suppose now that we have an
unlabelled set of training examples D={xn}Nn=1. Less well defined than
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10 Introduction

supervised learning, unsupervised learning generally refers to the task
of learning properties of the mechanism that generates this data set.
Specific tasks and applications include clustering, which is the problem
of grouping similar examples xn; dimensionality reduction, feature
extraction, and representation learning, all related to the problem
of representing the data in a smaller or more convenient space; and
generative modelling, which is the problem of learning a generating
mechanism to produce artificial examples that are similar to available
data in the data set D.

As a generalization of both supervised and unsupervised learning,
semi-supervised learning refers to scenarios in which not all examples
are labelled, with the unlabelled examples providing information about
the distribution of the covariates x.

3. Reinforcement learning: Reinforcement learning refers to the
problem of inferring optimal sequential decisions based on rewards or
punishments received as a result of previous actions. Under supervised
learning, the “label” t refers to an action to be taken when the learner
is in an informational state about the environment given by a variable
x. Upon taking an action t in a state x, the learner is provided with
feedback on the immediate reward accrued via this decision, and the
environment moves on to a different state. As an example, an agent can
be trained to navigate a given environment in the presence of obstacles
by penalizing decisions that result in collisions.

Reinforcement learning is hence neither supervised, since the learner
is not provided with the optimal actions t to select in a given state x; nor
is it fully unsupervised, given the availability of feedback on the quality
of the chosen action. Reinforcement learning is also distinguished from
supervised and unsupervised learning due to the influence of previous
actions on future states and rewards.

This monograph focuses on supervised and unsupervised learning.
These general tasks can be further classified along the following
dimensions.
• Passive vs. active learning: A passive learner is given the training

examples, while an active learner can affect the choice of training
examples on the basis of prior observations.

Full text available at: http://dx.doi.org/10.1561/2000000102



1.3. Goals and Outline 11

• Offline vs. online learning: Offline learning operates over a batch of
training samples, while online learning processes samples in a streaming
fashion. Note that reinforcement learning operates inherently in an
online manner, while supervised and unsupervised learning can be
carried out by following either offline or online formulations.

This monograph considers only passive and offline learning.

1.3 Goals and Outline

This monograph aims at providing an introduction to key concepts,
algorithms, and theoretical results in machine learning. The treatment
concentrates on probabilistic models for supervised and unsupervised
learning problems. It introduces fundamental concepts and algorithms
by building on first principles, while also exposing the reader to more
advanced topics with extensive pointers to the literature, within a
unified notation and mathematical framework. Unlike other texts that
are focused on one particular aspect of the field, an effort has been made
here to provide a broad but concise overview in which the main ideas
and techniques are systematically presented. Specifically, the material is
organized according to clearly defined categories, such as discriminative
and generative models, frequentist and Bayesian approaches, exact and
approximate inference, as well as directed and undirected models. This
monograph is meant as an entry point for researchers with a background
in probability and linear algebra. A prior exposure to information theory
is useful but not required.

Detailed discussions are provided on basic concepts and ideas,
including overfitting and generalization, Maximum Likelihood and
regularization, and Bayesian inference. The text also endeavors to
provide intuitive explanations and pointers to advanced topics and
research directions. Sections and subsections containing more advanced
material that may be skipped at a first reading are marked with a star
(∗).

The reader will find here neither discussions on computing platform
or programming frameworks, such as map-reduce, nor details on specific
applications involving large data sets. These can be easily found in a
vast and growing body of work. Furthermore, rather than providing
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12 Introduction

exhaustive details on the existing myriad solutions in each specific
category, techniques have been selected that are useful to illustrate the
most salient aspects. Historical notes have also been provided only for
a few selected milestone events.

Finally, the monograph attempts to strike a balance between the
algorithmic and theoretical viewpoints. In particular, all learning
algorithms are introduced on the basis of theoretical arguments, often
based on information-theoretic measures. Moreover, a chapter is devoted
to statistical learning theory, demonstrating how to set the field of
supervised learning on solid theoretical foundations. This chapter is
more theoretically involved than the others, and proofs of some key
results are included in order to illustrate the theoretical underpinnings
of learning. This contrasts with other chapters, in which proofs of the
few theoretical results are kept at a minimum in order to focus on the
main ideas.

The rest of the monograph is organized into five parts. The first
part covers introductory material. Specifically, Chapter 2 introduces the
frequentist, Bayesian and Minimum Description Length (MDL) learning
frameworks; the discriminative and generative categories of probabilistic
models; as well as key concepts such as training loss, generalization,
and overfitting – all in the context of a simple linear regression problem.
Information-theoretic metrics are also briefly introduced, as well as
the advanced topics of interpretation and causality. Chapter 3 then
provides an introduction to the exponential family of probabilistic
models, to Generalized Linear Models (GLMs), and to energy-based
models, emphasizing main properties that will be invoked in later
chapters.

The second part concerns supervised learning. Chapter 4 covers
linear and non-linear classification methods via discriminative and
generative models, including Support Vector Machines (SVMs), kernel
methods, logistic regression, multi-layer neural networks and boosting.
Chapter 5 is a brief introduction to the statistical learning framework
of the Probably Approximately Correct (PAC) theory, covering the
Vapnik–Chervonenkis (VC) dimension and the fundamental theorem of
PAC learning.
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1.3. Goals and Outline 13

The third part, consisting of a single chapter, introduced
unsupervised learning. In particular, in Chapter 6, unsupervised learning
models are described by distinguishing among directed models, for
which Expectation Maximization (EM) is derived as the iterative
maximization of the Evidence Lower BOund (ELBO); undirected models,
for which Restricted Boltzmann Machines (RBMs) are discussed as a
representative example; discriminative models trained using the InfoMax
principle; and autoencoders. Generative Adversarial Networks (GANs)
are also introduced.

The fourth part covers more advanced modelling and inference
approaches. Chapter 7 provides an introduction to probabilistic
graphical models, namely Bayesian Networks (BNs) and Markov
Random Fields (MRFs), as means to encode more complex probabilistic
dependencies than the models studied in previous chapters. Approximate
inference and learning methods are introduced in Chapter 8 by focusing
on Monte Carlo (MC) and Variational Inference (VI) techniques. The
chapter briefly introduces in a unified way techniques such as variational
EM, Variational AutoEncoders (VAE), and black-box inference. Some
concluding remarks are provided in the last part, consisting of Chapter 9.

We conclude this chapter by emphasizing the importance of
probability as a common language for the definition of learning
algorithms [34]. The centrality of the probabilistic viewpoint was not
always recognized, but has deep historical roots. This is demonstrated by
the following two quotes, the first from the first AI textbook published
by P. H. Winston in 1977, and the second from an unfinished manuscript
by J. von Neumann (see [126, 63] for more information):

“Many ancient Greeks supported Socrates opinion that
deep, inexplicable thoughts came from the gods. Today’s
equivalent to those gods is the erratic, even probabilistic
neuron. It is more likely that increased randomness of neural
behavior is the problem of the epileptic and the drunk, not
the advantage of the brilliant.”

from Artificial Intelligence, 1977;
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14 Introduction

“All of this will lead to theories of computation which are
much less rigidly of an all-or-none nature than past and
present formal logic. . . There are numerous indications to
make us believe that this new system of formal logic will
move closer to another discipline which has been little linked
in the past with logic. This is thermodynamics primarily in
the form it was received from Boltzmann.”

from The Computer and the Brain, 1958.
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